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Abstract

We are interested in the problem of creating narrative plan-
ning models for use in Interactive Multimedia Storytelling
Systems. Modelling of planning domains has been identified
as a major bottleneck in the wider field of planning technolo-
gies and this is particularly so for narrative applications where
authors are likely to be non-technical. On the other hand there
are many large corpora of stories and plot synopses, in natural
language, which could be mined to extract content that could
be used to build narrative domain models.
In this paper we describe an approach to learning narrative
planning domain models from input natural language plot
synopses. Our approach, called StoryFramer, takes natural
language input and uses NLP techniques to construct struc-
tured representations from which we build up domain model
content. The system also prompts the user for input to disam-
biguate content and select from candidate actions and pred-
icates. We fully describe the approach and illustrate it with
an end-to-end worked example. We evaluate the performance
of StoryFramer with NL input for narrative domains which
demonstrate the potential of the approach for learning com-
plete domain models.

Introduction
Interactive Multimedia Storytelling (IS) systems allow users
to interact and influence, in real-time, the evolution of a
narrative as it is presented to them. This presentation can
be via a range of different output media such as 2D or 3D
animation (Mateas and Stern 2005; Porteous, Charles, and
Cavazza 2013), filmic content (Piacenza et al. 2011) and text
(Cardona-Rivera and Li 2016). In addition, a range of dif-
ferent interaction mechanisms have been used such as emo-
tional speech input (Cavazza et al. 2009), gaze (Bee et al.
2010), and physiologicali measures (Gilroy et al. 2012).

AI planning has been widely used for narrative generation
in IS as it provides: a natural “fit” with story plot lines rep-
resented as narrative plans; ensures causality which is im-
portant for the generation of meaningful and comprehen-
sible narratives; and provides considerable flexibility and
potential generative power. Consequently plan-based ap-
proaches have featured in many systems (e.g. as reported
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by (Aylett, Dias, and Paiva 2006; Riedl and Young 2010;
Porteous, Charles, and Cavazza 2013)).

In this work we are interested in the problem of author-
ing the narrative planning domain models that are used in
such IS systems. To date the authoring of narrative plan-
ning models has been handled manually, a common strategy
being to build up the model via systematic consideration of
alternatives around a baseline plot (Porteous, Cavazza, and
Charles 2010b) and many prototype IS systems have sought
inspiration from existing literary or filmic work. Exam-
ples include the Façade interactive drama which was based
on “Who’s Afraid of Virginia Woolf?” (Mateas and Stern
2005), The Merchant of Venice (Porteous, Cavazza, and
Charles 2010a), Madame Bovary (Cavazza et al. 2009) and
the tale of Aladdin (Riedl and Young 2010).

However this manual creation is extremely challenging.
In this paper the problem we tackle is automation of narra-
tive domain model creation. Our starting point is to look at
natural language plot outlines as content from which to au-
tomatically induce planning models. We are developing a
solution which takes natural language input (i.e. stories) and
uses NLP techniques to construct structured representations
of the text and keeps the user in the loop to guide refinement
of the planning model. This approach represents an exten-
sion to the Framer system of (Lindsay et al. 2017) to appli-
cation with narrative domain models. We have implemented
the approach in a prototype system called StoryFramer.

In the paper we give an overview of the technical aspects
of the approach and illustrate it with an end-to-end worked
example using the tale of Aladdin taken from (Riedl and
Young 2010). We present the results of an evaluation with a
two domain models generated by StoryFramer and consider
the potential of the approach.

Related Work
Some recent work in the area of automated domain model
creation for planning has attempted to learn planner action
models from natural language (NL) input.

Much of this work has attempted to map from NL input
onto existing formal representations. For example, in re-
lation to RoboCup@Home, Kollar et al. (2013) present a
probabilistic approach to learning the referring expressions
for robot primitives and physical locations in a region. Also
Mokhtari, Lopes, and Pinho (2016) present an approach to
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S1: “ Aladdin takes the magic lamp from the dead body of the dragon ” 
S2: “ Aladdin travels from the castle to the mountains  ”
S3: “ Jasmine is very beautiful ”
S4: “ The genie is in the magic lamp ”
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action: takes {
   subject: aladdin
   object: magic lamp
   from: dead body {
     of: dragon }
}

(define  (domain aladdin)
   (:requirements :typing :equality
    :negative-preconditions)
   (:types  character object location)
   (:constants jasmine – character
                      jafar – character
                      magic-lamp – object
                      …)

   (:predicates  (at ?x ?y) (has ?x ?y) (woman ?x)
                        (king ?x) (can-travels ?x) … )

   (:action travels
      :parameters  (?c1 – character ?l1 – location
                             ?l2 – location)
      :preconditions  (and  (can-travels ?c1)
                                        (not (= ?l1 ?l2))
                                        (at ?c1 ?l1)
      :effect  (and  (has-travels ?c1)
                           (at ?c1 ?l2)
                           (not (at ?c1 ?l1))
   )   
   …
)
 

(define  (problem aladdinProb)
   (:domain aladdin)
   (:objects
       Jasmine – character
       Jafar – character
       Magic-Lamp – object
       Dragon – character
       Genie – character
       Aladdin – character
       Castle – location
       Mountains – location )

   (:init  (woman Jasmine)
            (king Jafar)
            (has Dragon Magic-Lamp)
            (at Aladdin Castle)
            (at Dragon Mountain)
            (can-travels Aladdin)
            …
   )

   (:goal   (and   (dead Genie) (has-wed Jasmine)
                         (has-wed Jafar) )
)

User Input

b

c

d

Domain

in: magic lamp {
   subject: genie
}

                             

                             

Removing Duplicates

Action Pre and Post-conditions                              Problem Setup

Problem

Jasmine
Jafar
Magic-Genie
Magic-Lamp
Dragon

Genie
Aladdin
Castle
Mountains
King-Jafar

Jasmine – character 
Jafar – character
Magic-Lamp – object 
Dragon – character 
Genie – character 
Aladdin – character 
Castle – location 
Mountains – location 

Action  slays
Parameters (?c1 – character  ?c2 – character ?l1 – location) 
Preconditions (can-slays ?c1)  (can-slays ?c2)  (not (= ?c1 ?c2))
                     (at ?c1 l1)  (at ?c2 ?l1)  (not (dead ?c2)
Effects  (has-slays ?c1) (has-slays ?c2)
             (dead ?c2)

Initial State  (woman Jasmine)
                     (king Jafar)
                     (has Dragon Magic-Lamp)
                      (dead Dragon)
                     (in Genie Magic-Lamp)
                     (at Aladdin Castle)
                     (at Dragon Mountains)
                      …

Goal State  (dead Genie)
                    (has-wed Jasmine)
                    (has-wed Jafar)

Object Typing

property: beautiful {
   subject: jasmine
}

Properties

                             S2
Actions

action: travels {
   subject: aladdin
   from: castle
   to: mountains
}

Figure 1: StoryFramer Overview: the NL input sentences and CoreNLP annotations are mapped to Template Representations
a ; the user disambiguates content, types objects and selects predicates for pre and post-conditions b ; the different elements

of the domain content are assembled c ; and the domain content is output as PDDL domain model and problem file d .

learning action schemata for high-level robot control.
In (Goldwasser and Roth 2011) the authors present an

alternative approach to learning the dynamics of the world
where the NL input provides a direct lesson about part of the
dynamics of the environment. Each lesson is supported by a
small training data set to support learning from the lessons.
In contrast to our approach, their system relies on a repre-
sentation of the states and actions, which means their NLP
approach can target an existing language.

More closely related to our work are attempts to learn
planning models in the absence of a target representation.
These include (Sil and Yates 2011) who used text mining
via a search engine to identify documents that contain words
that represent target verbs or events and then uses inductive
learning techniques to identify appropriate action pre- and
post-conditions. Their system was able to learn action rep-
resentations, although with certain restrictions such as the
number of predicate arguments. Branavan et al. (2012) in-
troduce a reinforcement learning approach which uses sur-
face linguistic cues to learn pre-condition relation pairs from
text for use during planning. The success of the learnt model
relies on use of feedback automatically obtained from plan
execution attempts. Yordanova (2016) presents an approach
which works with input text solution plans, as a proxy for in-
structions, and aims to learn pre- and post-condition action
representations.

A similar increase in work aimed at automated creation
has been seen in research in Narrative generation for Inter-
active Storytelling. However, an important difference with
respect to narrative domains is that they do not share the
same consistency and alignment with real-world domains as
do more traditional benchmark planning domains. Hence
approaches have tended to focus on (semi-)automated meth-
ods to gather story content, such as crowdsourcing, weblogs
and story corpora. For example, crowdsourcing was used
in: the SCHERAZADE system (Li et al. 2013) to acquire typ-
ical story elements that can be assembled as plot graphs and

used in a process of story generation; SCENARIOGEN (Sina,
Rosenfeld, and Kraus 2014) to gather a database of scenarios
of everyday activities and likely replacements for use within
a serious game context; and by (Nazar and Janssen 2010)
for the hand annotation of logs from user sessions with the
Restaurant Game for subsequent use in automating charac-
ter interactions with human participants in a speech-based
narrative setting. An alternative approach aims to obtain
narrative content through mining of weblogs and story cor-
pora. For example, SAYANYTHING (Swanson and Gordon
2012) selects narrative content on-the-fly from a corpora of
weblogs in response to user text-based interaction, whilst
(McIntyre and Lapata 2009) attempts to generate narratives
using knowledge mined from story corpora for a particular
genre.

Our work complements this, with input narrative content
being mined from input natural language plot synopses.

StoryFramer Overview
Our approach to domain model generation is implemented
in a system called StoryFramer, the main elements of which
are shown in Figure 1. The system takes as input NL nar-
rative synopses such as the outline story of Aladdin shown
in Figure 2 and outputs a PDDL domain model and problem
file such that the original story can be reproduced using a
planner. The target output language is PDDL1.2 (Ghallab et
al. 1998).

Currently the translation from NL to a domain model is a
semi-automated process with the user in the loop for disam-
biguation of content at a number of stages. In this section we
overview the main stages in this process and then illustrate
it with an end-to-end example.

Extracting template representations from NL input
The first step in the approach is the generation of frame tem-
plates which are reduced representations of the input sen-



There is a woman named Jasmine. There is a king
named Jafar. This is a story about how King Jafar be-
comes married to Jasmine. There is a magic genie.
This is also a story about how the genie dies. There
is a magic lamp. There is a dragon. The dragon has the
magic lamp. The genie is confined within the magic
lamp. There is a brave knight named Aladdin. Al-
addin travels from the castle to the mountains. Aladdin
slays the dragon. The dragon is dead. Aladdin takes
the magic lamp from the dead body of the dragon. Al-
addin travels from the mountains to the castle. Aladdin
hands the magic lamp to King Jafar. The genie is in
the magic lamp. King Jafar rubs the magic lamp and
summons the genie out of it. The genie is not confined
within the magic lamp. The genie casts a spell on Jas-
mine making her fall in love with King Jafar. Jasmine
is madly in love with King Jafar. Aladdin slays the
genie. King Jafar is not married. Jasmine is very beau-
tiful. King Jafar sees Jasmine and instantly falls in love
with her. King Jafar and Jasmine wed in an extravagant
ceremony. The genie is dead. King Jafar and Jasmine
are married. The end.

Figure 2: Aladdin outline plot from (Riedl and Young 2010)

tences. These templates capture the main action or property
that a sentence is describing, as well as the objects men-
tioned and an indication of their roles within the sentence.

For this extraction we use Stanford CoreNLP (Manning
et al. 2014), a publicly-available and widely-used annotation
pipeline for natural language analysis. Of most relevance in
this work are the syntactic parsing annotations that CoreNLP
produces. Syntactic analysis in CoreNLP is a two-stage
process. Firstly, phrase structure trees are generated us-
ing statistical analysis of datasets containing many examples
of manually annotated sentence parses (Klein and Manning
2003). Secondly, these phrase structure trees are converted
to dependency parse graphs using a series of manually-
curated rules based on patterns observed in the phrase struc-
ture trees (de Marneffe, MacCartney, and Manning 2006).
An example of the sort of dependency graphs that are output
by CoreNLP is shown in Figure 3.

For our purposes the structure of these graphs must be
further simplified to move closer to a predicate logic rep-
resentation. This is achieved through a recursive set of
rules that crawl the dependency graph, transforming the re-
lations based on their types. CoreNLP use the Penn Tree-
bank Project part-of-speech tags (Marcus, Marcinkiewicz,
and Santorini 1993) to annotate the text. Most importantly,
the root verb, subjects and objects form actions, predicates
and domain objects as follows:

• The VBZ tag denotes verb (3rd person singular present)
and this forms the basis of candidate action names. For
example, the action takes in Figure 3

• The JJ tag denotes adjectives. These form the candidate
properties e.g. the property beautiful in Figure 4.

• The NN tag (and variants NNS, NNP, NNPS) denote

nouns; singular, plural, proper noun singular and proper
noun plural respectively. These form the basis candi-
date objects (constants) for the domain. For example,
Aladdin in Figure 3 and Jasmine in Figure 4.

Conjunctions in input sentences introduce new clauses,
which themselves form further predicates. Other relation
types such as modifiers and compounds are used to trans-
form the names of the predicates and arguments.

Building Action Representations
Based on the CoreNLP annotations, StoryFramer creates a
temporary action template which uses the verb as the action
name and includes all the associated objects. An example
template action for takes is shown in Figure 3. It can be
observed that this template contains key elements of the ac-
tion that will be output, namely, the name, arguments (the
characters aladdin and dragon, and the magic-lamp
object). We discuss this in more detail later (Worked Exam-
ple section) following the rest of the StoryFramer overview.

Parameters For each action template the system labels
each of the associated objects as candidate parameters for
the output action. During the phase of user interaction these
will be typed using the generic categories of: character,
object and location.

Pre- and Post-conditions Following an approach simi-
lar to (Yordanova 2016), default predicates are added to
the pre- and post-conditions of template actions, named
(can-action ?x) and (has-action ?x) to introduce a
baseline level of causality, sufficient to ensure generation
of a baseline plan that corresponds to the original input NL
story synopsis. For example, it may be necessary to use one
of these predicates as part of the goal condition (this is the
case with our Aladdin worked example).

Other predicates are added by the system as the PDDL
domain files are output, following user interaction.

User Interaction
At this stage StoryFramer requires user interation and hence
prompts for input to be used for the following:

• Removing Duplicates:
Anytime the same object has been referred to in differ-
ent ways in the NL input, the result is that the system
finds multiple different objects. In this situation the user
is asked to disambiguate. At the end of this stage every
object should be represented by one unique identifier.

• Typing of Objects:
The user is asked to sort the objects into types. So far
in our experiments with narrative domains we have re-
stricted this to the following small set of narrative cate-
gories: character, object and location.

• Action Pre and Post-conditions:
The user is asked to select between possible pre- and post-
conditions for inclusion in the domain model (i.e. “Do
you want to include ...?”). These are of the following
types:



NL Aladdin takes the magic lamp from the dead body of the
dragon.
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Figure 3: Action Template Examples. The figure shows
sample NL sentence input, with CoreNLP annotation and
resulting action template after rewrite rules: from CoreNLP
annotation, verb, subject and object of the sentence form
the action name and arguments (see text for further details).

1) Predicates: the user is asked to select from identi-
fied predicates, such as beautiful in Figure 4, and use
them to populate action preconditions where appropriate.
2) Locatedness: some conditions are commonly missing
from the NL input relating to the location of characters
and objects. For the work we present here we assume
that all characters must always be “at” some location and
that objects can be either “at” or in the possession of a
character i.e. “has”. Should such predicates be missing
from the NL input, then users are asked to decide whether
to include them.
3) Inequality: whenever an action template has multiple
parameters of the same type the system assumes that these
cannot be equal and prompts the user about inclusion of a
(not (= ?x1 ?x2)) precondition.

• Problem File setup:
The final stage of user interaction is setting up a problem
file. Every predicate detected by StoryFramer that was
true at some time during the story represents a potential
initial state fact or plan goal. The user is shown a list of
facts and asked to delete those not appropriate, as well
as adding any that were missed or not mentioned. For
example, this frequently requires the selection of predi-

NL Jasmine is very beautiful.
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NL The genie is in the magic lamp.
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Figure 4: Property Template Examples. The figure shows
sample NL input sentences, the CoreNLP annotations for
this sentence with the property and subject taken from the
sentence adjective and noun (for further details see text).

cates relating to the location of characters in the initial
state: something frequently missing from the input NL
synopses.
The user is also prompted to select suitable goal facts for
the problem file. In our experiments we have used goal
conditions which enable the generation of a plan which
reproduces the story outline from the input NL story.

PDDL output
The final stage in the process is the generation of the domain
and problem file content which is output as PDDL.

Following the user interaction to provide type information
for action parameters and domain objects the system may
add additional parameters to actions at this stage. This is
based on an assumption that all actions must have an associ-
ated location as this is needed in the longer term building up
of a narrative domain: for example, for staging of generated
story plans in a virtual environment. In practice we have ob-
served that location details are frequently missing from syn-
opses. Hence additional location parameters are automati-
cally added to actions where there is no location parameter



associated with the action template from the input text.
For the domain file, the detail of the actions comes from

the action templates with the types of action parameters
added on the basis of the user input. Pre- and post-conditions
are made up of predicates extracted from the input NL, and
selected for inclusion by the user, along with system sug-
gested predicates such as inequality testing.

Worked Example: Aladdin
In this section we present a worked example of the end-to-
end process of planning domain model and problem file gen-
eration with StoryFramer. This example uses the NL plot
synopsis from (Riedl and Young 2010) shown in Figure 2.

1) StoryFramer Processing
CoreNLP handles the input NL text, one sentence at a time
and for each sentence returns the text with annotations. For
example, for the following input sentences:

S1 “Aladdin takes the magic lamp from the dead body of the
dragon”

S2 “Aladdin travels from the castle to the mountains”
S3 “Jasmine is very beautiful”
S4 “The genie is in the magic lamp”

the resulting CoreNLP annotations are as shown in Fig-
ures 3 and 4. For the action templates StoryFramer identifies
the key action components and also adds the can-X and
has-X predicates to action pre- and post-conditions to en-
sure a baseline for action causal chaining. Thus the outline
actions from S1 and S2 at this stage are:

Name Precondition Postcondition
S1: takes

aladdin,
magic-lamp,
dragon

can-takes has-takes

S2: travels
castle,
mountain

can-travel has-travel

For the property templates, resulting from input sentence S3
and S4, the key components form the basis of predicates
with name and arguments as follows:

Name Arguments
S3 beautiful jasmine
S4 in magic-lamp, genie

At the end of this first phase of automated processing with
StoryFramer the sets of initial action templates, predicates
and domain objects are as summarised in Figure 5.

2) User Input
Firstly, the user is asked to remove duplicate references to
the same objects. For example, in Figure 5 the set of ob-
jects contains a number of duplicates, such as Jafar and
King-Jafar and the user has selected unique object iden-
tifiers and the duplicates have been removed.

Once duplicates have been resolved the user sorts the set
of objects into types. In our experiments to date we have

Actions Predicates Objects
confined
travels
slays
takes gives
rubs casts
married sees
wed

at has woman
king dead
knight in
beautiful
in-love
can-travels
has-travels
can-slays
has-slays
...

Jasmine
Jafar
Magic-Genie
Magic-Lamp
Dragon Genie
Aladdin
Castle
Mountains
King-Jafar

Resolved Objects
(Jafar, King-Jafar) → Jafar
(Genie, Magic-Genie) → Genie

Typing
Jafar, Jasmine, Aladdin, ... → character
Castle, Mountain → location
Magic-Lamp → object

Figure 5: Results of initial phase of automated StoryFramer
processing: the figure shows the sets of names of actions,
predicates and objects identified prior to user interaction.
Duplicate Object References are highlighted (red) along
with the results of user input to remove duplicates. Also
shown are the results of user sorting of objects into types.

restricted this to character, object and location.
For the Aladdin story, the results of this phase of user inter-
action result in object typing as shown in Figure 5.

Next the user is prompted to select and reject predicates to
populate the pre- and post-conditions of the output actions.
These predicates are obtained as follows :

1. Predicates from properties in the input NL sentences. For
Aladdin a selection of these are shown in Figure 5)

2. Locatedness predicates, at and has, introduced by
StoryFramer if they are absent in the input NL and rep-
resenting the location of objects of type character and
object.

3. Predicates ensuring unique object grounding of multiple
parameters of the same type, i.e. inequality.

The action takes in Figure 6 shows examples of the results
of user selection of these predicates and the building of the
output action.

The final phase of user interaction is selection of predi-
cates for the setting up of a problem file: the initial state and
the goal conditions. In our experiments the user selected
those predicates from the initial state and goal conditions
which allowed us to regenerate the plan corresponding to
the input NL plot synopsis.

3) PDDL Output
The final step of the process is the outputting of the Domain
Model and Planning Problem as PDDL files. For this exam-
ple these can be found online:
https://drive.google.com/drive/

folders/0B6Rv1Q3KYqtMcXhUMFFSZzh1a1U?
usp=sharing



(:action takes
:parameters

(?c1 ?c2 - character ?o - object ?l - location)
:precondition (and•1 (dead ?c2)•2 (at ?c1 ?l1) (at ?c2 ?l1) (has ?c2 ?o1)

(can-takes ?c1) (can-takes ?c2) (can-takes ?o1)•3 (not (= ?c1 ?c2)))
:effect (and•1 (has ?c1 ?o1) (not (has ?c2 ?o1))

(has-takes ?c1) (has-takes ?c2) (has-takes ?o1) )))

Figure 6: Example of StoryFramer Building for action
takes. Following user input the parameter object names
from the input NL have been replaced by variables of the ap-
propriate types. Precondition predicates have been: selected
by the user•1 ; system suggested locatedness and chaining
predicates have been retained by the user•2 ; the system has
introduced inequality tests for objects of the same type•3 .
For the postconditions the user has retained locatedness and
chaining predicates as shown•2 .

Evaluation
In this section we present an evaluation to assess how ac-
curate StoryFramer is. We evaluate StoryFramer with two
domains: the tale of Aladdin taken from (Riedl and Young
2010) and an old American West story taken from (Ware
2014). We selected these two sources because they provide
natural language descriptions that we can use as input and
they include planning domains that we can use to compare
with the domains generated by StoryFramer. In particular,
we evaluate StoryFramer by comparing the set of recognised
actions and predicates with the actions and predicates used
in the selected domains.

The domains used in the evaluation can be found online
using the link provided at the end of the worked example.

Domain 1: The tale of Aladdin
We used StoryFramer with two texts describing the tale of
Aladdin. Both texts were taken from (Riedl and Young
2010): one is shown here, in Figure 2; the other is a vari-
ation (see Figure 13 of Riedl’s paper). Table 1 shows that
all actions but one were recognised by StoryFramer. When
compared to Riedl and Young’s planning domain, only one
action is not recognised. All the other 11 actions are recog-
nised with four of them being named based on the same
verb. The action marry is recognised twice: as wed and
as married.

In terms of predicates, out of Riedl and Young’s 24 pred-
icates, only two predicates that are mentioned in the text
are not recognised by StoryFramer: the binary predicates
married-to and loyal-to (however, a unary predi-
cate loyal is recognised). Nine (9) are recognised in ex-
actly the same way: one (1) as a type, one (1) as an object,
one (1) as a constant, and six (6) as predicates. Eight (8)
are recognised, but with a different name from the one that

Output Plan Corresponding NL sentences
(sees jafar jasmine castle) King Jafar sees Jasmine and in-

stantly falls in love with her.
(travels aladdin castle moun-
tains)

Aladdin travels from the castle
to the mountains.

(slays aladdin dragon moun-
tains)

Aladdin slays the dragon.

(takes aladdin dragon magic-
lamp mountains)

Aladdin takes the magic lamp
from the dead body of the
dragon

(travels aladdin mountains cas-
tle)

Aladdin travels from the moun-
tains to the castle.

(gives aladdin jafar magic-lamp
castle)

Aladdin hands the magic lamp
to King Jafar.

(rubs jafar genie magic-lamp
castle)

King Jafar rubs the magic lamp
and summons the genie out of
it.

(casts genie jasmine jafar cas-
tle)

The genie casts a spell on Jas-
mine making her fall in love
with King Jafar.

(slays aladdin genie castle) Aladdin slays the genie.
(wed jafar jasmine castle) King Jafar and Jasmine wed in

an extravagant ceremony.

Figure 7: Output Plan and Corresponding Input NL sen-
tences for the tale of Aladdin: on the left hand side are the
10 actions in the output plan generated using the learned do-
main model; alongside each action (right hand side) are the
corresponding input sentences from the original story.

Riedl and Young used: four (4) of them are minor variations
(e.g. married/has-married and loves/in-love);
two (2) of them are recognised as words that appear in the
text: instead of alive and female, the system recognised
dead and woman (resp.); and two (2) of them are recog-
nised as types (Riedl and Young used thing and place
instead of object and location; in both cases, none
of the words appear in the text). Finally, there are seven
(7) predicates that were not recognised: five (5) of them do
not appear in the text (scary, monster, male, single,
and intends); and finally, as mentioned above, two (2) are
mentioned in the text, but are not recognised.

Output Plans We used the StoryFramer generated domain
and problem file from the original Aladdin NL input to gen-
erate an output narrative plan (using METRIC-FF (Hoffmann
and Nebel 2001)). The plan consists of the 10 actions which
are shown in Figure 7, along with corresponding input.

Domain 2: An old American West story
We also used StoryFramer with natural language sentences
taken from (Ware 2014). These are are part of an old Amer-
ican West story about how a young boy named Timmy is
saved (or not saved) from a deadly snakebite. His father,
Hank, can save him by stealing antivenom from Carl, the
town shopkeeper, but this theft causes sheriff William to
hunt down Hank and dispense frontier justice.

In the thesis Ware gives seven example solution plans and
translations of them into NL. It is these NL sentences which
we used as input to StoryFramer. We list them here and show



Riedl and Young (2010) Recognised by StoryFramer
travel 3(travels)
slay 3(slays)
pillage 3(takes)
give 3(gives)
summon 3(rubs)
love-spell 3(casts)
marry 3(wed,married)
fall-in-love 3(sees)
order 7
command 3(uses)
appear-threatening 3(appears)

Table 1: When compared to Riedl and Young’s planning
domain, only one action is not recognised by StoryFramer.
All the other 11 actions are recognised with four of them
being named based on the same verb. The action ‘marry’ is
recognised twice: as ‘wed’ and as ‘married’.

in brackets the action names used by Ware:

• Timmy died. (die)

• Carl the shopkeeper healed Timmy using his medicine.
(heal)

• Hank shot his son Timmy. (shot)

• Hank stole antivenom from the shop, which angered
Sheriff William. (steal)

• Hank healed his son Timmy using the stolen an-
tivenom. (heal)

• Sheriff William shot Hank for his crime. (shoot)

• Hank intended to heal his son Timmy using the stolen
antivenom. (heal)

• Sheriff William intended to shoot Hank for his crime.
(shoot)

• Hank got bitten by a snake. (snakebite)

• Hank intended to heal himself using the stolen an-
tivenom. (heal)

In Table 2, we show that all the actions used by Ware were
recognised by StoryFramer. Note that whilst Ware used
the action heal to model the actions mentioned in the
sentences “Hank healed...” and “Hank intended to heal”,
StoryFramer recognised two different actions: heal for the
first sentence and intended for the second.

In terms of predicates, results were not so good as
with the tale of Aladdin. The predicates generated by
StoryFramer are based on the text provided as input, so,
besides predicates common in general narratives (e.g. at
?c ?l or has ?c ?o), StoryFramer generated predicates
associated with the recognised actions (e.g. has-died,
can-shot, and has-bitten). It also introduced as con-
stants all the characters mentioned (Hank, Timmy, Carl,
and Sheriff) and some objects and locations used in the
narrative (Medicine, Antivenom, and Shop). On the
other hand, Ware introduced a predicate status ?p ?s
that is to be used with one of three constants: Healthy,

Ware (2014) Recognised by StoryFramer
die 3(died)
heal 3(healed)
shoot 3(shot)
steal 3(stole)
snakebite 3(bitten)
7 intended

Table 2: All the actions used by Ware (2014) were recog-
nised. StoryFramer also recognised an additional action (‘in-
tended’).

Sick, or Dead. He also introduced predicates owns ?c
?o, armed ?c, and parent ?c1 ?c2.

This mismatch is justified because Ware is using predi-
cates that are not mentioned explicitly in the sentences that
we used as input. For example, the sentences do not make
any reference to the words or states Healthy and Sick. We
discuss how this limitation can be addressed in the section
on future work.

Output Plans Even though there is a clear mismatch be-
tween the predicates recognised by StoryFramer and the
ones used by Ware, the generated domains can be used to
produce all the seven plans listed for the Western Domain
(see (Ware 2014, Fig. 3.3) and Figure 8). However, we note
that for two of these plans, F and G, it was necessary to re-
move reasoning about intent: despite StoryFramer correctly
generating an intends action from the NL input. This
is because intention reasoning (a feature of Ware’s COPCL
planner and other narrative planners in the tradition of the
IPOCL planner of (Riedl and Young 2010)) requires the use
of a planner capable of intentional reasoning which is be-
yond the scope of our current work.

With intention removed we were able to generate the
same plans as reported by Ware. The results are shown
in Figure 8. Although we note that in order to reproduce
the same ordering of actions it was necessary to use in-
termediate goals as described in (Porteous, Cavazza, and
Charles 2010b). For example, to enforce the ordering that
a goal (has-shot sheriff hank) occurs before an-
other goal (has-died timmy) the problem is written in
PDDL3.0 using the modal operator sometime-before1

and the plan is generated using a decomposition approach
that solves each subgoal in turn.

Conclusions and Future Work
In the paper we have presented an overview of our approach
to automated domain model generation and its implementa-
tion in the prototype system StoryFramer. We assessed the
performance of the approach on a couple of publicly avail-
able narrative planning domains, for which narrative syn-
opses are also available.

An important aspect of the approach is that it is possible to
go from NL input to an output domain model and problem
instance, with which it is possible to generate a plan that

1The semantics of (sometime-before A B) requires that
application of actions in solution plans make B true before A.



Plan Ware Plans StoryFramer Plans
A (die Timmy) (died timmy shop)
B (heal Carl Timmy) (healed carl-shopkeeper timmy medicine shop)
C (shoot Hank Timmy) (shot timmy hank shop)
D (steal Hank Antivenom Carl William) (stole hank sheriff-william antivenom shop)

(heal Hank Antinvenom Timmy) (healed hank timmy antivenom shop)
E (steal Hank Antivenom Carl William) (stole hank sheriff-william antivenom shop)

(heal Hank Antinvenom Timmy) (healed hank timmy antivenom shop)
(shoot William Hank) (shot sheriff-william hank shop)

F (steal Hank Antivenom Carl William) (stole hank sheriff-william antivenom shop)
(shoot William Hank) (shot sheriff-william hank shop)
<heal Hank Antivenom Timmy> -
(die Timmy) (died timmy shop)

G (steal Hank Antivenom Carl William) (stole hank sheriff-william antivenom shop)
<shoot William Hank> -
(snakebite Hank) (bitten hank shop)
<heal Hank Antivenom Hank> -
(heal Hank Antivenom Timmy) (healed hank timmy antivenom shop)

Figure 8: Comparison of output plans for the Western Domain from (Ware 2014): those listed by Ware and corresponding to
the NL input to StoryFramer; and those generated by StoryFramer ignoring intent. See text for detail.

corresponds to the original NL input. Much of this process
is automated but user input may be required for some aspects
such as disambiguation of content. However there is scope
to further automate the process as part of the future work.

Amongst our plans for future work we are keen to ex-
ploit further the part-of-speech information provided by
CoreNLP in combination with other linguistic resources in
order to disambiguate content. We also intend to explore the
use of a commonsense reasoning engine which would enable
inference of aspects such as family and social relationships
(e.g. from references such as “parent” in the input).

There are also possibilities to combine this with reason-
ing that is able to automatically extend an existing domain
model, for example via the use of antonyms to find opposite
actions, as in (Porteous et al. 2015).

We may also look to use multiple story synopses as in-
put to incrementally build up a large domain ontology. This
could for example be used to learn actions from multiple
episodes of a series so that generated output plans can show
more variation.
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