
Time-sensitive Information Flow Control in Timed Event-B

Chunyan Mu and Shengchao Qin

School of Computing, Teesside University, UK

Email: c.mu@tees.ac.uk, s.qin@tees.ac.uk

Abstract—Protecting confidential data in today’s comput-
ing environments is an important problem. Information flow
control can help to avoid information leakage and violations
introduced by executing the software applications. In software
development cycle, it is important to handle security related
issues from the beginning specifications at the level of abstract.
Mu [1] investigated the problem of preserving information flow
security in the Event-B specification models. A typed Event-
B model was presented to enforce information flow security
and to prevent direct flows introduced by the system. However,
in practice, timing behaviours of programs can also introduce

a covert flow. The problem of run-time flow monitoring and
controlling must also be addressed. This paper investigates
information flow control in the Event-B specification language
with timing constructs. We present a timed Event-B system
by introducing timers and relevant time constraints into the
system events. We suggest a time-sensitive flow security condi-
tion for the timed Event-B systems, and present a type system
to close the covert channels of timing flows for the system by
ensuring the security condition. We then investigate how to
refine timed events during the stepwise refinement modelling
to satisfy the security condition.

Keywords-flow, security, time, Event-B, refinement.

I. INTRODUCTION

Security threats are everywhere in today’s digital life. We

often access software applications from untrusted sources,

provide private and sensitive data and also have to grant

them access permission over the internet. By communicating

and observing the running of the software application, the

attacker can inflict damage such as stealing information

stored in the affected systems. Protecting confidential data

in computing environments is an important and difficult

problem. Information flow control aims to avoid informa-

tion leakage and violations introduced by executing the

programs, and defend attacks from the application level.

Software applications are usually modelled using higher

level specification languages before being implemented in

programming languages. In the software development cycle,

it is important to handle security related issues from the

very beginning, e.g. when dealing with specifications at the

level of abstract. Mu [1] investigated the problem of pre-

serving information flow security in Event-B specification

models and during the procedure of refinement. A typed

Event-B model was presented to enforce information flow

security and prevent explicit and implicit flow introduced

by the system. Information flow control considered in [1]

focused on the interference among variables with different

security levels when executing the model events but without

considering information release via timing side channels.

Timing behaviours of programs can also introduce a covert

flow and bring serious threats to the security of software

systems. By analysing the execution time of a software

system, an attacker may be able to deduce information about

the secret components. Therefore, run-time information flow

monitoring and controlling should also be addressed. This

paper aims to study time-sensitive analysis and control of

information flow in the Event-B specification language, built

on top of the work in [1].

Consider the execution of a software application down-

loaded from an untrusted site, attackers can partially ob-

serve the execution of the application. Specifically, they can

observe a (possibly infinite) sequence of timed observable

events, i.e., when does an event take place and what is the

value of the observable outputs of that event. By observing

the timing and communicating behaviours of the system,

secret information flows to the attacker through direct and

side communication channels. Semantic security policies are

required to ensure the observable time-sensitive behaviours

to be independent of secret information manipulated by

the program, and enforcement mechanisms are required to

guarantee the programs satisfy the policies.

In this paper, we model the system in an extended finite

event system for this goal. We extend Event-B models

with branch and timing constructs. The extended Event-B

model can be used to model real-time systems and analyse

time-sensitive information flow through the system. The

executions of the model can be viewed as a set of infinite

sequences of timed events. Each execution trace is attached

with a sequence of times such that the time of the occurrence

of the ith event of the trace is recorded as the ith element

of the time sequence. Specifically, we present the semantics

of the timed Event-B specification language, to support

automated reasoning about timing flow sensitive systems.

By incorporating timers and timing constraints into Event-B

machines, the timed machines can then accept time event

sequences in which each event is associated with the time

of its occurrence. A timed Event-B system can then capture

interesting run-time properties for timing flow analysis and

control.

Our main contributions are summarised as follows. First,

we present the language of Event-B models with timing

and branch constructs, and introduce the relevant semantic

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322320802?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

security conditions for the purpose of timing flow analysis

and control. Second, we present a type system for the timed

Event-B models to ensure the flow security condition. Third,

we extend the refinement rules to preserve timing flow

security under stepwise refinement.

The rest of the paper is organised as follows. Section II

reviews the core Event-B models with an additional branch

construct to facilitate flow analysis. Section III introduces the

timed Event-B language, and presents the timing flow secu-

rity condition. Section IV studies time-sensitive information

flow analysis in the timed Event-B systems, and presents

a type system to ensure the security condition. In Section

V, we investigate the problem of preserving timing security

properties and timing constructs under refinement. Section

VI presents related work, followed by some concluding

remarks.

II. EVENT B WITH BRANCH CONSTRUCT

Event-B [2] is a formal language for flexible system

development via stepwise refinement. The framework sup-

ports mechanised proofs and steps for refining, splitting

existing events and introducing new events. All such steps

are accompanied with mechanised proof obligations which

make the verification process efficient. An Event-B model

includes two main parts: a context specifies the static part

and a machine specifies the dynamic part of the system.
A machine specification normally consists of a list of

model variables denoted by v, state invariants I(v), and
a set of model events EVT:

Machine M

var v

invariant I(v)
EVT init, evt0, ...

end

where v defines the state variables of the system, I(v)
defines the global specification of the state variables, and

EVT describes all possible updates to the machine state. A

machine M is accompanied with consistency proof obliga-

tions such that the events preserve the invariant.
Specifically, an event is a “guarded command” consisting

of a guard G(v) over the variables, and a generalised
substitution action (the body) A(v). We consider the events
in the following form:

EVT , when G(v) then A(v)

where the action (body) A(v) is used to update the state of

the machine. The effect of the body defines a “before-after

predicate” Φ(v,v′) describing state updates of variables

upon event execution, in terms of the relationship between

the variable values before (v) and after (v′) the action

has occurred. The execution of the body ensures that the

predicate Φ(v,v′) is met.
To reason about time-sensitive flow analysis, we define

the branch construct with the restriction using the choice

operator []. The branch construct defines a choice between
a pair of mutually exclusive events:

EVT , when G(v) then A(v) [] when ¬G(v) then A
′(v)

The branch specification can be considered as an if state-
ment in the common sequential language:

if G(v) then A(v) else A
′(v)

The substitution actions of the core Event-B model include:

A ::= skip

∣

∣

∣

∣

x := e x :∈ S z : |P x,y := e, f

The event actions can be viewed as transformation functions

which update the model state. Specifically, skip denotes the

empty set of actions for an event, the state is unchanged

under the skip action; x := e denotes the assignment,

i.e., state is updated by replacing free occurrences of x by e:

where x ⊆ VAR is a sequence of variables, and e denotes a

number of set-theoretic expressions corresponding to each of

the variables in x; x :∈ S denotes that we update the state by

arbitrarily choosing values from the set S for the variables

in x, i.e., x becomes a member of S; z : |P denotes that

we update the state by arbitrarily choosing values for the

variables in z that satisfy the predicate P , i.e., x becomes

such that the predicate P holds; x,y := e, f denotes a

concurrent assignment of the values e and f to the variable

sequences x and y respectively.

III. TIMED EVENT B SYSTEM AND FLOW SECURITY

CONDITION

A. The language

We extend Event B machines with timing aspects to

support automated analysis, reasoning about, and eventually

controlling time-sensitive information flows. We consider

the form of the evaluation judgements for actions as:

〈[[A]],Σ〉
ι
−→ Σ′ where Σ is the state space associating model

variables with values, ι is the time taken to make this state

transition. Specifically, time expression ι can be any of the

following regarding to the action taken: ιe denote the time

taken to evaluate expression e; ι[[:=]] denote the time taken

to make a single assignment; ι[[:∈]] denote the time taken

to randomly choose values from a set; ι[[:|]] denote the time

taken to randomly choose values satisfying a predicate; ιG
denote the time taken to judge a guard G; we also use ιA
and ιE to denote the time taken to perform action A and

event E in general. We therefore incorporate a notion of

execution time into the semantics. Table I presents the rules

for the evaluation of model events.

B. Timed event sequences

We model the system in an extended finite event system

with timing constructs. The executions of the model can

be viewed as a set of infinite sequences of events. Each

execution trace is attached with a sequence of times such that

the time occurred by the ith event of the trace is recorded

(Event)
Σ ⊢ G ⇓ true

〈when G then A,Σ〉
ιG+ιA−−−−−→ Σ[A]

Σ ⊢ G ⇓ false

〈when G then A,Σ〉
ιG−−→ Σ

(BranchEvent)
Σ ⊢ G ⇓ true

〈when G(v) then A(v) [] when ¬G(v) then A′(v),Σ〉
ιG+ιA−−−−−→ Σ[A]

Σ ⊢ G ⇓ false

〈when G(v) then A(v) [] when ¬G(v) then A′(v),Σ〉
ιG+ι

A′
−−−−−→ Σ[A′]

(Skip)

〈skip,Σ〉
0
−→ Σ

(Assignment)
Σ ⊢ e ⇓ w

〈x := e,Σ〉
ιe+ι[[:=]]·|x|+ιx

−−−−−−−−−−−→ Σ[x = w]

(ChoiceFromSet)
Σ ⊢ S ⇓ {si | si ∈ S, 1 ≤ i ≤ |x|}

〈x :∈ S,Σ〉
ι[[:∈]]+ι[[:=]]·|x|+ιx

−−−−−−−−−−−−−→ Σ[x = {si | 1 ≤ i ≤ |x|}]

(ChoiceByPredicate)
Σ ⊢ P ⇓ {xi | xi |= P, 1 ≤ i ≤ |z|}

〈z : |P,Σ〉
ι[[:|]]+ι[[:=]]·|z|+ιz

−−−−−−−−−−−−→ Σ[z = {xi | 1 ≤ i ≤ |z|}]

(MultipleAction)
Σ ⊢ e1 ⇓ w1, e2 ⇓ w2

〈x,y := e1, e2; Σ〉
ι[[:=]]·|x|+ι[[:=]]·|y|+ιe1

+ιe2
+ιx+ιy

−−−−−−−−−−−−−−−−−−−−−−−−−→ Σ[x = w1,y = w2]

Table I
SEMANTICS: RULES FOR THE EVALUATION OF TIMED MODEL EVENT.

as the ith element of the time sequence. By incorporating

timers and timing constraints into Event B machines, the

timed machines can then accept time event sequences in

which each event is associated with the time taken and thus

the time of its occurrence. A timed Event-B system can

then capture interesting flow properties introduced by timing

channels.

A timed event sequence is a pair (e, c) where e =
e1e2 . . . is an infinite event sequence, c = c0c1c2 . . . is

a time sequence, and ei occurs at clock ci, i.e., ei takes

the time of ci+1−ci, where c0 = α denotes that e starts at

time α. With each event, we associate the guard with time

constraints, and require that the event is taken only if the

current values of the clocks satisfy this constraint:

EVT , when G(v, c) then A(v).

The definition for a timed event sequence is as follows.

Definition 1 (Timed event sequence): A timed event se-

quence is defined as: ρ = (M, c), where M = e1e2 . . . en,

c = c1 . . . , and ci = c(ei) (i≥1) denotes the time instant ei
occurs.

C. Time-sensitive flow security condition

To reason about flow analysis, we assign security levels

to model objects. Given a timed Event-B model, all entities

are built from a set of timed events, each of which is defined

in terms of substitution actions on model variables and

recordings on event timers. Each variable is thus assigned

with a security level. The powerset of model variables

therefore forms a complete lattice L, where the partial

ordering is regarding to the security levels of the model

variables: ∀v1, v2 ∈ VAR, v1 � v2 iff τ1 ⊑sec τ2, where �
denotes the partial ordering on VAR, and τ1 = τ(v1), τ2 =
τ(v2) ∈ L denote the security levels of variables v1 and v2
respectively. Execution of model events causes interference

between model variables and thus a flow through the security

lattice. A model is considered secure if all the flows in the

model satisfy its flow policy. This section studies the timing

flow policy that a secure model should satisfy.

First let us look at a simple example to see how timing

behaviours can introduce leakage.
Example 1: Consider a simple Event-B model as follows.

variables high, low1 , low2

invariants low1 , low2 ∈ Z, high ∈ {−1, 0, 1}

initialisation low1 := −1 low2 := −1 high := −1

events

INIT , (when true then low1 , low2 := 0, 0)

EVT1 , (when (low1 == 0) then high :∈ {0, 1})

EVT2 , (when (high == 1)

then low1 , low2 := low1 + 2, low1)

[](when (high == 0)

then low1 := 2)

Assume that low1 , low2 � high . Note that low1 (low2) will

always be 2 (0) at the end and no secret data is leaked by

observing the low output. However the program may leak

the value of high via its timing behaviour since the execution

time is dependent on the value of high from the observer’s

view.

To capture time-sensitive flow leakage, we define the

security condition for timed Event-B models based on equiv-

alence relations from the observer’s view.

Definition 2 (L-equivalent state space): We say state

space Σ1 and Σ2 are L-equivalent, written as Σ1 =L Σ2 iff

DOM(Σ1) = DOM(Σ2) ∧ ∀x ∈ DOM(Σ1).τ(x) ≤ L

⇒ Σ1(x) = Σ2(x).

Definition 3 (L-bisimulation ∼L): Consider two timed

event sequences:

ρ1 = (M1, c1) = 〈E10, (Σ10, c10)〉 → . . . ,

ρ2 = (M2, c2) = 〈E20, (Σ20, c20)〉 → . . . ,

∀Σ10,Σ20 such that Σ10 =L Σ20, and c10 = c20, we say

ρ1 ∼L ρ2 if:

∀j ∈ {1, . . . }.(Σ1j =L Σ2j) ∧ (c1j = c2j).

Definition 4 (Timing flow security condition φsec): A

model M is considered timing flow secure, written as

M |= φsec, if for a given public security level L:

∀ρ1, ρ2 ∈ (M, c).ρ1 ∼L ρ2.

Consider again the timed events in Example 1. There are
two possible event sequences regarding to the input value of
high .

ρ1 = 〈INIT, (Σ(low1 , low2 = −1, high = −1), c10 = 0)〉 →

〈EVT1, (Σ(low1 , low2 = 0, high = −1), c11 = 2 × ι[[:=]]+ιlow1
+ιlow2

)〉 →

〈EVT2, (Σ(low1 , low2 = 0, high = 1), c12 = c11+ι[[:∈]]+ιhigh)〉 →

(Σ(low1 = 2, low2 = 0, high = 1),

c13 = c12 + 2 × ι[[:=]]+2 × ιlow1
+ι(low1+2))

ρ2 = 〈INIT, (Σ(low1 , low2 = −1, high = −1), c20 = 0)〉 →

〈EVT1, (Σ(low1 , low2 = 0, high = −1), c21 = 2 × ι[[:=]]+ιlow1
+ιlow2

)〉 →

〈EVT2, (Σ(low1 , low2 = 0, high = 0), c22 = c21+ι[[:∈]]+ιhigh)〉 →

(Σ(low1 = 2, low2 = 0, high = 0), c23 = c22 + ι[[:=]])

Note that the model leaks information via its timing channel,

since the amount of the time taken is dependent on the value

of high .

IV. TYPE SYSTEM FOR FLOW CONTROL IN TIMED EVENT

B SYSTEMS

This section presents a type system that closes any covert

channels of timing information flows for the model by

ensuring the security condition.

A. Type checking for information flow control

Event actions may cause information to flow among

variables. Secure information flow is described by a secure

information flow predicate using typing rules. Let L be the

finite flow lattice. τ ⊆ L denotes a sequence of security

levels in L related to a sequence x of variables with the

same length: |τ | = |x|. The security typing environment is

considered as: Γ : VAR → L. In a model event, for an action

A, judgements have the form: τ ⊢ Γ{A(x)}Γ′, where the

type τ denotes the counter level of the variable sequence

x regarding to the action A(x) being executed to eliminate

implicit flows from the guard, Γ and Γ′ describe the security

levels of the identifiers which hold before and after the

execution of A. The derivation rules of model events enforce

that only variables with types greater than or equal to τ are

allowed to be updated by action A.

Model events can influence each other and introduce

information flows. In addition to the dependence relationship

discussed in [1], the branch specification might introduce

implicit and timing flows when branch on high data (Ex-

ample 1). To close such flows, we need to ensure that

the external observer cannot deduce which branch is taken,

i.e., A ∼L A′ for the observable security level L.

Table II presents security typing rules for specifying time-

sensitive secure information flow predicates of events, as an

extension of the type system presented in [1]. Notation Γ ⊢
e : t denotes that under the type environment Γ, expression

e has type t. The type of an expression (including guard

expression) is defined by taking the least upper bound of

the types of its free variables:

Γ ⊢ e : t iff t =
⊔

v∈fv(e)

Γ(v)

A flow secure program should only safely branch on

sensitive data if the public observer is not able to determine

which branch was taken. Rule TBranchEvent1 specifies the

case that guard G contains higher level data. For this case,

we need to ensure that A ∼L A′.

Theorem 1 (Soundness of the type system): A timed

Event-B model M is secure if the events satisfy the security

properties, which are guarded by the typing rules defined

in Table II:

τ ⊢L Γ{M}Γ′ ⇒ M |= φsec

Proof: We need to prove that, for M s.t. τ ⊢L Γ{M}Γ′:

∀ρ1, ρ2 ∈ (M, c).ρ1 ∼L ρ2

regarding to the security condition defined in Definition 4,

where ρ1, ρ2 are any two timed event executions of M , say:

ρi = 〈Ei0, (Σi0, ci0)〉 → · · · → (Σin, cin)

and for i = 1, 2, Ei0 . . . Ein−1 is a sequence of events of

M . By Definition 3, this is equivalent to prove that:

∀j ∈ {0, . . . , n}.(Σ1j =L Σ2j) ∧ (c1j = c2j).

By Definition 2, we write the equivalent semantic security

relation as:

τ |=L Γ{Eij}Γ
′,

(TSub)
τ1 ⊢ Γ1{EVT}Γ′

1

τ2 ⊢ Γ2{EVT}Γ′
2

τ2 ⊑sec τ1, Γ2 ⊑sec Γ1, Γ′
1 ⊑sec Γ′

2

(TEvent)
Γ ⊢ G : t t ⊔ τ ⊢ Γ{A}Γ′

τ ⊢ Γ{when G then A}Γ′

(TBranchEvent1)
Γ ⊢ G : t ⊐ τ t ⊢ Γ{A}Γ′ t ⊢ Γ{A′}Γ′

τ ⊢ Γ{when G then A; when ¬G then A′}Γ′
A ∼L A′

(TBranchEvent2)
Γ ⊢ G : t ⊑ τ t ⊢ Γ{A}Γ′ t ⊢ Γ{A′}Γ′

τ ⊢ Γ{when G then A; when ¬G then A′}Γ′

(TDepEvts)
Γ0{EVT1}Γ1 Γ1{EVT2}Γ2 . . . Γn−1{EVTn}Γn

Γ{EVT1 ⊲ EVT2 ⊲ · · ·⊲ EVTn}Γn

(TSkip)
τ ⊢ Γ{skip}Γ

(TAssign)
Γ ⊢ e : τ ′

τ ⊢ Γ{x := e}Γ′(x 7→ τ ⊔ τ ′)

(TChoiceFromSet)
t =

⊔

s∈S
Γ(s) τ ′ = t ∧ |τ ′| = |x|

τ ⊢ Γ{x :∈ S}Γ′(x 7→ τ ⊔ τ ′)

(TChoiceByPredicate)
t =

⊔

v∈fv(P) Γ(v) Γ ⊢ P : τ ′ = t

τ ⊢ Γ{x : |P}Γ′(x 7→ τ ⊔ τ ′)

(TMultipleAction)
Γ ⊢ :τ1 Γ ⊢ f : τ2

τ ⊢ Γ{x,y := e, f}Γ′(x 7→ τ ⊔ τ1,y 7→ τ ⊔ τ2)
({x} ∩ {y} = ∅)

Γ ⊢ e : τ1 Γ ⊢ f : τ2

τ ⊢ Γ{x,y := e, f}
Γ′
(

{vi} 7→ τ({vi}) ⊔ τ1({vi}) ⊔ τ2({vi}),
x \ {vi} 7→ τ(x \ {vi}) ⊔ τ1(x \ {vi}),
y \ {vi} 7→ τ(y \ {vi}) ⊔ τ2(y \ {vi})

)

({x} ∩ {y} = {vi}) for 1 ≤ i ≤ n

Table II
TYPING RULES FOR MODEL EVENTS WITH TIMING-SENSITIVE INFORMATION FLOW CONTROL

which holds iff : ∀Σij ,Σij+1, x ∈ VAR, τ(x) ≤ L, i = 1, 2
and for Σ10 =L Σ20, if:

〈Eij , (Σij , cij)〉 ⇓ (Σij+1, cij+1)

then:

(Γ′(x) ⊑ Γ(x) ∨ Σ1j+1(x) = Σ2j+1(x)) ∧ (c1j+1 = c2j+1).

The proof is then concluded by induction on the depth of

the typing derivation.

V. TIMING FLOW CONTROL UNDER REFINEMENT

In this section, we investigate how to check that the

specification is consistent with the flow policy and that the

security properties are preserved under refinement. Specifi-

cally, we are interested in preserving the security condition

under vertical refinement between a higher level abstract

machine and a relatively concrete one.

A system specification model M ′ is a refinement of

a specification model M if and only if M ′ ⊑ref M .

Intuitively, M ′ is more accurate or less abstract than M .

M is secure if the events satisfy the security properties

which are guarded by the typing rules defined in Table

II. However, by the definition of refinement there is no

guarantee that a refinement of M will preserve the security

properties since the refined model might introduce new or

merge existing events. Therefore, secure information flow

properties are not always preserved by refinement. The

reason for this is that the secure flow properties and the

relevant typing rules depend on the semantics of events

and the type environment, which cannot guarantee that the

refinement transformation preserve the security properties

of interest. Even the security requirement can be viewed

as security predicates, some of the events and their actions

that satisfy the rules may be removed or merged during the

refinement. Therefore, proving the security property at one

abstract level is not enough in general. Relevant security

properties must be proven again at the concrete level or

ensured via the refinement transformation to guarantee that

these additional behaviours introduced via refinement do not

violate security flow policy. In this section, we study the

problem of preserving security properties under refinement

transformation. We extend the secure refinement rules of

events presented in [1] in order to prove that a refinement

is both timing flow-sensitive secure and correct.

Refinement provides a way to construct stronger invariants

and add details in a way to enrich it step by step. This is

generally achieved by extending the list of state variables,

by merging and refining existing events, and by adding new

events. Specifically, assume the lower level model denoted

by MC has a collection of state variables denoted by vC ,

which is distinct from the collection of variables denoted

by vA in the abstract model denoted by MA. The abstract

variables vA and the concrete ones vC are linked together

by means of gluing invariant J(vA,vC): it “glues” the

state of the concrete model MC to that of its abstraction

MA. For any variable in abstract (concrete) machine if

there is no glued variable in the relevant concrete (abstract)

machine, we introduce a virtual variable denoted by ⊥ to

represent it, i.e., we extend the set of the variables such that:

VAR
∗
A = VARA ∪ {⊥}, and VAR

∗
C = VARC ∪ {⊥}. For our

purpose of security concern, we introduce virtual variables

called ⊥ to denote the glued variable which is empty in the

abstract (concrete) machine regarding to gluing variable in

the relevant concrete (abstract) machine. Furthermore, a vari-

ant V is introduced to prevent executions “non-terminating”:

V has to be decreased by every convergent event and

must not be increased by anticipated events. Assume the

type environments for abstract event and concrete event

are denoted as ΓA and ΓC respectively. We extend the

refinement laws [1] to incorporate rules w.r.t. time-sensitive

security properties in Table III. For clear cases, we use

Ψ(v,v′) to denote the before and after states of variable(s)

v instead of writing Ψ(Σ(v),Σ′(v)).
Assume abstract event EA with guard GA(vA, cA) and

before-and-after predicate ΨA(vA,v
′
A) in MA is refined to

a relevant concrete event EC with guard GC(vC , cC) and

before-and-after predicate ΨC(vC ,v
′
C) in MC . Let τA ⊆ LA

be a sequence of security levels of the sequence of variables

vA and τC ⊆ LC be a sequence of security levels of the

sequence of variables vC . We say τC ⊑sec τA, iff :

∀va ∈ vA, vc ∈ vC , J(va, vc) ∈ J(vA,vC) ⇒ τc ⊑sec τa.

Specifically, BranchEvtSec-REF specifies the secure refine-

ment for branch events. The rule ensures that the actions

in true branch and false branch are L-bisimilar to each

other, and thus the external observer cannot determine which

branch is taken when branching on high data. We briefly

review the rest of the refinement rules discussed in [1] for

consistence. SubSec-REF ensures that for glued variables,

the security level of variables in the concrete event will not

be higher than that of their glued variables in the abstract

event. FisSec-REF ensures that the refined event is feasible

and there is no unauthorised flow introduced by the before-

after predicate. GrdSec-REF and InvSec-REF ensure that

the concrete event is a correctly refined event regarding to

the abstract one and the security level of the corresponding

variables will not be higher than that of the glued ones

in the abstract event. MergeSec-REF specifies the secure

refinement for merging existing events. Several abstract

events can be merged being refined to a single concrete

event. New events might be introduced in a refinement.

NewEvSec-REF ensures that adding new event during the

refinement will not introduce secure information flow and

will be correct. As usual, each new event refines an implicit

skip event which satisfies the security typing rules, and the

non-divergence rule.

VI. RELATED WORK

This paper studied the problem of time-sensitive secure

information flow control in Event-B specifications. The

notion of secure information flow specifies the security

requirements of the system where there should be no infor-

mation flow from the sensitive data to the observer. Denning

and Denning [3] first use program analysis to investigate

if the information flow properties of a program satisfy a

specified multi-level security policy. The most commonly

used flow police is non-interference [4]. A program satisfies

the non-interference property if its low security outputs do

not depend on the high security inputs. Note that under the

view of non-interference property, the program is viewed

as a function from input to output. Therefore, information

can still be leaked to the external observer through timing

channels.

Security type systems have been substantially used to

formulate the analysis of secure information flow and en-

force the non-interference property in programs. Hunt and

Sands [5] present a type system for information flow control

in a while language. In [5], sensitive information is stored in

programming variables, the powerset of program variables

thus forms the universal lattice. Their flow-sensitive type

system is defined by a family of inference systems which is

forced to satisfy a simple non-interference property. Their

further work [6] shows how flow-sensitive multi-level secu-

rity typing can be achieved in polynomial time. However,

no timing leakage has been considered in their works.

There are a number of works dealing with time-sensitive

notions of secure information flow for programming lan-

guages by using security type systems. Volpano and

Smith [7] propose a type-based approach that prevents

information flow leakage by enforcing the non-interference

police. Timing leaks to external observers are closed by

enforcing both branching and looping conditions to be

independent of sensitive data in sequential programs. They

then investigate flow security in a multi-threaded language

by enforcing the same condition to close the flow leak-

age through termination behaviour [8]. Furthermore, the

same authors have also studied the issue of timing leak-

ages through the probabilistic behaviours scheduling among

concurrent threads in [9]. Sabelfeld and Sands [10] ex-

plore external timing-sensitive security conditions for multi-

(SubSec-REF) I(vA) ∧ J(vA,vC) ∧ (ΓA ⊢ vA : τA) ∧ (ΓC ⊢ vC : τC) =⇒ τC ⊑sec τA

(FisSec-REF) I(vA) ∧ J(vA,vC) ∧ GC(vC , cC) ∧ (ΓC ⊢ vC : τC) ∧ (Γ′
C ⊢ v′

C : τ ′C) =⇒ ∃v′
C .ΨC(vC , v

′
C) ∧ (τ ′C ⊑sec τC)

(GrdSec-REF) I(vA) ∧ J(vA, vC) ∧ GC(vC , cC) ∧ (ΓC ⊢ GC(vC , cC) : τC) ∧ (ΓA ⊢ GA(vA, cA) : τA) =⇒ GA(vA, cA) ∧ (τC ⊑sec τA)

(InvSec-REF) I(vA) ∧ J(vA,vC) ∧ GC(vC , cC) ∧ ΨC(vC ,v
′
C) ∧ (ΓC ⊢ vC : τC ,Γ

′
C ⊢ v′

C : τ ′C) ∧ (ΓA ⊢ vA : τA,Γ′
A ⊢ v′

A : τ ′A)
=⇒ ∃v′

A.(ΨA(vA,v′
A) ∧ J(v′

A,v′
C)) ∧ (τ ′C ⊑sec τC ⊑sec τA) ∧ (τ ′C ⊑sec τ ′A ⊑sec τA)

(Branch1Sec-REF) (E , when G(v, c) then A(v) [] when ¬G(v, c) then A′(v) end) ∧ I(vA) ∧ J(vA,vC) ∧ GC(vC , cC) ∧
(ΓC ⊢ vC : τC) ∧ (ΓA ⊢ vA : τA) ∧ (ΓC ⊢ GC : tC) ∧ (ΓA ⊢ GA : tA) ∧ tA ⊒sec τA ∧ tC ⊒sec τC
=⇒ GA(vA, cA) ∧ (AC(vC) ∼L A′

C(vC)) ∧ (AA(vA) ∼L A′
A(vA)) ∧ (τC ⊑sec τA)

(Branch2Sec-REF) (E , when G(v, c) then A(v) [] when ¬G(v, c) then A′(v) end) ∧ I(vA) ∧ J(vA,vC) ∧ ¬GC(vC , cC) ∧
(ΓC ⊢ vC : τC) ∧ (ΓA ⊢ vA : τA) ∧ (ΓC ⊢ GC : tC) ∧ (ΓA ⊢ GA : tA) ∧ tA ⊒sec τA ∧ tC ⊒sec τC
=⇒ ¬GA(vA, cA) ∧ (AC(vC) ∼L A′

C(vC)) ∧ (AA(vA) ∼L A′
A(vA)) ∧ (τC ⊑sec τA)

(MergeSec-REF) (E , when G(v, c) then S(v) end) ∧ (F , when H(v, c) then S(v) end) ∧ (τ ⊢ Γ{E}Γ′) ∧ (τ ⊢ Γ{F}Γ′′)

=⇒ EF , (when G(v, c) ∨H(v, c) then S(v) end) ∧ (τ ⊢ Γ {EF} Γ′ ⊔ Γ′′) ∧ (Γ′ ⊔ Γ′′ ⊑sec Γ)

(NewEvtSec-REF) I(vA) ∧ J(vA,vC) ∧ GC(vC , cC) ∧ ΨC(vC ,v
′
C) ∧ (ΓC ⊢ vC : τC) ∧ (Γ′

C ⊢ v′
C : τ ′C)

=⇒ J(vA,v′
C) ∧ (V (v′

C) ∈ N) ∧ (V (v′
C) < V (vC)) ∧ (τ ′C ⊑sec τC)

Table III
TIME-SENSITIVE SECURE REFINEMENT RULES FOR MODEL EVENTS.

threaded languages, and enforce the timing behaviour of

a program to be independent of secrets by using padding

techniques. Russo et. al [11] propose a method to track and

close internal timing channels in multi-threaded programs by

doing transformation. Through this channel, the information

is leaked when the secrets affect the timing behaviour of a

thread. Intuitively, the internal timing leaks are introduced

by low assignment after high conditionals. To close this

channel, a fork is introduced by the transformation when

the branches depend on high data. Agat [12] studies the

problem of detecting and removing timing leaks. A type

system is proposed to prevent the time-sensitive information

leakage, and a transformation is performed to remove the

timing leaks from programs regarding to a bisimulation

based semantic security condition. The programs satisfying

the security condition do not leak any secret information

directly, indirectly, via timing channels, or by termination

behaviour to the external observers. By padding the branch-

ing commands, timing leaks is removed in the transformed

program. Hendin and Sands [13] extend Agat’s work for the

treatment of an object oriented language. Barthe et. al [14]

introduce a program transformation to prevent timing and

termination leaks in a sequential object-oriented language

via transaction mechanisms.

In addition to type-based treatments, there are also other

attempts to deal with secure information flow control for

programs. Rustan, Leino and Joshi [15] introduce a low level

counter variable to record execution time for the purpose

of reasoning about covert flows involving timing behaviour.

This enforcement is very strong and over pessimistic since

the counter variable need to be updated after each com-

mand and all high branching commands will be considered

introducing implicit flows. Köpf and Basin [16] study a

parameterised notion of information flow security for the

analysis of timing side channels in synchronous hardware

circuits. The synchronous system is modelled as an automa-

ton with output. The flow security notion (RIRO-secure)

is based on the idea that the observational equivalence of

states is a partial equivalence relation (PER), i.e., the system

can be formalised as the PER model of secure information

flow [17]. The quantity of timing sensitive information

leakage of the system is approximated by counting distin-

guishable behaviours. Hammer and Snelting [18] present an

approach for information flow control in program analysis

based on program dependence graphs (PDG). Based on [18],

[19] extends the PDG-based flow analysis by incorporating

refinement techniques via path conditions to improve the

precision of the flow control. Such PDG-based information

flow control is more precise but more expensive than type-

based approaches and there is no timing flow treatment.

In a software development cycle, it is important to ensure

security from the very beginning at the specification level.

However, there has been no treatment for flow analysis

and control in abstract specification languages and security

preservation under refinement in the above works. There

have been a number of works addressing flow analysis in

Event-B, but without considering timing leakage [20], [21],

[1]. Mu [1] presents a type system for flow control in Event-

B models. Iliasov [20] handles the interference between or-

dered events introduced by a set of conditions formulated on

a machine for flow control. Bendisposto et. al [21] derive a

flow graph structure from an Event-B model specification to

manage the information about dependence and independence

of events for flow analysis. Comparing with these works, we

have presented a framework to reason about time sensitive

flow control in specification language and relevant relations

of the stepwise refinement transformations.

VII. CONCLUSIONS

This paper investigates the problem of preserving time-

sensitive information flow security in timed Event-B speci-

fication models and in the process of refinement. We have

introduced a framework for reasoning about the secure

flow property in Event-B and under refinement. We extend

the Event-B system with timing constructs, and present a

security type system for the timed Event-B model with

time-sensitive information flow control. We then extend

the refinement rules to preserve secure information flow

properties under abstraction refinement.

We have presented a general framework for formally

reasoning about preserving time-sensitive flow secrecy prop-

erties in a specification language and the process of ab-

straction refinements. We believe this is a promising starting

point for a comprehensive formal treatment of information

flow security in specification languages and stepwise secure

refinements. There are a large number of programming

languages, which can be classified in terms of the paradigms

they support, such as imperative, object-oriented and real-

time languages. For future work, we propose to develop

combined theories for formal treatment of information se-

curity issues in different paradigms, and to explore the

relationships between them.

REFERENCES

[1] C. Mu, “On information flow control in event-b and refine-
ment,” in Seventh International Symposium on Theoretical
Aspects of Software Engineering, TASE 2013, 1-3 July 2013,
Birmingham, UK, 2013, pp. 225–232.

[2] J. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta,
and L. Voisin, “Rodin: an open toolset for modelling and
reasoning in Event-B,” STTT, vol. 12, no. 6, pp. 447–466,
2010.

[3] D. E. Denning and P. J. Denning, “Certification of programs
for secure information flow,” Commun. ACM, vol. 20, no. 7,
pp. 504–513, 1977.

[4] J. Goguen and J. Meseguer, “Security policies and security
models,” in S & P, 1982, pp. 11–20.

[5] S. Hunt and D. Sands, “On flow-sensitive security types,” in
POPL. ACM Press, January 2006, pp. 79–90.

[6] ——, “From exponential to polynomial-time security typing
via principal types,” in ESOP, 2011, pp. 297–316.

[7] D. M. Volpano and G. Smith, “Eliminating covert flows with
minimum typings,” in 10th Computer Security Foundations
Workshop (CSFW ’97), June 10-12, 1997, Rockport, Mas-
sachusetts, USA, 1997, pp. 156–169.

[8] G. Smith and D. M. Volpano, “Secure information flow in
a multi-threaded imperative language,” in POPL ’98, Pro-
ceedings of the 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, San Diego, CA, USA,
January 19-21, 1998, 1998, pp. 355–364.

[9] D. M. Volpano and G. Smith, “Probabilistic noninterference
in a concurrent language,” in Proceedings of the 11th IEEE
Computer Security Foundations Workshop, Rockport, Mas-
sachusetts, USA, June 9-11, 1998, 1998, pp. 34–43.

[10] A. Sabelfeld and D. Sands, “Probabilistic noninterference
for multi-threaded programs,” in Proceedings of the 13th
IEEE Computer Security Foundations Workshop, CSFW ’00,
Cambridge, England, UK, July 3-5, 2000, 2000, pp. 200–214.

[11] A. Russo, J. Hughes, D. A. Naumann, and A. Sabelfeld,
“Closing internal timing channels by transformation,” in Ad-
vances in Computer Science - ASIAN 2006. Secure Software
and Related Issues, 11th Asian Computing Science Confer-
ence, Tokyo, Japan, December 6-8, 2006, Revised Selected
Papers, 2006, pp. 120–135.

[12] J. Agat, “Transforming out timing leaks,” in POPL 2000,
Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, Boston, Mas-
sachusetts, USA, January 19-21, 2000, 2000, pp. 40–53.

[13] D. Hedin and D. Sands, “Timing aware information flow
security for a javacard-like bytecode,” Electr. Notes Theor.
Comput. Sci., vol. 141, no. 1, pp. 163–182, 2005.

[14] G. Barthe, T. Rezk, and M. Warnier, “Preventing timing leaks
through transactional branching instructions,” Electr. Notes
Theor. Comput. Sci., vol. 153, no. 2, pp. 33–55, 2006.

[15] K. R. M. Leino and R. Joshi, “A semantic approach to secure
information flow,” in Mathematics of Program Construction,
MPC’98, Marstrand, Sweden, June 15-17, 1998, Proceedings,
1998, pp. 254–271.

[16] B. Köpf and D. A. Basin, “Timing-sensitive information flow
analysis for synchronous systems,” in Computer Security -
ESORICS 2006, 11th European Symposium on Research in
Computer Security, Hamburg, Germany, September 18-20,
2006, Proceedings, 2006, pp. 243–262.

[17] A. Sabelfeld and D. Sands, “A per model of secure informa-
tion flow in sequential programs,” Higher-Order and Symbolic
Computation, vol. 14, no. 1, pp. 59–91, 2001.

[18] C. Hammer and G. Snelting, “Flow-sensitive, context-
sensitive, and object-sensitive information flow control based
on program dependence graphs,” Int. J. Inf. Sec., vol. 8, no. 6,
pp. 399–422, 2009.

[19] M. Taghdiri, G. Snelting, and C. Sinz, “Information flow
analysis via path condition refinement,” in FAST, 2010, pp.
65–79.

[20] A. Iliasov, “On event-b and control flow,” School of Comput-
ing Science, Newcastle University, Tech. Rep. CS-TR-1159,
2009.

[21] J. Bendisposto and M. Leuschel, “Automatic flow analysis for
event-b,” in FASE, 2011, pp. 50–64.

