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Abstract

A clique model is one of the most important techniques
on the cohesive subgraph detection; however, its appli-
cations are rather limited due to restrictive conditions
of the model. Hence much research resorts to k-plex
- a graph in which any vertex is adjacent to all but at
most k vertices - which is a relaxation model of the
clique. In this paper, we study the maximum k-plex
problem and propose a fast algorithm to compute maxi-
mum k-plexes by exploiting structural properties of the
problem. In an n-vertex graph, the algorithm computes
optimal solutions in ¢"n®(") time for a constant ¢ < 2
depending only on k. To the best of our knowledge, this
is the first algorithm that breaks the trivial theoretical
bound of 2" for each k > 3. We also provide experi-
mental results over multiple real-world social network
instances in support.

Introduction

In computational social networks, finding a large cohesive
subgraph is an extensively studied topic with a large num-
ber of applications. Clique is one of the earliest and most
commonly used models in the field of cohesive subgraphs
detection. A clique is a graph with an edge between any
pair of vertices, which can be regarded as the most cohesive
graph. The MAXIMUM CLIQUE problem, to find a clique
of maximum size in a graph, is a fundamental problem in
graph algorithms not only having great applications in social
networks but also finding applications in ad hoc wireless net-
works (Chen, Liestman, and Liu 2004), data mining (Washio
and Motoda 2003), biochemistry and genomics (Butenko
and Wilhelm 2006), and many others.

Due to its overly restrictive (Alba 1973) and modeling dis-
advantages (Freeman 1992), the clique has been challenged
by many practical problems. Alternative approaches were
suggested that essentially relaxed the definition of cliques.
Researchers have relaxed a variety of clique properties in-
cluding familiarity, reachability, and robustness (Balasun-
daram, Butenko, and Hicks 2011). In graph theoretic terms,
these properties correspond to vertex degree, path length,
and connectivity respectively. This paper focuses on a re-
laxation model of clique by relaxing its familiarty restriction
known as a k-plex (Seidman and Foster 1978). A simple

undirected graph with n vertices is a k-plex if the degree of
each vertex of the graph is at least n — k. When k = 1, a
1-plex is a clique. In the MAXIMUM k-PLEX problem, we
aim to find a maximum vertex subset .S of a given graph such
that the subgraph G[S] induced by S is a k-plex.

The applications and research on k-plex receive grow-
ing attention such as using k-plex to analyze social net-
works of terrorists (Krebs 2002), clustering and partition-
ing of graph-based data using k-plex (Du et al. 2007;
Newman 2001), etc. Note that the complement graph of a
k-plex is a graph of maximum degree at most £ — 1. To find
a maximum k-plex in a graph G is equivalent to find a max-
imum induced subgraph of degree bounded by & — 1 in the
complement graph of G. The later problem is also known
as the k’-BOUNDED-DEGREE VERTEX DELETION prob-
lem (to make the degree of a graph at most k&’ by deleting
a minimum number of vertices). k’'-BOUNDED-DEGREE
VERTEX DELETION itself also has many applications in ser-
val areas (Fellows et al. 2011; Xiao 2015).

The NP-completeness of MAXIMUM k-PLEX and k’-
BOUNDED-DEGREE VERTEX DELETION problems with
each fixed k > 1 (or ¥’ > 0) was established many years
ago (Lewis and Yannakakis 1980). For MAXIMUM 1-PLEX,
known as MAXIMUM CLIQUE or MAXIMUM INDEPEN-
DENT SET in the complement graph, it is a fundamental
problem in exact exponential algorithms and it can be solved
in O*(1.1996™) time (Xiao and Nagamochi 2013) in an n-
vertex graph. For k = 2, MAXIMUM 2-PLEX can be solved
in O*(1.3656™) time (Xiao and Kou 2016). A simple brute-
force algorithm for MAXIMUM k-PLEX by enumerating and
checking all vertex subsets of the graph runs in 2"n°M)
time. We are not aware of any algorithm faster than the triv-
ial exponential bound 2" for any k > 3.

In parallel, Balasundaram et al. (2011) gave an integer
programming formulation and designed a branch-and-cut al-
gorithm to solve MAXIMUM k-PLEX exactly. McClosky et
al. (2012) derived a new upper bound on the cardinality of
k-plexes and adapted some clique combinatorial algorithms
to find maximum k-plexes, both of heuristic and exact na-
ture. Moser et al. (2012) gave an exact algorithm with better
experimental results. All the above exact algorithms run in
27O time theoretically.

Our Contributions. This paper contributes to the k-plex
literature both from theory and practice. We investigate
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several structural properties of MAXIMUM k-PLEX, most
of which are related to the lower bound and will be used
to prune the search branches in our algorithm. Based on
these properties, we design a branch-and-search algorithm
for MAXIMUM k-PLEX and analyze its running time bound
in a theoretical way. We prove Theorem 1. Some values of
oy, for small k are shown in Table 1.

Theorem 1. MAXIMUM k-PLEX can be solved in o}n®™)
time, where o, < 2 is a value related to k.

k= 1 2 3 4 5
o = 1.6181 1.8637 1.9476 1.9786 1.9910
= 6 7 8 9 10
o = 1.9961 1.9983 1.9992 1.9996 1.9998

Table 1: The values of o, for some small k

This is the first algorithm that breaks the trivial exponen-
tial bound of 2™ for each fixed £ > 3. In practice, our al-
gorithm is efficient and easy to implement. Experimental
results on large social networks from real-world and artifi-
cial graphs show that our algorithm is much faster than three
well-known algorithms, especially on benchmark instances
from the real-world graphs. Our codes and data in this paper
are publicly available (https.//github.com/Lweb/KPLEX).

Structural Properties

Let G = (V,E) be a simple and undirected graph with
n = |V| vertices and m = |FE| edges. For a subgraph
(resp., a vertex subset) X, the subgraph induced by V (X)
(resp., X) is denoted by G[X], and G[V — V(X)] (resp.,
G[V — X]) is also written as G — X. A vertex u is called
a neighbor of v if there is an edge between u and v. For a
subgraph or a vertex subset X, the set of neighbors of v in
X is denoted by Nx (v), and V(X)) \ Nx (v) is also written
as Nx (v). The degree of v in X is degx(v) = |Nx(v)|.
The distance between vertices v and v in a graph G, denoted
by disg(u,v), is the number of edges in a shortest path be-
tween v and v in G. The diameter of a graph G is defined to
be diam(G) = max disg(u,v).
u,veV(G)

For any integer £ > 1, a vertex v in a graph G is k-
satisfied if degc(v) > |V(G)| — k or k-unsatisfied other-
wise. A graph G is a k-plex if all vertices in it are k-satisfied,
ie., min,cy(g) degg(v) > |V(G)| — k. MAXIMUM k-
PLEX is to find a k-plex of maximum size in a given graph.
In this paper, we will consider a general problem.

The constrained k-plex problem

Input: a graph G = (V, E), an integer k£ > 1 and a vertex
subset ' C V;

Object: to find a maximum vertex set S such that /' C S
and the induced subgraph G[S] is a k-plex.

A k-plex containing the vertex subset F' is also called an
F'-constrained k-plex. The constrained k-plex problem is to
find a maximum F'-constrained k-plex and an instance of it
isdenoted by I = (G = (V, E), k, F').

We may always use U = V'\ F to denote the set of vertices
not in F'. The normal k-plex problem is the special case of

the constrained k-plex problem with F' = ().

Seidman and Foster (1978) gave several basic structural
properties of the k-plex. Facets for the k-plex polytope
and some other properties were developed by Balasundaram,
Butenko, and Hicks (2011). The following two properties
are frequently used in the literature.

Property 1. Any induced subgraph of a k-plex is a k-plex.

n+2

Property 2. For a k-plex G with n vertices, if k < 3=,

then diam(G) < 2.
We extend Property 2 to the follows.

Property 3. For a k-plex G with n vertices and any integer
c¢>2,if |[V| > 2k — ¢, then diam(G) < c.

Proof. We prove the converse negative proposition. Assume
that G = (V, E) is a k-plex with diam(G) > ¢ for some
integer ¢ > 2. Let diam(G) = ¢+ m,m > 0. Let P be
a shortest path between two vertices v and u such that the
length of P is diam(G). We use D;(v) to denote the set
of vertices whose distance to v is exactly 4, i.e., D;(v) =
{t | dg(v,t) = i,t € V}. Itis clear that |D;(v)| > 0 for
0<i<c+mand Y7 |Di(v)] = |V|. It holds that
|Do(v)| = 1 since Dy(v) = v. According to the definition
of k-plex, we know that | D (v)| > |V| — k. Next we give
a lower bound on | Dy, (V)| + | Detm—1(v)|. The vertex u
is in D¢y (v). Each neighbor of w is either in D4, (v) or
D4 m—1(v). According to the definition of k-plex, we know
that u has at least |V| — k neighbors. Thus, |Deim (v)] +
|Detm—1(v)] > |V| =k + 1. Since ¢ + m > 3, we know
that c +m — 1 > 1. We get that

V] = [Do(v)] + |Dy(v)] + 555" 2 |Di(v) |+
|Dc+m71(v)| + |Dc+m(v)|

> 1+ (VI=k)+(ct+m=3)+(|V]-k+1)
= 2lV|-2k+c+m—1,
which implies |V| <2k —c—m +1 <2k —c. O

We reveal more properties of the constrained problem.

Reducible Vertices. In an instance I = (G = (V, E), k, F),
avertex v in U = V \ F is F-reducible if there is a maxi-
mum F-constrained k-plex containing v and D-reducible if
no maximum F'-constrained k-plex contains v. We can re-
duce an instance by deleting any D-reducible vertex from
the graph and adding an F-reducible vertex to F' preserv-
ing the optimality of the problem. It is hard to find out all
F'-/D-reducible vertices in polynomial time; otherwise, we
can solve the NP-hard problem in a polynomial time. We
analyze the properties for reducible vertices.

Lemma 1. Given an instance I = (G = (V,E),k, F) and
avertexv € U = V\F. Ifthe induced subgraph G|[F'U{v}]
is not a k-plex, then v is D-reducible.

Proof. Since G[F'U{v}]is not a k-plex, we know that no k-
plex contains all vertices in F'U {v} by Property 1. Thus, no

F-constrained k-plex contains v and then v is D-reducible.
O



Lemma 2. Given an instance I = (G = (V, E), k, F) and
avertexv € U =V \ F. If|[F\ N@w)| > k, then v is
D-reducible.

Lemma 3. Given an instance I = (G = (V,E), k, F) and
avertexv € U = V \ F. If there is a vertex u € F such
that |F'\ N(u)| = k and v is not adjacent to u, then v is
D-reducible.

We can see that Lemmas 2 and 3 satisfy the condition in
Lemma 1. The induced subgraph G[F'U {v}] is not a k-plex
since v or u is k-unsatisfied in G[F U {v}].

Lemma 4. Let v € U be a vertex in an instance I = (G =
(V,E), k, F). If v and all vertices not adjacent to v are k-
satisfied, then vertex v is F-reducible.

Proof. Let F' = F U {v}. We show that any vertex set is
a maximum F'-constrained k-plex if and only if it is also a
maximum F”-constrained k-plex.

Let S be an arbitrary maximum F'-constrained k-plex and
S’ be an arbitrary maximum F”-constrained k-plex. Since
F C F’, we know that S’ is also an F-constrained k-plex.
By the maximality of S, we know that |S| > |S’|. Note
that for any k-plex not containing v, after adding v to it,
it becomes a bigger k-plex. Any maximum F'-constrained
k-plex including S must contain v. Thus, S is also an F’-
constrained k-plex. By the the maximality of S/, we know
that |S’| > |.S|. We get that |S| = |.9|.

Hence S’ is also a maximum F'-constrained k-plex and S
is also a maximum F”-constrained k-plex. O

Exchangeable Vertices. If there is a maximum F-
constrained k-plex S containing vertex v but not vertex u
and (S \ {v}) U {u} is still a maximum F-constrained k-
plex in the instance, we say that v is exchangeable with u.

Lemma 5. Assume that vertex v is exchangeable with vertex
u in an instance. There is a solution to the instance that
either contains both of v and u or not contains v.

Proof. Let S be a solution to the instance. Assume that v €
S and u ¢ S, otherwise we are done. By the definition
of exchangeable vertices, we know that S’ = S\ {v} U
{u} is still maximum F-constrained k-plex, which does not
contain v. O

The lemma implies that exchangeable vertices can be used
to design an effective branching rule to search a solution.
When v is exchangeable with u, we can either delete v from
the instance or include both of v and u to F'. We identify
several exchangeable vertices below.

A vertex v is dominated by another vertex u if any neigh-
bor of v is either u or a neighbor of u. Note that in the
definition, v and w are not required to be adjacent.

Lemma 6. If a vertex v is dominated by another vertex u,
then v is exchangeable with u.

Proof. Let S be an arbitrary k-plex that contains v but not
u. We only need to show that S” = (S'\ {v})U{u}isalsoa
k-plex. Any vertex (except u) adjacent to v is also adjacent
to u. After replacing v with w in .S, the degree of any vertex
in S\ {v} will not decrease. Hence all vertices in S\ {v} are

still k-satisfied in G[S’]. Since any vertex in .S adjacent to
v is also adjacent to u, we know that deggs: (u) > degs(v).
Since |S’| = |S| and v is k-satisfied in G[S], we know that u
is also k-satisfied in G[S’]. All vertices in S’ are k-satisfied
in G[S’] and then S’ forms a k-plex. O

Reductions Based on Lower Bounds. As we will develop
a branch-and-search algorithm (to be elaborated later) for
solving the MAXIMUM k-PLEX, we move further to discuss
some properties to be used to prune a search tree. Once we
have obtained a feasible solution of size s, we may be able
to abandon branches which will only reach feasible solutions
of size at most s.

Given an integer s as a lower bound on the size of the
solution. We are only interested in the instances with solu-
tion size greater than s. The following properties allow us to
prune the search tree in our algorithm.

Lemma 7. Given an instance I = (G, k, F') and an integer
s. For any vertex v in the graph, if degg(v) < s — 1 —k,
then any solution to I of size at least s (if it exists) will not
contain v.

Proof. For any vertex set .S of size at least s, v is not adja-
cent to at least k + 1 vertices in S. If S contains v, then S is
not a k-plex. O

The above lemma also implies that we can abandon the
instances with at most s vertices directly once a lower bound
s of the solution size is given.

Lemma 8. Given an instance I = (G, k, F') and an integer
s. If there is a vertex w € F and a vertex v € V' \ F such
that disg(u,v) > max(2, 2k — s + 1), then any solution to
1 of size at least s (if it exists) will not contain v.

Proof. For any subgraph G’ containing u and v, it holds that
disgr (u,v) > disg(u,v) > max(2,2k — s + 1). By Prop-
erty 3, we know that if G’ contains at least s vertices then
G’ is not a k-plex. So any k-plex of size at least s will not
contain both v and v. O

The properties in this section will be used to design some
reduction rules to reduce the instance directly and some
branching rules with a good performance.

Branching Rules

In a branch-and-search algorithm, we may search a max-
imum solution to an instance by recursively branching on
the current instance into several smaller instances until the
instance becomes polynomially solvable or satisfies some
properties. To evaluate the size of the search tree gener-
ated by this paradigm, we need to evaluate the size of the
search tree in the algorithm. In our algorithm, we will sim-
ply select the number ng of vertices in U = V' \ F as the
measure. Clearly, the problem can be solved directly when
ng < 0. Let C'(ng) denote the maximum number of leaves
in the search tree generated by the algorithm for any instance
with |U| < ng. For a branching operation, where we branch
on an instance with |U| = ng into [ branches such that in the



i-th branch the size of U decreases by at least a;, we obtain
a recurrence relation

C(ng) < C(ng —ay) + C(ng —ag) +---+ C(ng — ay).

The largest root of the function f(x) = 1 — 22:1 x% is
called the branching factor of the recurrence. Let + be the
maximum branching factor among all branching factors in
the algorithm. The size of the search tree that represents
the branching process of the algorithm applied to an input
instance with |U| = ng is given by O(y™). More details
about the analysis and how to solve recurrences can be found
in the monograph (Fomin and Kratsch 2010).

Our branch-and-search algorithm first applies some re-
duction rules to reduce instances. When the instances cannot
be reduced anymore, we use branching rules to search a so-
Iution. We have three branching rules below.

Branching Rule 1: Branching on dominated vertices. If
there are two vertices v,u € U such that v is dominated
by u, then we branch into two branches by either deleting
v from the instance or including both of v and u to F'. The
correctness of this rule is based on Lemma 5 and Lemma 6.
In the first branch vertex v is removed from U, and in the
second branch vertices v and u are removed from U. We
can get the following recurrence at least for this operation,
the branching factor of which is 1.6181.

C(ng) < C(ng— 1)+ C(no — 2). Q)

Branching Rule 2: Branching on F'-vertices. This branch-
ing rule only considers k-unsatisfied vertices in F'. Let v be
a k-unsatisfied vertex in F, i.e.,

INc(v)| = [V] — dega(v) > k+ 1.

Any F-constrained k-plex contains at most k — | Nz (v)| ver-
tices in Ny (v) = U\ Ny (v); otherwise, the degree of v will
not satisfy the definition of k-plex. Let ¢ = k — [Ny (v)| and
p = | Ny (v)|. We have that

P> q, )

since v is a k-unsatisfied vertex. Note that v € Np(v) and
then | Np(v)| > 1. We have that

g<k—-1 3

Let o

Ny(v) ={z1,22,...,2p}.
Our branching rule on a k-unsatisfied vertex v € F'is to
generate g + 1 branches:
- in the first branch, x; is deleted from the graph;
-fori € {2,...,q}, in the ith branch, {z1,x2,...,2;_1} is
included to F' and z; is deleted from the graph;
- in the ¢ + 1th branch, {x1, z2,..., x4} is included to F
and {zq, Tq41,...,2,} is deleted from the graph.

The correctness of this branching rule is based on the fol-
lowing observation: Let S be an arbitrary solution to the
instance. If S contains all the ¢ vertices {21, 22, ...,24},
then S cannot contain any vertices in {Z¢41, Zg+2,- - -, Tp},
since any k-plex contains at most ¢ vertices in Ny (v). For

this case, the last branch will not lose the solution. Other-
wise, we let 4 is the smallest index such that z;, is not in S
and it holds that 7y < q. For this case, the ¢gth branch will
not lose the solution.

Next, we analyze the branching factor of this operation.
For ¢ € {1,2,...,q}, in the ith branch exactly 4 vertices
are removed from U. In the last branch, all the p vertices in
Ny (v) are removed from U. We get a recurrence relation

C(no) < C(no — 1) -‘rC(’I’Lo — 2)
+---+C(np—q) + C(ng — p),

where p > g+1and g < k—1by (2) and (3). The branching
factor of this recurrence is a root of the function

—zP71-1=0.

It is not hard to check that whenp = ¢+ land ¢ = k — 1,
the branching factor reaches the largest value. For the worst
case, the branching factor is a root of the function

P s B E S )

4)

P — Pl pp—2

which is equivalent to
" —22F +1=0. (5)

The largest root of the above function, denoted by -, is the
branching factor of recurrence (4). Some values of vy, for
different k£ are given in Table 2. Note that v; = 1. This
means when & = 1, this operation is not a branching oper-
ation. It only generates one instance by deleting all vertices
in Ny (v), which can be regarded as a reduction operation.

k= 1 2 3 4 5
Ve = 1 1.6181 1.8637 1.9476 1.9786
k= 6 7 8 9 10
Y = 1.9910 1.9961 1.9983 1.9992 1.9996

Table 2: The values of v, for some small k

Branching Rule 3: Branching on U-vertices. We have
shown that k-unsatisfied vertices in F' may not always exist.
When there are no such kind of vertices, Branching Rule 2
cannot by applied and we turn to consider k-unsatisfied ver-
tices in U. Assume that there are no k-unsatisfied vertices
in F'. Now there must exist k-unsatisfied vertices in U; oth-
erwise, the instance has only k-satisfied vertices and the in-
stance can be solved directly by Lemma 4.

Let v be a k-unsatisfied vertex in U. Our branching rule
first generates two branches by either deleting v from the
graph or including v to F. In each branch, the number of
vertices in U decreases by 1. We look at the second branch
I> where v is included to F'. Now v becomes a k-satisfied
vertex in F' and we can further branch on it with (4) by
Branching Rule 2. Combining them, we get a recurrence

C(no) SC(TL()— 1)+C(n0_2) +
o4+ Cng—q—1)+C(ng —p—1),

where p > g+1and g < k—1Dby (2) and (3). The branching
factor of this recurrence is a root of the function

(6)

Pt —gP — Pt P2 Pl 1 = .



It is not hard to check that whenp = ¢+ landqg =k — 1,
the branching factor reaches the largest value. For the worst
case that p = ¢ 4+ 1 and ¢ = k — 1, the branching factor is a
root of the function

mk-‘rl_xk_xk—l_wk—Q_._._xl_l:0,

which is equivalent to
zFt2 — okt 41 = 0. (7

The largest root of the above function, denoted by oy, is the
branching factor for this case. We can see that

Ok = Vk+1 > Vk-

The Branch-and-Search Algorithm

As presented below, the Branch-and-Search (BS) Algorithm
plex(I = (G, k, F'), bound) takes an instance [ of the con-
strained k-plex problem and an integer bound as the input,
and checks whether I has an F'-constrained k-plex of size at
least bound. Note that for the purpose of presentation, the
algorithm is described to solve a decision problem, i.e., only
needs to answer yes or no. It can be modified to return a
solution directly if it exists.

Algorithm 1 The Branch-and-Search (BS) Algorithm
plex(I = (G,k, F),bound).
Input: an instance [ of the constrained k-plex problem and
an integer bound.
Output: 1 if 7 has an F-constrained k-plex of size at least
bound or 0 otherwise.
if G[F] is not a k-plex then
return 0
else if F' = V(G) then
return 1 if |F'| > bound or 0 if | F'| < bound
else if there is a D-reducible vertex v identified by
Lemma 2 or Lemma 3 then
return plex((G\ {v},k, F), bound)
else if there is an F'-reducible vertex v identified by
Lemma 4 then
8: return plex((G,k,F U{v}),bound)
9: else if there is a vertex v such that degg (v) < bound —
1 — k then
10:  return plex((G\ {v},k, F),bound)
11: else if there is a vertex u € F and a vertex v € V \ F'
such that disg (u, v) > max(2, 2k — bound + 1) then
12:  return plex((G\ {v},k, F), bound)
13: else if there are two vertices v, u € V' \ F such that v is
dominated by u then
14:  return plex((G\ {v},k, F),bound) A
plex((G,k, F U{v,u}),bound)
15: else if there are k-unsatisfied vertices in F' then
16:  let v be a such kind of vertex of minimum degree
17:  return At 'plex(I;, bound)
18: else if there are k-unsatisfied vertices in U then
19:  let v be a such kind of vertex of minimum degree
20:  return A2 Zplex(I, bound)
21: end if

AN e

22

In the algorithm, lines 1-2 check whether the input sat-
isfies the condition in Property 1. Lines 3-4 deal with
the boundary cases. Lines 5-8 delete some reducible ver-
tices based on Lemmas 2 to 4. The correctness of lines
9-12 are based on Lemma 7 and Lemma 8. Lines 13-14
branch on dominated vertices with Branching Rule 1, lines
15-17 branch on k-unsatisfied vertices in F' with Branching
Rule 2, and lines 18-20 branch on k-unsatisfied vertices in
U = V \ F with Branching Rule 3. We have analyzed that
when the graph has no k-unsatisfied vertices, all vertices in
V'\ F' will become F'-reducible vertices and will be included
to F' in lines 7-8. When the graph has some k-unsatisfied
vertices, at least one condition in lines 15 and 18 can be ful-
filled. These imply the algorithmic correctness.

In the algorithm, we have the three kinds of branches in
lines 13-20. We have analyzed the branching factors of these
three branching rules, the largest branching factor of them is
ok, Where 0, < 2 is the biggest root of function (7). Except
these three branches, each of other steps of the algorithm
can be executed in polynomial time. Therefore, plex(I =
(G, k, F), bound) runs in opn®®) time.

To solve the original constrained k-plex problem, we
only need to find the maximum value of bound such
that plex(I = (G,k,F),bound) = 1 and plex(I =
(G,k, F),bound + 1) = 0. We can search for bound in
increasing order of value, which will increase the running
time bound by a factor of n. Therefore, our problem can be
solved in a};no(l) time, which implies Theorem 1.

We can also use a binary search to find the maximum
value of bound, which will reduce the polynomial part of
the running time by a factor of n/log n. We initially set the
search space [a, b] to be [0, n], iteratively check whether the

graph has a k-plex of size [ %] and then update the search

space by [a,b] « [a, [2$2]] if no or [a,b] « [| 2F2] , 0] if
yes. By using this method, we only need to execute O(logn)
loops instead of n loops to compute the maximum value of
bound.

Experimental Results

To evaluate the performance, we compare our algo-
rithm (BS) with three well-known exact algorithms for
MAXIMUM k-PLEX on two types of data sets to evaluate
its performance. The three previous algorithms are IPBC
by Balasundaram et al. (2011), OsterPlex by McClosky and
Hicks (2012) and GuidedBranching by Moser et al. (2012).
Our algorithm, namely BS algorithm, is implemented in
C++ and the experiments run on a 2.5 GHz Intel Core i5-
3210M processor with 4GB memory. The experimental en-
vironment of three previous algorithms are a little bit dif-
ferent, but on the same level. The experiments of Bala-
sundaram et al. (2011) were performed on Dell Precision
PWS690 machines with a 2.66 GHz Xeon Processor, 3GB
main memory, implemented using ILOG CPLEX 10.0. The
experiments of McClosky and Hicks (2012) were run on a
2.2GHz Dual-Core AMD Opteron processor with 3GB main
memory. Moser et al. (2012) used an AMD Athlon 64 3700+
machine with 2.2GHz, 1M L2 cache, and 3GB main mem-
ory.



The first data set consists of two batches of well-known Instances | Running time in seconds
scientific collaboration networks and one batch of news re- (VI 1ED IPBC _ OsterPlex  GuidedBranching _ BS
lation networks, which are large-scale, real-life social net- 2 1.5 0 0.26 0.01
work instances and have been used to evaluate several previ- ERDOS97-1 ) 3 '8 19 037 001

. A @472,1314) | 4 22 1897 112 0.00

ous algorithms for MAXIMUM k-PLEX. In a scientific col- s 57 i 612 001
laboration network, the vertices represent scientists, and an 7 3929 553 776 YT
edge connects two of them if they co-author some papers. ERDOS-97-2 | 3 3941 >3600 1253 0.03
The collaboration networks centered around Paul Erdos are (5488,8972) | 4 4240 >3600 8.86 0.01
called Erdos collaboration networks or Erdos graphs. In- 5 10428 - 45.07 0.01
stances named ERDOS-z-y in Table 3 are the Erdcs col- 2 1.7 0 0.14 0.01
laboration networks of all authors with an Erdos number at ERDOS-98-1 | 3 1.8 20 0.98 0.02
most y as of year z, where the Erdés number of an author is (485,1381) | 4 2.8 1675 L.14 0.00
the length of the shortest path between Paul Erdés and the 579 - 611 0.01
author in the collaboration networks (Grossman, Ion, and 2 4643 1514 588 0.02
Castro 2007). Instances named GEOM-t in Table 4 are col- ERDOS-98-2 | 3 457.1 =3600 23.58 0.04
; . . (5822,9505) | 4 6147 >3600 1031 0.01
laboration networks for computational geometers (Bgtagelj S 16646 ) 81 0.02
and Mrvar 2006), where two authors are adjacent if they > T3 0 o7 YT
have jointly published more than ¢ articles. Instances named ERDOS-99-1 | 3 18 21 138 0.02
DAYS-t in Table 5 are text—mining networks based on news (492, 1417) 4 1.8 1783 1.47 0.01
released by Reuter during 66 days beginning with the terror- 5 9.9 - 8.04 0.01
ist attacks in New York on September 11, 2001 (Batagelj and 2 5265 1757 7.05 0.02
Mrvar 2006). Each vertex is a selected word that appeared ERDOS-99-2 | 3 5200 >3600 33.82 0.05
in the news. Given a threshold ¢, two words are connected (6100,9939) | 4 5263 23600 17.23 0.02
by an edge if there exist more than ¢ sentences in which both 5 6333 - 1226 0.02

appear. This is the meaning of ¢ in the instance name. In Ta-

bles 3- 5, all the four algorithms compute the same optimal Table 3: Results for Erdos instances

size of a maximum k-plex. However, our algorithm (BS) Tnstances Running time in seconds

uses much less running time. It seems that the time used by (V1 1) ¥ —IPBC  OswrPlex  GuidedBranching  BS
our algorithm varies slightly for different small k. In fact, 2 23844 397 973 001
our algorithm can solve these instances within 0.1 second GEOM-0 323871 >3600 9.67 0.01
for £ < 10. We think that it is contributed by the extremely (7343,11898) | 4 23837  >3600 9.6 0.01
low density of these social networks, which makes our re- 5 22981 - 9.64 0.01
duction rules very efficient. 2 7532 1118 5.23 0.00
The second data set consists of the clique instances from GEOM:-1 3. 7417 23600 315 0.01
the second DIMACS implementation challenge (DIMACS (7343,3939) | 4 7437 23600 343 0.01
1995). Those DIMACS instances were developed as a stan- > e _ 811 0.01
. . : 2 5306 1145 3.36 0.01

dard Fest bed for clique algorithms. For some 1pstances, .the GEOM.2 3 53 3600 i 0.00
algorithms may not be able to compute the optimal solution 7343.1976) | 4 5222 3600 346 0.00
in time limitation three hours. For this case, the algorithms s a6 - 13.68 001

will return [a, b] to denote that the optimal value is between
a and b. Table 6 shows that our algorithm is much more Table 4: Results for GEOM instances
efficient than other algorithms for most instances.

Instances Running time in seconds
Conclusion (VI,1E) | ® TIPBC  GuidedBranching _ BS
We have designed a practical algorithm for MAXIMUM k- : P08 2044 001
g DAYS-3 3 33954 21.49 0.01
PLEX. Expenmenyal results on standard benchmgrk sets (13332.5616) | 4 34808 2045 0.01
show that our algorithm runs much faster than previous ex- 5 153369 78.64 0.01
act algorithms on real-world social network instances, which 2 26357 17.69 0.00
are usually sparse graphs. More importantly, we theoreti- DAYS-4 3 26251 17.85 0.00
cally show the time complexity of our algorithm. Our algo- (13332,3251) | 4 26423 17.68 0.00
rithm is the first algorithm that brakes the trivial exponential 5 62014 37.74 0.01
bound of 2" on this problem for each k£ > 3. 2 24629 0.11 0.01
The increasing efficiency of our algorithms facilitates DAYS-5 30024455 037 0.01
real-world social network analysis. For example, a maxi- (13332,2179) | 4 2426.3 0.31 0.00
5 28208 2.09 0.00

mum k-plex size can be viewed as a global measure char-
acterizing the cohesiveness of a social network, and our al-
gorithm can serve as a powerful tool to detect it. In many
applications of social network analysis, one may also be in-
terested in finding all maximal cohesive subgroups in a so-

Table 5: Results for DAYS instances



Instances & k-plex size, running time in seconds
V1, 1E]|) IPBC GuidedBranching BS
c-fat200-1 1 12,17.1 12,0.21 12,0.01
(200, 1534) 2 12, 148.9 12,1.10 12,0.01
c-fat200-2 1 24,10.4 24,0.42 24,0.01
(200, 3235) 2 24,19.1 24,3.53 24,0.01
c-fat200-5 1 58,2.1 58, 1.17 58,0.01
(200, 8473) 2 58,2.1 58,22.44 58,0.01
c-fat500-1 1 14, 1334.4 14,3.95 14, 0.04
(500, 4459) 2 14, 1356.1 14, 11.01 14, 0.05
c-fat500-2 1 26, 535.7 26,7.25 26, 0.05
(500, 9139) 2 26, 605.3 26, 50.21 26, 0.06
c-fat500-5 1 64, 141.6 64, 17.61 64, 0.05
(500, 23191) 2 64,141.5 64, 350.56 64, 0.05
c-fat500-10 1 126, 39.9 126, 36.28 126, 0.07
(500, 46627) 2 126,76.5 126, 1547.25 126, 0.07
hamming6-2 1 32,00 32,0.00 32,0.04
(64, 1824) 2 32,0.0 32,1.77 32,33.36
hamming6-4 1 4,02 4,0.05 4,0.00
(64,704) 2 6,0.3 6,0.24 6, 0.06
hamming8-4 1 16,522 16,243.11 16, 129.25
(256, 20864) 2 16, 8115.2 [16,171],> 10800 [2,64],> 10800
johnson8-2-4 1 4,0.0 4,0.00 4,0.00
(28, 210) 2 5,0.0 5,0.02 5,0.01
johnson8-4-4 1 14, 0.1 14, 0.44 14,0.21
(70, 1855) 2 14, 4.4 14, 40.70 14,265.32
MANN_a9 1 16, 0.0 16, 0.00 16,11.7
(45,918) 2 26,0.0 26, 0.09 26,4.78
brock200-1 1 [20,31], >10800 21,794.73 21, 2206.61
(200, 14834) 2 [25,53],>10800 [24,134],>10800  [2,100],>10800
brock2002 1 12,1525 12,23.13 12,3.54
(200, 9876) 2 [13,24],>10800 13, 606.16 13,512.59
brock200_4 1 17, 6617.5 17,204.58 17,1172
(200, 13089) 2 [19,41],>10800 20, 9691.01 [2,501,>10800
p-hat300-1 1 8,127.0 8,290.72 8,0.64
(300, 10933) 2 [9,66],>10800 10, 502.48 10, 46.83
p-hat300-2 1 [25,51],>10800 25,242.77 25,91.38
(300, 21928) 2 [28,85],>10800 [28,200],>10800  [29,38],>10800
p-hat700-1 1 [11,401,>10800 11, 1464.41 11, 60.17
(700, 60999) 2 [10,291],>10800  [11,467],>10800  [12,22],>10800

Table 6: Results for DIMACS instances

cial network. It remains a future work to design efficient
algorithms for detecting all maximal k-plexes.
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