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Abstract 

A hybrid reactive distillation system with high selectivity pervaporation was examined to 

produce butyl acetate and methanol via transesterification of methyl acetate with butanol. 

High selectivity pervaporation was combined with reactive distillation to eliminate a hitherto 

required column for the separation of a methanol and methyl acetate azeotrope. The 

polyamide-6 membrane was used for this purpose because of its high selectivity for methanol 

while also allowing sufficient permeate flux. The high purity methyl acetate recovered in the 

retentate stream leads to high conversion in the reactive distillation column, which enhances 

the energy savings (up to 71%) of this process. The feasibility of the proposed hybrid 

processes and several alternative designs were evaluated by rigorous simulation and 

optimization using the Aspen Plus software package. The effects of several designs and 

operating variables were also investigated for the proposed design. The high potential of the 

hybrid reactive distillation and pervaporation system for butyl acetate production is very 

promising; it may not only reduce the total annual costs relative to conventional systems but 

may also provide an attractive strategy to address problems associated with methanol and 

methyl acetate azeotropes in the effluent generated in the polyvinyl alcohol industry. 

Keywords: reactive distillation; pervaporation; hybrid process; butyl acetate production; 

energy savings 
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1. Introduction 

Butyl acetate (BuAc) is used widely as a raw material in the coating and painting industries. 

In addition, BuAc is also a good solvent for manufacturing lacquers, acrylic polymers, 

enamels, vinyl resins, and nitrocellulose [1]. Due to its low toxicity and relatively small 

environmental impact, BuAc has become a more favorable solvent to replace other more 

toxic and teratogenic solvents such as ethoxy ethyl acetate. Moreover, it has been used as a 

synthetic fruit flavoring in food products, in the pharmaceutical industry, and in a variety of 

cosmetic formulations [2]. In 2008, the annual US consumption of BuAc was reported to be 

105,000 metric tons [3]. BuAc is usually produced via the esterification reaction of butanol 

(BuOH) with acetic acid using sulfuric acid as the catalyst [4]. However, such esterification 

reactions can be problematic because of the inevitable problems associated with using 

homogeneous catalysts [5]. For this reason, alternative processes that use heterogeneous 

catalysts, which may lead to fewer technical issues, are currently being investigated. In the 

last decade, the utilization of residue from polyvinyl alcohol (PVA) industrial plants as the 

reactant to synthesize BuAc by transesterification of BuOH with methyl acetate (MeAc) has 

attracted significant attention. 

MeAc is obtained as a by-product in the production of PVA as approximately 1.68 times the 

PVA product by weight. Previously, MeAc was disposed of as waste or was sold very 

cheaply [6, 7]. However, because of recent volatile organic compound (VOC) legislation and 

its few industrial uses as a solvent, it has become necessary to convert MeAc into a more 

economically valuable compound. One common approach in the expansion of industrial PVA 

plants involves the hydrolysis of MeAc into acetic acid and methanol (MeOH) [7, 8]. 

However, as discussed by Lin et al. [9], MeAc offers a much economic benefit when it is 

converted into BuAc and MeOH via transesterification with BuOH. Notably, the MeOH that 

is obtained as the by-product from either hydrolysis or transesterification is recycled back to 
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the production of PVA. For instance, in a medium industrial plant that produces PVA in 

Niigata, Japan, it was projected that the difference in annual revenues would be $11,750,000 

USD in favor of BuAc production since acetic acid has a market price of approximately $0.75 

USD/kg versus the higher price of BuAc (ca. $1 USD/kg) [10]. 

Recently, BuAc has been generated by the transesterification reaction of MeAc with BuOH. 

Several reports studied the kinetics and thermodynamics of this process using Amberlyst-15 

as a heterogeneous acid catalyst [11-13]. Jimenez et al. reported the first kinetic data of the 

transesterification reaction, while also presenting a reactive and extractive distillation (RED) 

configuration [6, 11]. However, this innovative process is relatively complex due to the 

occurrence of two azeotropes, that is, a MeOH-MeAc mixture (66.7 mol% MeAc) and a 

BuOH-BuAc mixture (78.01 mol% BuOH). To overcome the azeotrope problem, the RED 

technique requires an additional component (i.e., xylene) as an extraction solvent. Further, 

Luyben developed an alternative reactive distillation (RD) process without the requirement of 

any additional solvent [14], whereas Wang et al. combined the reactive distillation process 

with a methanol column to reduce the reboiler duty of the distillation columns [15]. 

Unfortunately, all of these configurations have similar drawbacks since the azeotrope mixture 

of MeOH-MeAc is recycled back to the main reactive distillation column. Note that the 

recycle stream is necessary to reuse unreacted MeAc while also providing an excess of MeAc 

as the reactant. 

As reported in the experimental and theoretical work by Steinigeweg et al. [12] and Svandova 

[16], the recycle stream should be concentrated into pure MeAc to increase the conversion of 

the MeAc. In their work, MeAc is entirely recovered by using a pervaporation membrane. In 

this low selectivity pervaporation unit, high purity MeAc can be attained in the retentate 

stream. However, the MeOH concentration in the permeate stream remains below the product 
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specification. Thus, this MeOH-rich stream was then fed to an additional column to recover 

the pure MeOH as the product. 

The existing reactive distillation-pervaporation hybrid configuration for conventional BuAc 

production (via esterification) requires just one reactive distillation column and decanter [2, 

17]. However, the current reactive distillation-pervaporation hybrid process (via 

transesterification) requires an additional MeOH column as a consequence of the poor MeOH 

concentration in the permeate stream. Therefore, for the latter configuration to be 

competitive, a high selectivity membrane is necessary as a final purification step to attain 

MeOH in the outlet stream. High purity MeOH can be attained in the permeate side of the 

pervaporation membrane, which would eliminate the need for the MeOH column. Recently, 

Abdallah et al. [18] produced a high selectivity pervaporation membrane to separate MeOH 

and MeAc. This membrane completely separated MeOH from MeOH-MeAc mixtures by 

pervaporation using a polyamide-6 (PA-6) membrane prepared by a dry-wet phase inversion 

technique. 

In this work, a hybrid reactive distillation system with high selectivity pervaporation was 

designed for the enhanced production of BuAc and was sequentially optimized from an 

economical point of view. To the best of our knowledge, no similar cases of optimal 

proposed design for BuAc production have been reported in the literature. This type of 

pervaporation is used to separate the components of an azeotrope in order to increase the 

conversion as well as to reduce the energy demand of the process. Moreover, the high 

selectivity pervaporation is necessary to eliminate the need for the hitherto required MeOH 

distillation column. 

 

2. Description of the hybrid reactive distillation system with pervaporation 



6 
 

2.1. Reactive distillation 

Conventional chemical plants mainly consist of reaction and separation processes. Reactive 

distillation is growing as an innovative industrial technology by combining both of these 

processes into a single comprehensive unit. With this technique, a significant reduction in 

both energy and equipment costs can be realized. A single reactive distillation column could 

replace the conventional reactor and distillation processes, which consume five times more 

energy and capital costs than the single unit alternative [19]. Further, reactive distillation is 

more advantageous for reversible reaction systems, in which chemical equilibria limit the 

conversion [6]. Note that continuous removal of products from the reaction chamber favors 

the reversible reaction toward the product side [20]. 

In the chemical process optimization software Aspen Plus, simulating reactive distillation can 

be performed using the distillation model “RadFrac” by specifying the reaction as distinct 

reactive stages. Kinetic data of the reaction from experimental work is used as input variables 

in the reaction section of the software. The model is based on a rigorous equilibrium stage 

model for solving the MESH equations [21]. The number of stages are ordered from top to 

bottom of the distillation column, with the condenser being the first stage and the reboiler 

being stage N. In “RadFrac,” the user must provide the reaction parameters and the reactive 

stages must be specified with the amount of catalyst hold-up, which differs from the input 

parameters of conventional distillation. The reaction is combined with the “RadFrac” model, 

from which Aspen Plus calculates the equilibrium constant by minimizing the Gibbs free 

energy. 

The transesterification reaction of MeAc and BuOH is a reversible reaction in the reactive 

distillation process as: 

𝑏𝑢𝑡𝑎𝑛𝑜𝑙 + 𝑚𝑒𝑡ℎ𝑦𝑙 𝑎𝑐𝑒𝑡𝑎𝑡𝑒 ↔ 𝑏𝑢𝑡𝑦𝑙 𝑎𝑐𝑒𝑡𝑎𝑡𝑒 + 𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙 
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Strong acids must be used to catalyze this reaction. The kinetic data for the Amberlyst-15 ion 

exchange resin as a catalyst were reported by Jimenez et al. [11] by assuming a catalyst bulk 

density of 2000 kg/m3. The kinetic expressions used are given as follows: 

𝑟 = 𝑘𝑓 𝐶𝑛−𝐵𝑢𝑂𝐻𝐶𝑀𝑒𝐴𝑐 − 𝑘𝑟 𝐶𝐵𝑢𝐴𝑐𝐶𝑀𝑒𝑂𝐻 

𝑘𝑓  = 7 × 108 exp (
71960

𝑅𝑇
) ; 𝑘𝑟 = 9.467 × 108 exp (

72670

𝑅𝑇
) 

where 𝑟 is the overall reaction rate with concentration in molality (kmol/m3); 𝑘𝑓 and 𝑘𝑟 are 

the forward and backward reaction constants (kmol/s·m3), respectively; R is the universal gas 

constant (8314 J/kmol·Kelvin); and T is temperature (Kelvin). The reaction occurs in the 

liquid phase. Regarding the reaction rate, an important characteristic of this transesterification 

reaction is an extremely low equilibrium constant, which favors reactive distillation. 

An appropriate thermodynamic model is essential to create a reliable process design. In this 

quaternary system, the UNIQUAC [22] model has used for the vapor-liquid equilibrium 

(VLE) calculations. All of these VLE binary interaction parameters are available in the Aspen 

Plus simulator. The UNIQUAC model was used because the interaction parameters can be 

fitted simultaneously to different types of phase equilibrium data, which were taken from the 

Dortmund Data Bank [12]. Additionally, this model is useful because it accurately describes 

the chemical equilibria and reaction kinetics. Note that vapor phase non-idealities have been 

neglected during the VLE calculations because of the relatively low pressure (1 atm) required 

in the proposed design [12]. 

2.2. Pervaporation 

Separation using a pervaporation membrane has recently gained increasing attention in the 

chemical industry. Pervaporation offers the superior advantage of overcoming certain 

thermodynamic separation limitations such as treating close boiling and azeotropic mixtures. 

Instead of the distillation technique, pervaporation (or vapor permeation) of organic mixtures 



8 
 

has been discussed at length by numerous researchers and is well documented as a low 

energy consumption separation process [23, 24]. In pervaporation, the component with the 

highest permeation ability favorably passes through the membrane and is continuously 

withdrawn in the form of vapor from the permeate side of the membrane. The continuous 

removal of the vaporous permeate generates a concentration gradient across both sides of the 

pervaporation membrane, which acts as the driving force for the process. To enhance its 

applicability and commercialization, pervaporation membranes have been hybridized with 

conventional distillation processes in order to obtain desired separation efficiencies [24-26]. 

Moreover, the hybrid application of pervaporation with reactive distillation gives access to a 

variety of innovative process concepts [27, 28]. 

 

Fig. 1. Flux and permeate data of pervaporation for methanol-methyl acetate separation at the 

same feed composition (20 wt% MeOH). 

From the literature, it is clear that use of pervaporation membranes is an effective technique 

to separate MeOH from MeAc by overcoming the azeotrope problem. Fig. 1 summarizes the 

performances of the available hydrophilic pervaporation membranes that have been used to 
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separate MeOH-MeAc mixtures [12, 18, 29-32]. These hydrophilic membranes are MeOH-

selective, enabling high concentrations of MeOH to be obtained in the permeate stream. The 

feed composition used for comparison in Fig. 1 is the azeotrope composition of MeOH-

MeAc. The detailed flux and permeate concentrations at the different feed compositions of 

various commercial and lab-based synthesized membranes for MeOH-MeAc pervaporation 

have been reported earlier [33]. 

However, most of these membranes are limited at producing two different products in two 

output streams because of their low selectivity. Thus, these low selectivity pervaporation 

membranes can only deliver high purity MeAc in the retentate stream by having a large 

membrane area. Large membrane areas are required to completely remove the MeOH in the 

permeate stream. However, the permeate stream must then go to an adjacent distillation 

column to separate MeOH from MeAc. It is conceivable that the addition of such a 

distillation column may make the system uncompetitive with a hybrid reactive distillation 

with pervaporation for BuAc production via esterification, which requires only a reactive 

distillation column and a decanter [17]. 

Nevertheless, it is without question that additional advantages will be realized if a membrane 

with high selectivity performance, such as Zeolite-4A/PVA/PVP [31] and PA-6 [18], can be 

effectively utilized. Indeed, the limitation of two pure products in the retentate and permeate 

streams could be eliminated with the implementation of a high selectivity membrane. Until 

now, the PA-6 membrane has been the only membrane capable of completely separating 

MeOH-MeAc mixtures through pervaporation; high purity MeOH could be obtained in the 

permeate stream, whereas high purity MeAc was removed from the retentate stream. From a 

literature survey, PA-6 has been shown to perform well in numerous separation processes 

such as water-ethanol [34], water-dioxane [35], acetic acid-water [36], phenol-water [37], and 

water-MeOH [38]. In addition, PA-6 has been used successfully in organic-organic 
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separations to remove MeOH from methyl-tert butyl ether and dimethyl carbonate mixtures 

by pervaporation [39]. 

 

2.3. Hybrid process of reactive distillation with low and high selectivity pervaporation 

This work aims to evaluate the performance of a hybrid process by focusing on the potential 

of using a high selectivity membrane. With the high selectivity membrane, the placing of 

pervaporation is aimed to provide nearly-pure methyl acetate in the retentate stream. The high 

purity of methyl acetate in retentate stream can be obtained by having sufficient membrane 

area, for allowing all methanol pass through the membrane, which can be designed and 

calculated dependent on feed composition and flow rate. The process design approach used 

here is same with the work by Steinigeweg and Gmehling [12] to obtain the pure methyl 

acetate in retentate stream of pervaporation. 

Therefore, the enriched methanol concentration allows the elimination of methanol column 

required to separate the azeotrope mixtures. For comparison with previous hybrid reactive 

distillations with low selectivity pervaporation, Pervap 2255-40 [12] has been chosen as a 

representative membrane because of its moderate flux value and particularly because the high 

MeOH concentration from the distillate will be used later as the membrane feed. It has 

previously been reported that the best choices in this regard are either the PA-6 or Pervap 

2255-40 membranes, given the medium-high concentration range of MeOH as the membrane 

feed [33]. 

In this study, the hybrid reactive distillation with high selectivity was simulated using the 

Aspen Plus software package. A built-in mathematical pervaporation model developed as an 

Excel-VBA interface was used to examine the pervaporation process. This model can be 
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integrated with Aspen Plus to determine the pervaporation outlet stream with any number of 

input variables, which allows complex phenomena to be simulated. The input variables of the 

model include the permeability data of methyl acetate and methanol as a function of their 

concentration in the feed stream, membrane thickness, and permeate pressure. Each 

experimental dataset has a different membrane thickness, operating condition, and feed 

composition. Table 1 lists the input variables obtained from the published literature at the 

same feed composition (20wt% of MeOH). The detailed necessary input variables of the 

model for the different feed concentration can be derived from the data in each literature [12, 

18].  

Table 1. Pervaporation specifications for methanol-methyl acetate separation at the same feed 

composition (20wt% of MeOH) 

Variable Low selectivity 

[12] 

High selectivity 

[18] 

Membrane thickness (meter) 

Permeability of methanol (kmol/m h bar) 

Permeability of methyl acetate (kmol / m h bar) 

Feed pressure (bar) 

Permeate pressure (bar) 

1 x 10-6 

2.92 x 10-10 

3.74 x 10-9 

1.013 

7 x 10-3 

4 x 10-4 

1.67 x 10-7 

2.42 x 10-10 

1.013 

0.2 

 

This model also utilizes the capabilities of Aspen Plus to calculate the mass and energy 

balances for application in the process flowsheet. The built-in mathematical for modeling 

multicomponent pervaporation process, which were based on a solution-diffusion model used 

previously to examine hybrid distillation membranes, were used and validated to model the 

pervaporation under different feed conditions [25]. By employing the solution-diffusion 
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model, the permeate components dissolve in the membrane material and further diffuse 

through the membrane along a concentration gradient. Separation occurs due to the difference 

in rates of diffusion that each component through the membrane’s material as well as the 

solubility of each component in the membrane’s material. For each hybrid design examined 

in this work, the required membrane area for pervaporation was designed with the 

requirement of 99.9 mol% MeAc in the retentate, which was ensured by using the flowsheet 

design specification function in Aspen Plus.  

 

3. Evaluation of alternative designs 

3.1. Design of a conventional reactive distillation process 

 

Fig. 2. Conventional reactive distillation process. 

 

Conventional reactive distillation process consists of a reactive distillation column (RDC) 

RDC
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BuOH Feed
100 kmol/hr

MeAc Feed
100 kmol/hr
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28

35

1

25

BuAc
100 kmol/hr
(99.5 mol%)

MeOH
100 kmol/hr
(99.5 mol%)

T = 126 oC
QR = 2.85 Gcal/hr

T = 64 oC
QR = 0.63 Gcal/hr

MeAc-MeOH
22.6 kmol/hr
(64.4 mol% MeAc)

P = 1 atm

P = 1 atm

RR = 2.52
Qc = 3.59 Gcal/hr
T = 59 oC

1

RR = 2.59
Qc = 0.63 Gcal/hr
T = 54 oC

11

MeOH-MeAc
122.6 kmol/hr
(87.7 mol% MeOH)
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and a methanol column (MC). The reactive distillation column is divided into three sections 

or zones: rectifying, reactive, and stripping. The feed, product specifications, distillation 

column conditions, and the amount of catalyst were considered to be identical as those used 

in the previous study of conventional reactive distillation process [40]. As reactants, BuOH 

and MeAc are fed into the reactive distillation column at a flow rate of 100 kmol/h on the top 

and bottom of the reactive section. The amount of catalyst used in this design was 500 

g/stage. To maintain the stability of the Amberlyst-15 catalyst, the reaction zone temperature 

must be less than 120 °C [41]. For this reason, the reactive distillation column was operated 

at 1 atm. BuAc (99.5 mol%) is taken from the bottom of the reactive distillation column as 

the product. Unreacted MeAc and by-product MeOH was taken as the distillate and proceed 

to the rectifying section as feed for the methanol column to separate MeOH from the MeOH-

MeAc mixture. Thus, the bottom stream of the methanol column is 99.5 mol% MeOH. 

Nevertheless, due to the azeotropic nature of the mixture, the distillate from the methanol 

column is an azeotropic mixture of MeOH-MeAc and is recycled back to the reactive 

distillation column. Fig. 2 presents the detailed configuration of a conventional reactive 

distillation process with a total reboiler duty of 3.48 Gcal/h. The number of stages in the 

rectifying, reaction, and stripping sections are 12, 16, and 7, respectively. The allocation of a 

number of stages in this configuration is taken from the work of Wang et al., who claimed 

that this configuration is optimal for the reactive distillation process [40]. Therefore, this 

configuration is considered as the benchmark for the subsequent hybrid designs explored in 

this work. 

 

3.2. Design of a reactive distillation with low selectivity pervaporation 

Due to a large amount of energy required for conventional reactive distillation processes, 

several researchers have suggested alternative design to reduce the associated operating costs. 
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Designs of a conventional reactive distillation with a pervaporation membrane have been 

reported by Steinigeweg et al. [12] and Svandova et al. [16]. Based on their experimental 

work, both groups claimed that high reaction conversion occurs after MeOH is removed from 

the recycle stream. Using the same number of stages for the reactive distillation and methanol 

columns as the benchmark case (see Section 3.1), Fig. 3 shows the configuration of a hybrid 

reactive distillation with low selectivity pervaporation. Compared with the benchmark case, 

the total reboiler duty of the process decreases from 3.48 Gcal/h to 2.02 Gcal/h. Notably, the 

azeotropic composition of the recycle stream, which is the main obstacle to attain high purity 

MeAc, was successfully avoided. This can be achieved by placing the pervaporation process 

between the reactive distillation and methanol columns. Therefore, conversion of BuOH to 

BuAc is improved significantly once the nearly pure MeAc in the recycle stream is provided 

[12], as indicated in Fig. 4 by the product composition profile along the reactive distillation 

column. Fig. 4 shows that the BuAc purity at the end of the reactive section improves from 

81.7 to 89.6 mol% by the addition of the pervaporation membrane. With a high concentration 

of BuAc in the stripping zone, the required reboiler duty of the reactive distillation could be 

reduced significantly. Therefore, the results suggest that the hybrid reactive distillation 

configuration with low selectivity pervaporation can provide energy savings (of up to 42%) 

for BuAc production. 

This hybrid process used low selectivity pervaporation, which does not facilitate purity 

specification of MeOH in the permeate stream. Therefore, as shown in Fig. 3, it is necessary 

to separate the MeOH-MeAc mixture from the permeate stream in the methanol column, 

which is similar to the process employed in conventional reactive distillation systems. MeOH 

with the product specification is removed from the bottom stream of the methanol column. 

The distillate stream of the methanol column is then recycled back to the pervaporation unit 

since it consists of the azeotropic MeOH-MeAc mixture. For this reason, high selectivity 
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Fig. 4. Product composition profile of a reactive distillation column for all configurations. 

 

4. Design of a reactive distillation with high selectivity pervaporation 

The industrial production of BuAc, in which esterification of BuOH with acetic acid is 

employed, uses a hybrid process involving reactive distillation with pervaporation and the 

requirement of just one column (i.e., the reactive distillation column) [2, 17]. However, for 

transesterification reactive distillation with low selectivity pervaporation (as shown in Fig. 3), 

an additional distillation column (i.e., the methanol column) is required to obtain high purity 

MeOH. Therefore, the objective of this work is to enhance the commercialization of BuAc 

production via transesterification by applying a hybrid reactive distillation with high 

selectivity pervaporation. MeOH is obtained with high purity (99.5 mol%) in the permeate 

using such a membrane, suggesting that the methanol column can be safely eliminated from 

the process, thus reducing its capital and operating costs. 

In this section, a new hybrid conventional reactive distillation configuration with a high 

selectivity membrane is proposed. In order to compare fairly this initial design with 

alternative configurations, the number of stages in each section of the reactive distillation 

column was chosen to be identical. Similar to the previous hybrid process, the proposed 

hybrid configuration (Fig. 5) also attained high purity MeAc (99.9 mol%) in the retentate 

stream. Moreover, this proposed configuration obviated the need for the methanol column 

because the MeOH specification in the product stream can be fulfilled in the permeate 

stream. This configuration offers a significant advantage in terms of energy and capital 

reduction. The results show that the total reboiler duty of the entire transesterification process 

was reduced significantly from 3.48 Gcal/h (cf. Fig. 2) to 0.64 Gcal/h. Similar to the hybrid 

configuration shown in Fig. 3, a reduction of the reboiler duty was realized due to the high 
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product conversion at the end of the reactive zone, which was caused by the presence of 

nearly pure MeAc in the recycle stream. As seen in Fig. 4, BuAc purity up to 91.6 mol% was 

achieved at the end of the reactive zone. Moreover, the total reboiler duty was also reduced 

simply by avoiding the necessity of the methanol column, since high purity MeOH could be 

taken as the product from the permeate stream following pervaporation. The observed energy 

savings (of 64%) are based on the reactive distillation design of the conventional process 

presented earlier (see Section 3.1) [40]. The additional energy and cost savings will be 

possible if further optimization of the proposed hybrid process (i.e., reactive distillation with 

high selectivity pervaporation) is performed. Such sequential optimization of the proposed 

hybrid process will be discussed further in the next section. 
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Fig. 5. The initial design of a hybrid reactive distillation with high selectivity 

pervaporation. 

 

5. Process optimization method 

Optimization must be performed concomitantly with the process design. An essential aspect 

of this procedure is a selection of the most significant process variables. In a chemical 

process, recycle streams between the two unit processes are often incorporated for several 

purposes: (1) to improve conversion, (2) to minimize the production of undesirable by-

products, (3) to improve energy efficiency, and (4) to improve controllability [20]. The Aspen 

Plus simulator (v.9) provides a built-in flowsheet optimization function based on the SQP 

algorithm [21, 42]. The SQP algorithm has become the most successful technique for solving 

nonlinearly constrained optimization problems [43]. This function helps to minimize the 

objective function by varying the manipulating variable in the flowsheet. Several 

investigators have successfully used this optimization approach of Aspen Plus [43-49]. 

Therefore, all configurations studied in this work have been optimized using the 

aforementioned optimization tool. In the proposed hybrid process, two degrees of freedom 

are selected for reactive distillation that will be used in the Aspen Plus simulation: the bottom 

flow rate and the reflux ratio of the reactive distillation column. Moreover, the proposed 

hybrid process also has a recycle stream flow (i.e., the retentate stream following 

pervaporation), which is used as the remaining degree of freedom. The reboiler duty of 

reactive distillation column was used as the objective function in the optimization procedure, 

whereas the recycle flow rate and the reflux ratio of the reactive distillation were employed as 

manipulating variables. Additionally, the product specifications and flow rates were given as 

constraints. 
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The additional total annual cost (TAC) saving was obtained by consideration of the reactive 

distillation stage structure and several operating variables. Modification of the process 

includes the number of stages of each section, the catalyst weight, and the retentate 

concentration. In conjunction with the Aspen Plus optimization function, the sequential 

optimization procedure is shown in Fig. 6. The alternative designs (see Figs 2 and 3) and the 

initial design of proposed design (see Fig. 5) also have already been optimized using the 

Aspen Plus optimization tool but the proposed design is optimized further to obtain an overall 

optimal design for this system. 

The detailed method to calculate the TAC has been provided previously [25]. In addition, in 

order to highlight the commerciality of the proposed configuration, the price of the 

commercial PERVAP® membrane used for pervaporation is $327.6 USD/m2 [50], and 

further updated via the Chemical Engineering Plant Cost Index of 556.8 (2015) to consider 

inflation factor to get the idea of prices in recent time. Moreover, in the proposed 

optimization procedure, the cost of the membrane is simply necessary for comparative 

evaluation at the conceptual design stage. It should be taken into account that according to 

different membrane material, the cost of pervaporation membrane should also re-considered 

once the membrane material produced commercially. The module used in this work was a 

plate frame module at a price of $2527.2 USD/module. The area of one membrane module 

was 50 m2 [50]. The required number of pervaporation modules arranged in a parallel 

configuration with the equal distribution of feed to each module in proposed hybrid design. 

The annual maintenance and labor costs of the installations were assumed to be 10% of the 

total installation costs [51]. Similar to the commercial membrane, the membrane lifetime was 

assumed to be two years [50]. Since this work also involves a reaction that requires a catalyst, 

the operating costs must also include the cost of the catalyst. Therefore, a catalyst life of one 
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year was assumed for all of the TAC calculations determined in this work. The catalyst price 

is $320 USD/kg, which was obtained from Sigma-Aldrich, United States. 
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6. Structure optimization 

6.1. Effect of reactive stages 

The reactive section is an essential part of the reactive distillation column for the 

transesterification reaction, which occurs in the presence of a catalyst. Fig. 7 presents the 

effect of the number of reaction stages on the reactive distillation column performance in 

terms of the TAC. The feed stream is always introduced at the top and bottom of the reactive 

section. It is noted that the number of stripping and rectifying stages is kept at the initial 

design values. Increasing the number of reactive stages increases the reactive hold-up, which 

lowers the reboiler duty. This result is similar to previous reports of increasing the reactive 

stages; specifically, the amount of required vapor boil-up decreases to maintain a sufficient 

amount of product in the bottom stream [20]. However, additional stages result in higher 

operating costs due to higher condenser duty and an increase in capital cost. According to 

Fig. 6, 16 reaction stages give a minimum TAC for the hybrid process. From this reason, 16 

reaction stages were used in the column configuration for all subsequent simulations. 

 

Fig. 7. Effect of the number of reactive stages on the total annual cost of the proposed 

hybrid process. 
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6.2. Effect of stripping stages 

The stripping stages aim to ensure that a satisfactory separation is achieved, especially to 

obtain 99.5 mol% of BuAc in the bottom product. The present results indicate that the 

reboiler duty significantly decreases as the number of stripping stages increases, which 

affected to the significant reduction of operating cost. However, the reduction of the reboiler 

duty after 13 stages was insignificant. In contrast, increasing the number of stripping stages 

requires a higher capital cost. Thus, the TAC decreases as the number of stripping stages 

increases from 7 to 13, as shown in Fig. 8, with the TAC increasing above 13 stages. As a 

result, the optimal configuration is deemed to include 13 stripping stages. 

 

 

Fig. 8. Effect of the number of stripping stages on total annual cost (TAC) of the 

proposed hybrid process. 
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6.3. Effect of rectifying stages 

The purpose of the rectifying section in a reactive distillation is to remove light components 

from the reaction zone. In this transesterification reaction, MeOH as a by-product is obtained 

along with unreacted MeAc. The effect of the number of rectifying stages on the TAC of the 

proposed hybrid process is demonstrated in Fig. 9. As expected, with high purity (or nearly 

pure) MeAc in the recycle stream, the number of rectifying stages could be reduced since the 

MeOH can be completely removed by placing a pervaporation membrane in the distillate 

stream. The reduction of a number of rectifying stages affected to the lower capital cost of the 

proposed design. Although product specification could be obtained with fewer rectifying 

stages, the diameter and condenser duty of the reactive distillation column increases which 

provide a higher operating and capital costs. Thus, it was found that the minimum TAC was 

obtained with 8 rectifying stages. 

 

Fig. 9. Effect of the number of rectifying stages on the total annual cost (TAC) of the 

proposed hybrid process. 
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7. Optimization of operating variables 

7.1. Effect of catalyst weight 

 

Fig. 10. Effect of the catalyst weight on the total annual cost (TAC) of the proposed hybrid 

process. 

Hold-up is very important in reactive distillation because the reaction rates directly depend on 

the hold-up (or the amount of catalyst) on each tray [20]. Amberlyst™-15 is an inexpensive 

and non-hazardous solid acid that is a useful catalyst. It can be easily handled and is detached 

from reaction mixtures by simple filtration techniques. Recently, Amberlyst™-15 has been 

discovered as a powerful catalyst for numerous organic conversions [52]. With pure MeAc 

obtained in the retentate stream, it was expected that the amount of catalyst on each tray 

could be reduced while maintaining the same product specification. However, it is observed 

that the required conversion and product specification are not attained when the catalyst 

weight is less than 176 g. Previous reports for this reaction observed that a sufficient amount 

of catalyst must be available to achieve the desired reaction conversions [13]. An increase in 

the amount of catalyst has a slight positive effect on reducing the reboiler duty of the reactive 
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distillation. However, other factors such as the higher column diameter and catalyst costs 

must also be considered. As per result, Fig. 10 shows the influence of catalyst weight on the 

TAC of the hybrid process. The minimum TAC could be obtained by the minimum (or 

sufficient) amount of catalyst to attain the product specification.  

 

7.2. Methyl acetate purity in the retentate stream 

 

Fig. 11. Effect of methyl acetate concentration in the retentate on the total annual cost (TAC) 

of the proposed hybrid process. 

Since a high selectivity pervaporation was used to obtain MeAc in the retentate stream, the 

effect of the MeAc concentration on the performance of the hybrid process was studied. Fig. 

11 shows that the TAC of the hybrid process decreases as the MeAc concentration in the 

retentate increases to unity. This indicates that pure MeAc in the retentate is needed for the 

reaction to proceed in a cost-effective manner. Despite the fact that pure MeAc in the 
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retentate requires a slightly larger membrane area, the lower TAC is highly dependent on the 

significant reduction of condenser and reboiler duty and the reactive distillation column 

diameter.  

Taken together, the optimal structure and its operating variables are summarized in Fig. 12. 

By combining the high selectivity pervaporation with the reactive distillation column, the 

most significant optimization outcome of providing pure MeAc in the recycle stream is to 

minimize the reboiler duty, a number of rectifying stages and the catalyst weight. Notably, 

employing the proposed optimal configuration may lead to significant reductions of energy 

(up to 71%) and TAC (up to 60%) relative to conventional systems. 

 

Fig. 12. Optimal configuration of the hybrid reactive distillation system with high selectivity 

pervaporation. 
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8. Advantages of high selectivity pervaporation in MeOH-MeAc separation 

For specific application in the PVA industry, MM20 (70 wt% of MeOH and 30 wt% of 

MeAc) is obtained as a by-product during PVA synthesis. According to new legislation on 

VOCs, it is not possible to sell MM20 as a solvent and it must be considered as waste. 

Several techniques have been proposed to separate MM20 into two pure products through 

pressure swing distillation [53] and extractive distillation [54]. As a product, pure MeAc can 

be used as a reactant for BuAc production. However, the existing technique of MeOH-MeAc 

separation requires high energy and capital costs, and even additional solvents. Therefore, 

with the availability of high selectivity pervaporation, the retrofit design of MM20 utilization 

must be considered (Fig. 13). MeAc, which is obtained in the retentate stream of PV-1 (Fig. 

13), could be used directly as the feed to the reactive distillation column. Consequently, such 

a retrofit design will be using the MeOH-MeAc azeotrope mixture from the PVA industry as 

the feed, emphasizing the novel advantages of this hybrid configuration. Moreover, such a 

scheme will undoubtedly be profitable since the expansion of existing PVA plants would 

utilize an inexpensive MM20 waste stream. 

Finally, this work found the high potential of PA-6 as a high selectivity membrane for 

MeOH-MeAc separation through pervaporation. Note that the PA-6 membrane used in this 

work was untreated (or unfilled) [18]. To enhance the performance and durability of the 

membrane during operation, PA-6 could be treated by several techniques during the 

manufacturing process to increase its selectivity and mechanical stability. Indeed, filling PA-

6 with low molecular substances to form a mixed-matrix membrane has previously been 

demonstrated for organic-organic pervaporation applications [39]. Other methods can be 

considered to improve the structural stability of PA-6 membranes, including thermal 
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treatments [55], polyelectrolyte multilayer strategies [56, 57], and cross-linking with other 

polymers [58, 59]. 

 

Fig. 13. The retrofit design of MM20 utilization from the polyvinyl alcohol industry by 

applying hybrid reactive distillation with high selectivity pervaporation. 

 

9. Conclusions 

This work successfully designed and optimized a hybrid reactive distillation system with a 

high selectivity pervaporation membrane to separate a methanol-methyl acetate azeotrope in 

the recycle stream. Notably, the proposed configuration eliminates the hitherto required 

methanol column used in conventional reactive distillation systems, since methanol can be 

fully removed by the pervaporation membrane, the result of which leads to less energy 

consumption than the distillation column. High energy and cost savings of the proposed 

hybrid process are obtained by optimization of the process using the Aspen Plus software 

package. Finally, this work showed that the proposed hybrid process could be implemented 

effectively with the transesterification reaction to produce butyl acetate; indeed, this new 
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configuration is projected to reduce total annual costs up to 60% relative to a benchmark 

system. Further, this approach possesses significant commercial advantages by using methyl 

acetate residue from polyvinyl alcohol industrial plants, which will be aided by the use of 

high selectivity membranes required for butyl acetate production. 
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