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of this CFD approach as a computational tool for designing mixing reactors. (Ameur and Bouzit 2012) [7] Studied 
the effect of blades number on mixing performance in shear thinning fluid. The simulations and calculations of 
impeller were performed using computer code (CFX11.0). It has been shown that the axial velocity is directly 
proportional to Reynolds number which results an increasing in cavern size. The maximum values of tangential 
velocity are located at the tip of blade for any number of blades. The tangential velocity degradation is greater with 
impeller have two blades when compared with the other cases, while the difference becomes insignificant between 
an impeller with six and eight blade.  (Meriem Ammar et. al. 2012) [8] Studied the effect of tank design on the flow 
pattern. Three baffles less stirred vessel types have been prepared, cylindrical, curved, and spherical vessel. It has 
been mentioned that the curved bottom tank reduced the low velocity flow zones, and established more uniformity 
for entirely tank volume. By the comparison between LDV data and simulation results, it can be consider that the 
CFD code is valid for predicting the fluid hydrodynamics in mixing vessel. (Sharma and Genitha 2014) [9] 
Numerically investigated the effect of different impellers on aerobic baffles stirred tank fermenter. The performance 
of aerobic stirred tank fermenter evolution was performed by using various software packages, Autodesk simulation 
CFD, and ANSYIS FLUENT. The k-ε model, k-ω model, Shear Stress Transport (SST) model and Scale Adaptive 
Simulation (SAS) model were used to represent the turbulence. It has been observed that the axial flow component 
for all impellers was restrained on the bottom of the tank; consequently the overall flow was mainly radial. This will 
weak the axial velocity distribution at the bottom of mixing vessel, therefore the solid particles stays around the 
bottom of the tank. The 6-blade Rushton turbine equipped with walled baffles induced the best state for mass 
transfer.  (Arturo J. et. al. 2015)[10] Examined the optimal location of one or two axial impellers on central shaft in 
tall stirred tank through establishing a connection of Evolutionary Program EP and CFD technique. It has been noted 
the optimum mixing time and power consumption can be achieved through the utilization of EP method. For mixing 
process established with one impeller the optimum mixing performed at clearance C= 0.13418 m and for two 
impellers system it’s achieved with clearance C= 0.26441 and impeller space h= 0.1601m. The evolution process 
selected the best entities according to operation condition for realizing optimum conditions. 
 
In this paper, the flow field in stirred tank is studied using ANSYS Fluent v15.4 to identify the dead zones in the 
tank where the fluid is not mixing by presenting the velocity vectors at different planes in the tank. This will give 
better information which improves tank design in accordance with operation conditions. 
 
Theoretical Analysis:- 
CFD Model and Simulation:- 
A schematic diagram of the tank and the impeller is shown in Figure 1. The system consists of a flat bottomed 
cylindrical vessel, the vessel diameter (Dt = 0.3 m) of which equals the height of the liquid (H=Dt). Four baffles 
having width, W=Dt/10 are spaced equally around the vessel. The shaft of the impeller is concentric with the axis of 
the vessel. The impeller diameter, Di, equivalent to Dt /3. And the blead radius0.3m and blead height is .03m The 
distance between the tank bottom and the impeller position C is set to C= Dt /3. The rotational speed of the impeller, 
N, is ranging from 60 rpm to 135 rpm increasing step 15 rpm, leading to a tip speed, Vtip, ranging  0.314 m/s to 1.05 
m/s. The working fluid is water with density, ρ, of 1000 kg/m3 and viscosity, μ, of 1×10-3 Pa.s. The mixing tank 
was design depending on the standard configuration [11], (Georgy 1991)[12]. The retreat impeller showed in Figure 
2. 

 
Figure1:- mixing Tank in Present Study 
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Figure 2:- Retreat impellerGeometry. 

 
Governing equations:- 
Continuity equation:- 
The net flow of mass across the boundary of a control volume is zero in steady state flow:  
 

0. G


     (1) 
Where:  

VG 


, is mass velocity. 
Equation (1) can be written relative to cylindrical coordinates as follows: 
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         The subscripts z, r and ө are representing to the axial, radial and tangential components respectively. The u , 
v and w are the components for the time mean velocity in z, r and ө directions respectively, and uʹ, vʹ and wʹ be the 
corresponding velocities of fluctuation. The continuity equation can be written as conservation of mass equation 
with the following form :( Joseph 1997), (Ronald 1984) 
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Momentum Equation:- 
The general momentum equations in terms of shear stressτgoverning the fluid motion for three dimensions for 
cylindrical coordinate are [9]: 
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In R-direction 
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In-θ-direction 
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     The previous equations of mass conservation and momentum can be combined to formof one general form 
(Versteeg 1995)  
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        For the continuity and momentum the ψz, ψr, and ψө are the total diffusion fluxes defined by: 
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Where Φ stands for any of the dependent variables and the corresponding values of   and S  is indicated in table 

(1).For axisymmetric swirling flow
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 , equation (7) becomes: 

  S
r

r
rz

rz 







  1  







 S

r
rrV

rrz
U

z


































 1        (11)  

 
Table (1):- variables of equations  
Equation Φ ΓΦ SΦ 
Conservation of mass  Eq(2) 1 0 0 
Conservation of momentum in z – 
direction eq. (4) 

U μeff 
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Conservation of momentum in r – 
direction eq.(5) 

V μeff 
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Conservation of momentum in Ө- 
direction eq.( 6) 

W μeff 
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THE K-ε TURBULENCE MODEL:- 
Jones and Launder had proposed the following equations for both the turbulence kinetic energy (k) and for energy 
dissipation (ε) [10] 
For turbulence kinetic energy (k)   
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For energy dissipation rate (ε) 
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Where G refers to the generation term and is given by [37]: 
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The turbulent kinetic energy (k) and the dissipation rate of the turbulent energy (ε) are chosen as the two properties 
in order to determine the turbulent viscosity μt 
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Where: Cµ is a constant. It is assumed that at a high Reynolds number, (ε) value to be Proportional to lk 2
3

, the 
above equation becomes:- 








2kC
t     (16) 

The quantities σk,t , C1 , C2 , σε,t  and Cμ that appear in the k-ε model and μt equations, are the universal k-ε model 
constants, whose values are reproduced in table (2) . 
 
Table (2):-shows the variable of k-ε model. 
Equation Φ ΓΦ SΦ C1 1.44 
Turbulent K.E.eq. (12) K μt/σk,t Gt   C2 1.92 

Dissipation rate eq.(13) ε μt/σε,t 

k
C

k
GCt

2

21


   
Cμ 0.09 
σk,t 1 
σε,t 1.3 

The CFD modeling of mixing problem, consist of three steps which are pre-processing, equation solving and post-
processing. In first part the problem geometry should be built and meshed. In the second step the partial differential 
equations describing the flow (Continuity and Navier-Stokes) are discretized on the mesh and solved 
simultaneously. The boundary and initial conditions should be introduced to the CFD. The turbulence model 
selected which is describing the effect of turbulence on the bulk flow properties of the fluid. Finally, the obtained 
results should be analyzed. 
 
The Numerical Solution Setup:- 
In the present study, mixing in 21.2 liter of water agitated by Retreat impellers. The mixing tank model mesh type is 
tetrahedron and it divided in to58244 nodes as shown in figure 3. The MFR method was applied for modeling the 
impeller rotation. Also the continuity and Navier-Stokes equations together with the RNG version of the K-Ɛ were 
used to describe the equation of motion. 

 
Figure 3:- Mixing Tank Modeling and Mesh Geometry. 

 
Results and Discussions:- 
The impeller rotation speed has a great effect on fluid motion in mixing processes. Consequently, the efficiency of 
settling process for the solid material is affected by the changing of impeller rotation speed. Also, the concentration 
of chemical additives would become more homogeneous when the optimum impeller rotation speed has been 
correctly selected.  
 
Figuer.4 illustrates the velocity vectors and contours for Z-θ planes for Retreat impeller rotates at 90 rpm. For plane 
at  = 0º, the impeller blades pumped the fluid radially toward tank wall that cause fluid to split into two jets. The 
small jet is circulated downward to the bottom of tank and then returns to the impeller zone so produces an eddy in 
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the zone below the impeller. The center of eddy is located at radius of 0.113 m from the tank center and 0.061m 
from the bottom of tank.  A Poor or weak mixing region is exists at the center of tank below the impeller. 
 
The second jet of the fluid will be circulated in upward direction, so generates an eddy which is located at same 
radial direction with lower one but with height of 0.138m from the bottom of the tank. The flow pattern will be same 
at 30º and 60 º planexcept the reduction in the fluid flow velocity at the upper zone especially at 30º planand 
velocity of fluid near the wall of tank increases in the upward direction. The fluid flow behavior in 90º plan is 
similar to that observed at 0º plan. 

 
Z-θ plane 
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Figure 4:- Velocity Vectors and Contour for retreat Impeller Rotate at 90 Rpm. 

 
Figuer.5 showed the velocity vectors and contours In Z-R direction at height 0.01 m velocity vectors and contour 
shows the poor mixing zone in the center of tank. The velocity increases toward the wall of tank, and then the 
velocity decreases near the tank wall, this fluctuation of velocity lead to form zones with high mixing. At height of 
0.1m (impeller zone) the velocity linearly increases along the blade of impeller until it reaches to its maximum value 
at the tip of the blade. Then the velocity is sharply decreases as a result of the pumping direction.At the free surface 
of fluid the velocity decreases because most of the fluid circulates in the lower zone due to the influences of impeller 
pumping capacity. The high mixing zone reduces especially at the center of tank but swirling motion continues near 
the baffles wall.  
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Figure 5:- Velocity Vectors and Contour for Retreat Impeller Rotate at 90 Rpm 

 
Figure 6 showed the velocity vectors and contours in the Z-θ plan and Z-R plan at impeller rotational speed 135 
rpm. It can observe that there are no significant changes on the fluid behavior or on the flow pattern. But the velocity 
magnitude increases as the impeller rotation speed increases. 
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Figure 6:-Velocity Vectors for Retreat Impeller Rotate at 135 rpm 

 
Figures (7-9) illustrates the velocity magnitude distribution with respect to tank radius in Z-R plan with various 
impeller rotational speeds. It can observe that the velocity fluctuations are not sufficient at low rotational speed and 
it becomes more sufficient at 90 rpm and the velocity fluctuated increased as rotational speed of impeller increased. 
This occurs at three difference levels (0.1, 0.1, and 0.3) m in mixing tank.  The same thing occurs with velocity 
distribution at R-θ plan ( 0º, 30º and 60º) as shown in figures (10-12) 
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Figure 7:- Velocity Distribution for Retreat Impeller Z-R plan and Height 0.01 m 

 

 
Figure 8:-Velocity Distribution for Retreat Impeller Z-R plan and Height 0.1 m 

 

 
Figure 9:-Velocity Distribution for Retreat Impeller Z-R plan and Height 0.3 m 
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Figure 10: Velocity Distribution for Retreat Impeller at Z-θ plan 0º 

 

 
Figure 11:- Velocity Distribution for Retreat Impeller at Z-θ plan 30º 

 

 
Figure 12:-Velocity Distribution for Retreat Impeller at Z-θ plan 60º 

 
Conclusion:- 
The FLUENT v.15.4 is used to analysis the Retreat impeller used for mixing purpose in cylindrical mixing tank. The 
following conclusions and the results of the study: 
1. The numerical analysis gives good results of velocity distribution and mixing rate with the tank. Such results 

can be used for describing the flow behaviour. 
2. Velocity vectors show that the poor mixing zones are generated in the mixing tank. 
3. The velocity fluctuation of the fluid increases as rotational speed increased. 
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Nomenclature 
Symbols Description SI Unit 
a Acceleration m/s2 
C0 Constant   
C1 Constant   
C2 Constant   
Cμ Constant  
Di Impeller diameter m 
Dt Diameter of mixing tank m 
Ek Turbulent kinetic energy in equation (3-52) m2/s2 

C Impeller clearance m 
H Liquid height in mixing tank m 
N Impeller rotation speed  rev/min 
p Pressure N / m2 
r Radius of mixing tank m 
Sr Source term in r-direction of momentum equation  
Sθ Source term in θ-direction of momentum equation  
Sk Source term in k-ε model  
Sε Source term in k-ε model  

http://www.ansys.com/Industries/Acaemic/Tools/Citations
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t Mixing time s 
U Velocity vector in z - direction m / s 
u Velocity in z-direction m / s 
V Velocity vector in θ - direction m / s 
v Velocity in r-direction m / s 
W Velocity vector m / s 
w Velocity in θ – direction m / s 
ρ Density kg / m3 
ε Dissipation rate of kinetic turbulence energy m2 / s3 
εw Dissipation rate of kinetic turbulence energy at wall m2 / s3 
εe Eddy viscosity Pa.s 
Γ Arbitrary parameter  
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