
Domain Model Acquisition with Missing Information and Noisy Data

Peter Gregory
Schlumberger Gould Research,

Madingley Road,
Cambridge, UK

pgregory@slb.com

Alan Lindsay and Julie Porteous
Digital Futures Institute,
School of Computing,

Teesside University, UK
firstinitial.lastname@tees.ac.uk

Abstract

In this work, we address the problem of learning planning do-
main models from example action traces that contain missing
and noisy data. In many situations, the action traces that form
the input to domain model acquisition systems are sourced
from observations or even natural language descriptions of
plans. It is often the case that these observations are noisy
and incomplete. Therefore, making domain model acquisi-
tion systems that are robust to such data is crucial. Previous
approaches to this problem have relied upon having access to
the underlying state in the input plans. We lift this assump-
tion and provide a system that does not require any state in-
formation. We build upon the LOCM family of algorithms,
which also lift this assumption in the deterministic version
of the domain model acquisition problem, to provide a do-
main model acquisition system that learns domain models
from noisy plans with missing information.

Introduction
When faced with the task of creating a planning domain
model that accurately models a real-world problem that
needs to be solved, in most current situations an AI Plan-
ning expert must also learn to become a domain expert in
the problem area to be modelled. Domain model acquisi-
tion is an area of research trying to reduce the gap between
domain expert and modelling expert. Domain model acqui-
sition is the problem of automatically generating planning
models from input data of some form. This input data can
vary in many ways, but typically at least contain collections
of plan traces in some form. Other information that may be
available are intermediate states, solution metadata (such as
plan costs, or whether plans are goal-directed or optimal),
etc.

In this work, we study the problem of domain model ac-
quisition when the input plans have noisy data and miss-
ing information. This problem has previously been studied
(Mourao et al. 2012) with the assumption that intermedi-
ate state information is present. We relax this assumption,
and provide an algorithm that does not rely on intermedi-
ate state information being present. There are important sit-
uations in which intermediate state information cannot be
accessed. For example, when translating plans created for
people to follow (e.g. the machine tool calibration plans in
(Parkinson et al. 2012)), the plans only mention the actions,

a) (new-move p1-0 p1-1 p1-2) b) (new-move p0-0 p1-1 p1-2)

(continue p1-2 p2-2 p3-2) (continue p1-0 p2-2 p3-2) *
(end-move p3-2) (end-move p3-2)

(new-move p3-1 p2-1 p1-1) (new-move p3-1 p2-1 p1-1)

(end-move p1-1) (end-move ____) **

Figure 1: The first plan (a) shown is an example plan from
the English Peg Solitaire domain. The second plan (b) shows
the same plan with noise (*) and missing information (**).

and there is no state description. Plans created by people for
other people can also be prone to mistakes and oversights,
or, in the language of this paper, noise and missing infor-
mation. Another place in which missing and noisy data is
a problem, and in fact a motivating reason for developing a
domain model acquisition system of this type, is the Framer
system (Lindsay et al. 2017): a domain model acquisition
system that has natural language descriptions of plans as its
input. Although the exact details are not important here, it
should be clear enough that natural language descriptions of
plans are prone to noise and missing information, and do not
provide information about intermediate states.

We call our system LC M, as it is a version of the LOCM
system with noisy and incomplete data (the C is misplaced
and the underscore represents missing data). The LOCM
family of algorithms (Cresswell, Mccluskey, and West 2009;
Cresswell and Gregory 2011; Gregory and Cresswell 2015;
Lindsay et al. 2017) are domain model acquisition systems,
all sharing the assumption that plan traces with no interme-
diate state form the input to the system. It has proven pos-
sible to correctly learn domain models with rich structure,
including the vast majority of the IPC domains, whilst still
adhering to this very strong assumption about the input data.
In this work, we assume that the input plans are generated
through some process of observation, whether human or ma-
chine. We assume that each action is observed, but that the
observer may either perceive the wrong action type (i.e. the
action name), and / or the wrong action parameters. Missing
data can be seen if the observer fails to perceive an action
or action parameter with any degree of certainty. We also
have the assumption that there is an underlying determinis-
tic planning model that would be learnt by LOCM if no noise
and missing information were present.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322320825?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 2: An English Peg Solitaire board, and an example of
a move. Pegs must jump over other pegs, both removing the
peg jumped over whilst leaving their current position clear.

Background
The LOCM system (Cresswell, Mccluskey, and West 2009;
Cresswell, McCluskey, and West 2013) forms the basis for
the work in this paper, therefore we provide an introduction
to the most relevant parts of the LOCM system. To do this we
use a running example of the one-player board game English
Peg Solitaire. The goal is to clear the board of pegs, leaving
a single peg in the middle. Pegs are cleared when an adjacent
peg jumps over it, into another adjacent empty position, and
this jump must be in a straight line. If the same peg performs
more than one consecutive jump, then this counts as a single
move in the optimisation criteria. In the planning domain,
this is modelled as three different operators:
(new-move pos-from pos-over pos-end)

(continue pos-from pos-over pos-end)

(end-move pos)

The LOCM domain model acquisition system works by
building finite state machines for each type of object in a
planning domain, asserting that the behaviour of each object
can therefore be defined as a finite state machine. It oper-
ates with the assumption that each action parameter asserts
a transition in this state machine. Each object in a plan can
be seen as going through a sequence of transitions, where a
transition is defined by an action name and a parameter in-
dex. The transitions for the peg solitaire domain are shown
in Table 1. For the plan in Figure 1 a) for example, the object
p1-1 has the transition sequence new-move.2, new-move.3,
end-move.1. In Table 1, the imaginary zeroth parameters of
the actions are also listed as transitions. This is important, as
the structure of the plans can carry extra object-independent

Transition Meaning

end-move.1 The position that a move ends on.
new-move.1 The position of the peg to move.
new-move.2 The position of the middle peg to be removed.
new-move.3 The empty position that the peg will land on.

continue.1 The position of the peg to move.
continue.2 The position of the middle peg to be removed.
continue.3 The empty position that the peg will land on.

end-move.0 The imaginary zeroth parameter of end-move.
new-move.0 The imaginary zeroth parameter of new-move.

continue.0 The imaginary zeroth parameter of continue.

Table 1: Table of transition meanings in peg solitaire do-
main.

Board Position:
empty

occupied
active

occupied
inactive

co
nt

inu
e.

3

ne
w-m

ov
e.

3

co
nt

inu
e.

1

end-move.1

continue.2

new-m
ove.1

new-m
ove.2

Zero:
not

moving
moving

[position]

new-move.0

end-move.0

contin ue.0

Figure 3: The finite state machines derived by LOCM for the
Peg Solitaire domain. There are two state machines: one for
the ‘board position’ type, and another for the zero machine,
which models global dynamics of the system.

information about the domain structure. The zero transition
sequence for the plan in Figure 1 a) then, is new-move.0,
continue.0, end-move.0, new-move.0, end-move.0

The domain model that LOCM learns for this domain can
be described by the state machines in Figure 3, where there
are two different state machine types: one for board posi-
tions and a zero state machine. The zero machine is the ma-
chine generated by assuming that each operator has a hidden
zeroth parameter, and this represents zero place predicates
in the domain. A crucial assumption in the LOCM system is
that each transition appears at most once in each state ma-
chine. In order to construct the state machines for each type,
LOCM performs an incremental unification of states, based
on the transition sequences seen in the input. The conse-
quence of the rule that each transition appears at most once,
is that for a transition sequence pair A,B the end state of the
A transition is the start state of the B transition. For the zero
machine in Figure 3, the machine is constructed using the
steps defined in Figure 4. Note, importantly, that a transition
pair can change the structure of the generated state machine
significantly. This is important in the context of this work,
because even a small amount of noise can lead to incorrect
state machines being learnt, and hence provides strong mo-
tivation to find ways of dealing with noise.

The final aspect of the LOCM system to discuss is the
learning of state parameters. State parameters define tem-
porary relationships that exist between different object state

Transition In Parameter Out Parameter

end-move.0 end-move.1
new-move.0 new-move.3

continue.0 continue.3 continue.1

Table 2: Table of the position state parameter transitions for
the moving state of the zero machine in Figure 3.

Initially:

A B C D E F

new-move.0 end-move.0 continue.0

After new-move.0,continue.0:

A BE F C D

new-move.0 end-move.0continue.0

After continue.0,end-move.0:

A BE FC D

new-move.0 end-move.0continue.0

After end-move.0,new-move.0:

AD BE FC

new-move.0

end-move.0

continue.0

After new-move.0,end-move.0:

AD BEFC

new-move.0

end-move.0

continue.0

Figure 4: The progression of state unifications for the zero
machine on the input plan in Figure 1 by LOCM. Initially,
there is an assumption of independence between the differ-
ent transitions. After considering the transitions in the exam-
ple, the machine specified in Figure 3 is produced.

machines, typical examples include the location of a truck in
a logistics domain. In the zero machine of Figure 3, for ex-
ample, the moving state has the state parameter ‘[position]’
which records the board position that is currently active dur-
ing a move. In general, if a state in a LOCM state machine
has a parameter, this means that for each pair of consecutive
transitions in and out of the state there is a transition index
in each that always has the same value. They effectively pro-
vide constraints between the parameters of the actions that
affect the state machine with the parameter. The transition
positions for the moving state in the zero machine are shown
in Table 2.

Another convenient way of representing the input transi-
tions is to look at the transition matrix. This idea was impor-
tant in the LOCM2 system (Cresswell and Gregory 2011)
for deriving state machines for objects with multiple be-
haviours. We will, however, use the matrix for a different
purpose here. The transition matrix for the board position
type in the English Peg Solitaire domain is shown in Fig-
ure 5. The matrix has a row and a column for each transition
that a board position can go through. A cell in the matrix is
crossed if the input data sees two transitions in sequence row
label and then column label.

Missing Values
In this section, we discuss how we deal with missing infor-
mation in the absence of noise. It is important to discuss this
first, as we use the techniques here as a sub-procedure when
reasoning about plans with noise. To generate the state ma-
chines, we first split the input plans around the missing infor-
mation, so that there are now a greater number of shorter in-
put plans, with no missing information. Since we assume no
noise, then we can generate LOCM state machines, based on

end-move.1
new-move.1
new-move.2
new-move.3

continue.1
continue.2
continue.3

e-m
.1

n-m
.1

n-m
.2

n-m
.3

c.1
c.2
c.3

X X X
X X
X X

X X
X X
X X

X X

Figure 5: The transition matrix for the English Peg Solitaire
domain. The names of the transitions are abbreviated on the
column labels in order to preserve space.

the parts of the input plans with no missing information. We
then employ the standard LOCM algorithm discussed above
to learn the state machines, along with their state parameters.

After this process, we then use these LOCM machines to
fill in the missing information. In order to deal with missing
information, we rely on a constraint encoding of the input
plans and the state machines generated by the LOCM sys-
tem. This constraint model is a matrix model of each plan,
in which the rows correspond to time-stamped variables for
each time t: the action label, the action parameters, the ob-
ject LOCM states and the values of the state parameters.
The constraints are conceptually similar to those used in the
constraint-based planners SeP (Barták and Salido 2011) and
Constance (Gregory, Long, and Fox 2010).

If an object is in the argument of an action, then it must
transition in the correct way that its LOCM state machine
defines. Constraints are posted to ensure that state param-
eters appear in the correct arguments of the actions. If an
object is an appropriate filler for a missing value then a con-
ditional constraint updates its state if is selected to fill the
missing value. If an object is inappropriate or not selected
then its state is unchanged between timesteps. Similarly, for
missing action names, conditional constraints are posted for
each of the possible action fillers. Because much of the plan
is known, the vast majority of the timeline can be filled in
immediately, leaving only the states in which there are gaps
in the operator name and arguments. Figure 8 shows an ex-
ample of a timeline, for the plan in Figure 1 a) with the miss-
ing parameter from 1 b). The missing parameter was in the
end-move.1 position of the final action, and is highlighted in
bold. The only consistent value that can occupy this position
is the p1-1 object: this can be seen by the fact that the object
performing the end-move.1 transition starts in the occupied
active state, and only p1-1 meets this condition.

Using this type of approach to finding missing data leads
to two risks. Firstly, that once the plans are split into smaller
plans, there will not be enough data to correctly learn the
LOCM state machines. However, LOCM typically only re-
quires a small amount of data to learn correct domain struc-
tures this is unlikely to be an issue. The other risk to this
kind of approach is that there are multiple consistent objects
which could take the place of the missing argument, which
is an unfortunately an unavoidable problem. An algorithmic

. The Missing Value Model Acquisition System
function missingValueModel(Π : a collection of plans)

Π′ ← split plans on missing information
M ← LOCM (Π′)
Mc ← constructConstraintModel(M,Π)
if solve(Mc) is consistent then

return solve(Mc)
else

return inconsistent
end if

end function

Figure 6: The missing value model algorithm. The function
constructConstraintModel returns the constraint model
described above.

description of how to perform domain model acquisition in
the presence of missing information is shown in Figure 6.
We now change focus to discuss how we use these results to
help deal with problems involving noisy data.

Noisy Data
Consider the plan fragment in Figure 7, with a single mistake
in the parameters (where p2-1 in action 5 should be p2-2).
By simply changing a single object parameter, the transition
sequence of two objects are corrupted: the swapped in object
and the swapped out object (in this case, the objects p2-1 and
p2-2). Because of the error, the transition sequence for p2-1
is now new-move.3, end-move.1, new-move.3, new-move.1
and the transition sequence for p2-2 is new-move.2, end-
move.1, new-move.2. Each transition pair in those sequences
are invalid in the true domain. Figure 9 shows the occur-
rence matrix (a version of the transition matrix in which the
number of times each transition pair occurs is shown in each
cell) for a small number of plans, including a plan which
included the error from the previous example. The values
corresponding to the error are highlighted. Our technique
for domain model acquisition when plans may contain noise
rely on forming hypotheses about which cells in the occur-
rence matrix may contain errors, and trying to find replace-
ment values which still support the data.

In this section we consider the implications of noisy data
on the generated LOCM model. There are two ways an er-
ror may add connections to the transition matrix: where
obj7 (an error action symbol) adds connections in the ma-
trix, because of the new transition pairs added, or where
obj3 (the correct action symbol) adds a new spanning con-
nection, because of the missing transition. We consider each

1: (new-move p1-2 p2-2 p2-3)

2: (end-move p2-3)

3: (new-move p4-1 p3-1 p2-1)

4: (end-move p2-1)

5: (new-move p2-4 p2-3 p2-1)*
6: (end-move p2-2)

7: (new-move p2-1 p2-2 p2-3)

Figure 7: Plan fragment with single error.

time 0 1 2 3 4 5
action n-m c e-m n-m e-m
arg1 p1-0 p1-2 p3-2 p3-1 p1-1
arg2 p1-1 p2-2 p2-1
arg3 p1-2 p3-2 p1-1
zero NM M M NM M NM
M-prm p1-2 p3-2 p1-1
p1-0 OI E E E E E
p1-1 OI E E E OA OI
p1-2 E OA E E E E
p2-2 OI OI E E E E
p3-2 E E OA OI OI OI
p3-1 OI OI OI OI E E
p2-1 OI OI OI OI E E

Figure 8: Timeline visualisation of the plan from Figure 1 a)
with the missing parameter from 1 b). Abbreviations used in
the table are n-m (new-move), c (continue), e-m (end-move),
M-prm (the state parameter of the moving state of the zero
machine, NM (not moving), M (moving), OI (occupied inac-
tive), E (empty) and OA (occupied active). The correct value
of the missing parameter and its state value is shown in bold.

of these cases below.
Added transitions The modified action becomes a new ob-
servation, t, in the transition sequence of obj7. If the obj7

and obj3 are of the same type then the added transition may
induce new connections due to new otherwise unseen order-
ings of transitions (e.g., an end-move.1 transition added, but
with no preceding jump-new-move.3 or continue-3). For ex-
ample, if we consider the plan fragment:

(end-move p3-6)

(new-move p4-0 p4-1 p4-2)

(end-move p3-6)

In this example, the final end-move action argument,
pos-4-2, has been replaced by pos-3-6. As a result the
transition sequence for pos-3-6 includes: end-move.1;end-
move.1. This will contrast with any correct sequence, which
will have either jump-new-move.3;end-move.1 or continue-
3;end-move.1.

If they are of different sorts then, from the definition of
sort in LOCM, t will not be a correct transition of obj7.
However, this erroneous observation will collapse the sorts
together, losing any distinction between them. Also, new
connections will be made from the previous transition of
obj7 to t and then from t to the next transition of obj7.
Missing transitions There is not always enough informa-
tion to detect an error directly. In these cases we might de-
tect the error in the transition sequence of the correct argu-
ment. For example, consider the peg-solitaire sequence be-
low, where the last parameter of a jump-new-move action
has been swapped:

(new-move p5-2 p4-2 p3-2)

...

(new-move p4-0 p4-1 p3-6)

(move p4-2)

In this example, pos-3-6 does not appear in further transi-
tions; therefore there is no direct clue that this object is in-
correct. However, if we consider the correct argument: pos-

end-move.1
new-move.1
new-move.2
new-move.3

continue.1
continue.2
continue.3

e-m
.1

n-m
.1

n-m
.2

n-m
.3

c.1
c.2
c.3

61 76 12

39 5

47 9

148 37

8 0

12 0

37 15

1*

1*

1*

Figure 9: The occurrence matrix for the English Peg Soli-
taire domain. Instead of showing just which pairs of transi-
tions occur, as in the transition matrix, we show the number
of times that the transition pairs happen (in this instance for
a set of random walks). A single error is introduced to the
data, and the faulty transitions are labelled with asterisks.

4-2 then this error will add the transition pair: jump-new-
move.2;end-move.1, which will not be observed in a cor-
rect trace. This indicates the possibility of a missing transi-
tion, M, which extends the current transition pair, X;Y, to
X;M;Y, for some M such that connected[X][M] and con-
nected[M][Y].
Action labels We assume that the number of arguments of
each action header in the plan trace is consistent with the
correct action. LOCM requires consistent arities for the same
action headers. We therefore select the most frequent ar-
ity for each action symbol and replace any others with the
missing value symbol. The implication of an incorrect ac-
tion symbol is that each argument will generate potentially
unexpected transition sequences, essentially acting similarly
to an added transition. In the case of structural redundancy
there will be no clues (e.g., fly and zoom in Zeno-travel).

Building Error Hypotheses
We define an error hypothesis as a set of symbols (either
action names or action parameters) in the input plans that
we have supporting evidence to believe are incorrect. In or-
der to detect noise in the plan traces, we have formulated
two distinct ways of hypothesising errors in the plan sym-
bols. These are from the occurrence matrix and from the po-
tential state parameters. Recall from Figure 9 that noise in
the data often translates into cells in the occurrence matrix
that have low values. Even a single error can impact on the
structure generated by LOCM. Firstly, it can lead to badly-
formed state machines. In Figure 4, for example, observing
two new-move.0 transitions incorrectly would lead to states
AD and BEFC being unified. An error can lead to state pa-
rameters not being discovered. The state parameter in the
‘moving’ state of the zero machine in Figure 3, for exam-
ple, is supported by action sequences having co-occurring
parameters. Take the action sequences:
a) (new-move p1-0 p1-1 p1-2) b) (new-move p1-0 p1-1 p1-2)

(continue p1-2 p2-2 p3-2) (continue p1-2 p2-2 p4-2)

(end-move p3-2) (end-move p3-2)

Where the continue.3 transition is an error in sequence b).

new-move.1

new-move.2

new-move.3

continue.1

continue.2

continue.3

e-m
.1

c.1

c.2

c.3

0.01 0.00 0.01 0.00

0.00 0.01 0.00 0.00

0.99 1.00 0.00 0.01

0.01 0.00 0.00 0.00

0.01 0.00 0.00 0.02

1.00 1.00 0.00 0.01

Figure 10: A state parameter ratio matrix for the moving
state in the zero state machine. Each element in the grid
represents the proportion of in-out transition pairs from the
moving state that accompany a transition and have the same
object in their respective arguments.

LOCM will reject the state parameter in the moving state of
the zero machine because the object in the continue.3 argu-
ment does not match the one in the following end-move.1
argument. In an analogous way to which we build the oc-
currence matrix, we build a state parameter ratio matrix in
order to see how frequently objects co-occur in the plans.
Figure 10 shows an example of this for the moving state of
the zero state machine in Figure 3. Taking the top-left corner
as an example, each time an end-move follows a continue ac-
tion, the object in the first argument of the end-move is the
same as the first argument in the continue action 1% of the
time. Strictly, in order to support a state parameter, then all
in-out actions should have a pair of transitions which always
coincide. However, we note that pairs with high ratios may
in fact always coincide without the presence of noise.

Our approach for forming hypotheses about the noise in
plan traces starts by examining each element of the struc-
tures generated by LOCM and considering to what extent it
is supported in the data. There are two main outputs of the
LOCM analysis: the transition matrix and the state param-
eters. In each case we can count the number of examples
in the data that either support (connections in the transition
matrix) or refute (state parameters) a structural element. We
interpret weak support for model structures as an indication
of erroneous input and use these as starting points for fixing
the data. Our approach is to focus on specific weakly sup-
ported elements and then attempt to remove them. The goal
here is to find small changes to the plan traces that result in
structures that are well supported in the data.

We start by attempting to remove connections (pairs:
t1; t2) from the transition matrix. We form only hypothe-
ses on values that fall underneath a threshold value tOcc.
We focus on each of the plan step pairs that are represented
by t1; t2 and attempt to find fixes that can be explained by
the model without the sequence: t1; t2. There should always
be an alternative explanation in the case of errors. This is
because we assume that correct structure will be well sup-
ported in the surrounding plan traces. For state parameters,
we look for high values in the state parameter ratio matrix.
Again, we apply a threshold, tSPR to the ratios between se-
quential transitions, and therefore identify the most likely
relationships obscured by noise.

. The LC M Domain Model Acquisition Algorithm
function LC M(Π : a collection of plans)

Occ← the occurrence matrix
SPR← the state parameter ratio matrices
OccTrs← the transition pairs in Occ < tOcc

SPRTrs← the transition pairs in SPR > tSPR

M ← missingValueModel(Π)
for all h ∈ hypotheses(OccTrs,SPRTrs) do

Π′ ← replace hypothesised noise(Π, h)
if missingValueModel(Π′) is consistent then

M ← missingValueModel(Π′)
else

return M
end if

end for
return M

end function

Figure 11: The LC M algorithm. The function hypotheses
returns the hypothesised structural faults in the transitions,
ordered by how much support there is in the data for the
fault. The algorithm either completes when all the faults
have been shown to be faults or when one hypothesis leads
to an infeasible model.

The LC M Algorithm
So far we have described solutions to two separate problems.
Firstly, how to fill in missing data from plan traces, and sec-
ondly how to identify which structural elements seem badly
supported and may be artifacts of noise in the plan traces. We
now show a simple, but powerful, way in which these ideas
can be combined to provide an algorithm that generates do-
main models in the presence of both noise and missing in-
formation. The key to the algorithm is that once structural
elements are hypothesised as incorrect, all of the objects that
lead to the hypothesised faulty structure can be transformed
into missing information. At this point, the constraint model
for discovering the most likely missing objects can be em-
ployed as firstly a test of consistency over the data and (pro-
viding the changes are consistent) will provide suitable ob-
ject replacements for the noise values. The complete LC M
algorithm is given in Figure 11.

Consider the plan in Figure 7. Suppose that the occur-
rence matrix in Figure 9 and the state parameter ratio ma-
trix in Figure 10 represent the plans from which the plan
is taken. The transition pair new-move.3,end-move.1 in the
matrix has a ratio of 0.99, meaning that 99% of the time,
these arguments were equal in sequential actions. It seems
likely that this is really 100% and the 1% remaining is an
artifact of the noise. We hypothesise that this transition pair
is part of a state parameter and remove any argument value
that does not support this hypothesis. One part of the plan in
Figure 7 that does not support the hypothesis is:

(new-move p2-4 p2-3 p2-1)
(end-move p2-2)

The hypothesis leads to the removal of the new-move.3 and
end-move.1 argument values.

Domain ER AE TME SPE TME’ SPE’

Grid 0.001 3 3 0 1 0
0.005 24 12 1 1 0
0.010 52 20 3 7 1
0.050 224 36 5 15 3
0.100 497 47 5 28 4

Gripper 0.001 3 5 3 0 0
0.005 38 27 4 4 3
0.010 77 36 4 12 2
0.050 355 49 4 25 5
0.100 784 50 4 20 4

Logistics 0.001 3 6 6 8 11
0.005 30 37 11 9 11
0.010 66 84 13 16 12
0.050 301 187 13 56 14
0.100 649 214 13 63 12

Parking 0.001 3 4 3 1 0
0.005 38 23 5 4 3
0.010 78 36 5 10 4
0.050 360 50 5 18 4
0.100 785 59 5 16 5

Peg Sol. 0.001 1 1 0 0 0
0.005 15 12 2 6 3
0.010 34 14 2 1 1
0.050 134 31 2 9 5
0.100 296 34 4 7 4

Storage 0.001 3 2 3 0 9
0.005 29 31 12 4 3
0.010 63 65 12 16 6
0.050 269 175 12 76 12
0.100 583 231 12 94 12

TyreWorld 0.001 2 4 1 1 1
0.005 23 29 2 4 1
0.010 49 52 2 12 1
0.050 200 106 3 21 2
0.100 449 142 3 47 2

Table 3: The results of the empirical evaluation on noisy data
for the LC M system. The abbreviations in the headings are
ER (Error Rate), AE (Atomic Errors, TME (Transition Ma-
trix Errors), SPE (State Parameter Errors), TME’ (Transition
Matrix Errors in corrected model), SPE’ (State Parameter
Errors in corrected model)

(new-move p2-4 p2-3 ____)
(end-move ____)

The constraint model confirms that the data has a consistent
domain model, with the state parameter, and assigns a con-
sistent object to the missing arguments. For Figure 7, there
is only one value that can occupy these parameters: p2-2.

Empirical Analysis
In this section we present an evaluation of the system. The
aim is to establish how robust our approach is to missing
information and noise. In order to do this we first gener-
ate a model using plans with no errors and use this as the
correct model for comparison. The noisy training data sets

end-move.1
new-move.1
new-move.2
new-move.3

continue.1
continue.2
continue.3

e-m
.1

n-m
.1

n-m
.2

n-m
.3

c.1
c.2
c.3

X X XO O O O
X XO O O OO
X XO O OO

X XO O O O O
X XO O O O O
X XO O OO

X XOO O OO

Figure 12: The transition matrix for the English Peg Solitaire
domain with 5% noise. The ‘O’ entries represent the errors
in the matrix.

are each derived from these plans, which means that we can
determine how well our approach to correcting the errors
performs. A collection of standard benchmark planning do-
mains is used for the evaluation.

All of our experiments are run on Mac OSX version
10.11.6 using an Intel 2 GHz i7 CPU with 8 GB system
memory. LC M is implemented in Java (version 1.8.65) us-
ing the Choco constraint library (Prud’homme, Fages, and
Lorca 2014) version 3.3.1.

We have simulated noisy data by first generating a set of
action sequences for each domain and then adding noise. In
each of the domains, except Grid, we have used the first 10
problems from the standard benchmark sets and generated
5 action sequences for each problem. In Grid the 5 prob-
lems were used and 10 action sequences were generated per
problem. In most domains the action sequences are random
walks of a length randomly selected between 1 and 100.
However, for Grid and Peg-solitaire, where random walks
provide poor coverage of the transitions, a goal-directed plan
is used as one of the action sequences for each problem.

Each plan is passed through a channel that simulates the
introduction of certain types of noise. The generated noise is
governed by the probability for recording an incorrect value
and can function with or without action symbol replacement.
Replacement objects are drawn from the set of objects ob-
served in the plan and the replacement action symbols are
randomly selected from the observed actions.

We first evaluate our system on action sequences with in-
creasing numbers of missing information. We then test the
system on noisy plans.

Missing Information
We first test how robust the system is at filling in plans that
contain only missing information. This forms an important
subsystem of our complete approach and therefore provides
an indication of how robust our system will be to noise in
each of the tested domains. As detailed above, the plans
are split around actions that contain missing information, re-
sulting in a smaller set of plans with no noise. These plans
are then used as input to LOCM, which induces a transi-
tion matrix and set of state parameters. A CP model is then
constructed using the original plans with variables for each
missing value. This model enforces the transition and state

Error rate 0.005 0.01 0.05 0.1
#Errors #Estart #Eend #Estart #Eend #Estart #Eend #Estart #Eend
Grid 29 2 68 5 337 51 711 240
Gripper 47 0 105 0 524 5 1076 13
Logistics 36 1 86 0 408 22 715 74
Parking 46 0 113 0 499 42 1098 218
Pegsol 21 3 36 10 207 67 408 136
Storage 39 0 69 3 366 17 717 121
Tyreworld 33 7 70 32 303 122 653 446

Table 4: The number of errors before (#Estart) and after
(#Eend) parameter filling for several domains and error rates.

parameter constraints. If the split plans provide sufficient in-
formation to construct a correct model then solutions for the
CP should be valid action sequences.

There are several ways that the CP model can have differ-
ent output from the original plan sequences. The planning
model will quite often allow alternative values for the same
missing value. For example, consider a truck with 2 pack-
ages in it. If a put down action is missing the package and
no further references are made to these packages then there
is no information to distinguish them. As symbols are re-
moved from the plan more symbols will appear equivalently
appropriate for filling a specific action name or object. This
is particularly relevant as we are only considering the dy-
namics of the model. As there are typically more than one
argument for an action it is less likely, although possible that
action symbols can be substituted in a similar manner.

As well as making equivalent replacements, the CP can
also fail to produce a solution. This happens when the miss-
ing information in the context of a specific object results in
either the type of the object becoming undetectable (only ap-
pears where the action symbol is missing), or the object be-
comes completely unobserved. In the former case, the orig-
inal plans are used to guess its type as the most commonly
observed type (this approach is helpful in the case of noise).
Therefore the CP may fail because the correctly typed object
may not be available.

Table 4 presents the number of errors in the plans (here
a missing symbol is counted as an error) before and after
our system has been used to fill the parameters. The results
show that the system is often able to complete the majority
of the missing information. It should be noted that we are
reporting symbol errors as opposed to the number of actions
with errors in them. For example, in the Parking domain at
the 0.1 error rate, 36% of actions had at least one error.

As the error rate increases the performance degrades. This
is expected because as the number of missing values in-
creases, the number of alternative plans increases. Also, the
increased missing information will increase the number of
objects that become obscured, resulting in fewer of the CP
models being solvable. In Gripper, Logistics, Parking, Peg-
solitaire and Storage the number of failed models at each
rate was 10 or fewer, leaving at least 40 completed plans
that can be used to learn a model. In Tyreworld and Grid
there were 21 and 14 failed models at the 0.1 rate.

Another factor is that as the amount of missing informa-
tion is increased and the plans are broken up into smaller
pieces the number of observations of each transition pair re-
duces. This can lead to erroneous state parameters being in-

duced, or, in the case of no observations, missed transition
pairs. As a result, in Tyreworld and Grid, LOCM induced
tighter models than the original domain models at the 0.1
and 0.05 rates and also for Grid at the 0.01 rate. These extra
constraints can prevent the correct objects from being filled
back into the plans.

Noisy Data
In this section we evaluate the complete system on plans
with noisy data. The results for missing information indi-
cate that the underlying missing information filling system
is fairly robust in most of the tested domains. In this part of
the evaluation the system first identifies weakly supported
structural elements and then attempts to modify the input
plans so that the structure is no longer supported by the data.
In this section we therefore examine whether LC M is able
to isolate the erroneous structural elements without break-
ing those parts of the structure that were not effected by the
errors.

We have used the same baseline training data and simu-
lated noise using symbol replacement rates of: 0.001, 0.005,
0.01, 0.05 and 0.1. In this evaluation we have considered
noise in the arguments of the actions and not in the action
name. The system starts by using the noisy plans to generate
the transition pairs and state parameter structures. The set of
hypotheses for weakly supported structure elements are cre-
ated from the set of all transition pairs and partial state pa-
rameters. These are ordered using a notion of how well they
are supported in the data. For state parameters this uses the
number of matched parameters against not matching param-
eters; and for transitions pairs this uses the number of occur-
rences of the transition pair against other pairs. A threshold
value of 0.5 was used to prune the weakest of these hypothe-
ses. E.g., a partial state parameter hypothesis is pruned if it
is supported by less than half of the occurrences in the data.
We test each hypothesis by first of all identifying the actions
and the specific arguments in each plan that are inconsis-
tent with the hypothesis. These arguments are replaced by
the missing information symbol. The missing information
filling system is then used to determine if there exist com-
pletions of the plans that support the hypothesis. If there are
then the hypothesis is accepted, otherwise the hypothesis is
rejected. The next hypothesis is then tested.

Table 3 presents the number of transition matrix and par-
tial state parameter differences, as well as the underlying
symbol differences. It shows that for low levels of noise,
LC M typically corrects the majority of structural errors in-
troduced. As the noise level increases to 10%, fewer struc-
tural errors are corrected. However, their number is still typ-
ically reduced by half. State parameters are less well sup-
ported than transition matrix errors, in some cases introduc-
ing errors, even. However, several domains do see reductions
in state parameter errors. Note that it is the transition matrix
that determines the state machines in LOCM and so it is in
some ways more important to reduce the errors in the tran-
sition matrix.

It may be informative to consider the effect of 5% noise,
in order to understand why it becomes so hard to correct
errors at this level. Figure 12 shows the transition matrix

from Figure 5 overlayed with the transitions induced by this
level of noise. As can be seen, there are only three transition
pairs that are correctly identified as missing. Despite this,
22 of these erroneous transition pairs were detected and re-
moved by LC M. Clearly the fact that nine invalid transi-
tion pairs remain is problematic, and future work will deter-
mine whether this number can be reduced still further. The
interaction between different hypotheses provides one of the
most problematic difficulties: the decisions made in support-
ing an early hypothesis can make it impossible to support a
later one, for example. One solution to this issue could be to
consider the entire current hypothesis set simultaneously.

Related Work

In addition to the LOCM family of algorithms, there is a
great amount of work in planning domain model acquisi-
tion without noise and missing information, from the TRAIL
system (Benson 1996) to Opmaker (McCluskey et al. 2009;
Richardson 2008), ARMS (Wu, Yang, and Jiang 2007),
LAMP (Zhuo et al. 2010) and ASCOL (Jilani et al. 2015).
To our knowledge, there is no other domain model acquisi-
tion system targeting noisy and incomplete input, except for
(Mourao et al. 2012), which depends on intermediate state
information. In addition to the planning community, there is
wide and active interest in automatic model acquisition in
many of the sub-fields of combinatorial search and beyond,
for example in constraint satisfaction (O’Sullivan 2010;
Bessiere et al. 2014), general game playing (Björnsson
2012; Gregory, Björnsson, and Schiffel 2015), and software
engineering (Reger, Barringer, and Rydeheard 2015).

Conclusions

Modelling planning domains is a difficult and time consum-
ing activity in general. Tools that can assist a domain expert
in formulating a representation of their planning problem
can save time and widen the usage of planning technologies.
Domain model acquisition systems allow models to be learnt
from existing plans. However, the process that observes the
input plans may be prone to errors itself, making the input
plans an unreliable source due to noise and missing infor-
mation. In this work, we have presented a technique for per-
forming domain model acquisition in the presence of noise
and missing information.

LC M returns the most likely underlying deterministic do-
main based on the frequency of support for various domain
structures, such as the occurrence matrix cells and LOCM
state parameters provided in the input data. The result of this
is a system that learns planning domain models in a larger
number of real-world situations. Although the performance
of LC M is already promising, structural flaws will remain
for input data generated using a high-noise process, though
reduced. An important future line of research will focus on
the limits of such an endeavour: whether more errors can
be removed based on better hypothesis schemes, or whether
there is a technical limit beyond which errors cannot be dis-
tinguished from valid structure.

Acknowledgements
This work is supported by EPSRC Grant EP/N017447/1.

References
Barták, R., and Salido, M. A. 2011. Constraint satisfac-
tion for planning and scheduling problems. Constraints
16(3):223–227.
Benson, S. S. 1996. Learning Action Models for Reactive
Autonomous Agents. Ph.D. Dissertation.
Bessiere, C.; Coletta, R.; Daoudi, A.; Lazaar, N.;
Mechqrane, Y.; and Bouyakhf, E. H. 2014. Boosting Con-
straint Acquisition via Generalization Queries. In European
Conference on Artificial Intelligence.
Björnsson, Y. 2012. Learning Rules of Simplified
Boardgames by Observing. In European Conference on Ar-
tificial Intelligence, 175–180.
Cresswell, S., and Gregory, P. 2011. Generalised Domain
Model Acquisition from Action Traces. In International
Conference on Automated Planning and Scheduling, 42 –
49.
Cresswell, S. N.; Mccluskey, T. L.; and West, M. M. 2009.
Acquisition of Object-Centred Domain Models from Plan-
ning Examples. In ICAPS, 338 – 341.
Cresswell, S.; McCluskey, T.; and West, M. 2013. Acquir-
ing planning domain models using LOCM. The Knowledge
Engineering Review 28(2):195 – 213.
Gregory, P., and Cresswell, S. 2015. Domain Model Ac-
quisition in the Presence of Static Relations in the LOP Sys-
tem. In International Conference on Automated Planning
and Scheduling, 97–105.
Gregory, P.; Björnsson, Y.; and Schiffel, S. 2015. The GRL
System : Learning Board Game Rules With Piece-Move In-
teractions. In GIGA.
Gregory, P.; Long, D.; and Fox, M. 2010. Constraint Based
Planning with Composable Substate Graphs. In European
Conference on Artificial Intelligence, 453–458.
Jilani, R.; Crampton, A.; Kitchin, D. E.; and Vallati, M.
2015. Ascol: A tool for improving automatic planning do-
main model acquisition. In AI*IA 2015, Advances in Ar-
tificial Intelligence - XIVth International Conference of the
Italian Association for Artificial Intelligence, Ferrara, Italy,
September 23-25, 2015, Proceedings, 438–451.
Lindsay, A.; Read, J.; Ferreira, J.; Hayton, T.; Porteous, J.;
and Gregory, P. 2017. Framer: Planning models from natural
language action descriptions. In ICAPS.
McCluskey, T. L.; Cresswell, S. N.; Richardson, N. E.; and
West, M. M. 2009. Automated acquisition of action knowl-
edge. In International Conference on Agents and Artificial
Intelligence (ICAART), 93–100.
Mourao, K.; Zettlemoyer, L.; Petrick, R. P. A.; and Steed-
man, M. 2012. Learning STRIPS Operators from Noisy and
Incomplete Observations. In Uncertainty in Artifical Intelli-
gence, 614 – 623.
O’Sullivan, B. 2010. Automated modelling and solving in
constraint programming. In AAAI.

Parkinson, S.; Longstaff, A.; Crampton, A.; and Gregory, P.
2012. The Application of Automated Planning to Machine
Tool Calibration. In International Conference on Automated
Planning and Scheduling.
Prud’homme, C.; Fages, J.-G.; and Lorca, X. 2014. Choco3
Documentation. TASC, INRIA Rennes, LINA CNRS UMR
6241, COSLING S.A.S.
Reger, G.; Barringer, H.; and Rydeheard, D. 2015.
Automata-based Pattern Mining from Imperfect Traces.
ACM SIGSOFT Software Engineering Notes 40(1):1–8.
Richardson, N. E. 2008. An Operator Induction Tool Sup-
porting Knowledge Engineering in Planning. Ph.D. Disser-
tation, School of Computing and Engineering, University of
Huddersfield, UK.
Wu, K.; Yang, Q.; and Jiang, Y. 2007. ARMS: An auto-
matic knowledge engineering tool for learning action mod-
els for AI planning. The Knowledge Engineering Review
22(2):135–152.
Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learning
complex action models with quantifiers and logical implica-
tions. Artificial Intellgence 174:1540–1569.

