
Concurrent On-the-fly SCC Detection for
Automata-based Model Checking with Fairness

Assumption

Zhimin Wu∗, Yi Xu∗, Akin Gunay∗ Yang Liu∗, Shengchao Qin‡
∗Nanyang Technological University, Singapore

‡Teesside University, United Kindom

Abstract—Model checking is an automated technique for
verifying temporal logic properties of finite state systems. Tarjan’s
algorithm for detecting Strongly Connected Components (SCCs)
is a widely used depth-first search procedure for Automata-
based (LTL) model checking. It works on the SCC detection
on-the-fly with the composition of transition systems and Büchi
Automaton (state space generation), which has been deployed
as sequential implementations in many tools. However, these
implementations suffer from heavy time cost for systems which
involve a large number of SCC explorations. To address this issue,
in this paper, we develop a concurrent SCC detection approach
for the on-the-fly generated state space in LTL model checking by
expanding the existing concurrent Tarjan’s algorithm. Besides, we
involve fairness checking. Different that the previous work, which
performs fairness checking after the generation of a complete
SCC, in our approach we perform fairness checking during SCC
generation to improve efficiency. We implement our approach
in PAT model checker. Our experimental results show that our
approach achieves up to 2X speedup for the complete SCC
detection in large-scale system models compared to the sequential
on-the-fly model checking in PAT. Besides, our parallel on-the-fly
fairness checking approach speedups fairness checking around
2X∼45X.

I. INTRODUCTION

Automata-based LTL model checking is emptiness check-
ing of the composition of a transition system M and a
Büchi Automaton B¬ϕ, which represents the negation of an
LTL property ϕ [2]. The composition process indicates that
the state space is unknown in advance, which is on-the-fly
generated. The idea of emptiness checking is to search the
on-the-fly generated state space to find an execution path
that is accepted by the Büchi automaton. Strongly Connected
Component (SCC) based model checking that uses Tarjan’s
algorithm [18] for SCC detection, is a well-known approach
for LTL model checking. In this approach, the problem of LTL
model checking is converted to the detection of an infinite
path that is accepted by the Büchi Automaton. The infinite
path contains SCCs with accepting cycles. It uses depth-frist
search to explore the state space to detect SCC.

Fairness and liveness are two essential notions for faithfully
modeling the execution progress of a process in a collection
of concurrent processes [14]. Fairness constraints can be
expressed in LTL. Thus, fairness checking can be integrated
into SCC-based LTL model checking, which expand the orig-
inal process to the verification of the fairness assumption’s
satisfaction in all detected SCCs.

There are many sequential implementations of SCC de-
tection for automata-based LTL model checking with fairness
assumption. However, besides the state space explosion prob-
lem [4], sequential implementations of automata-based LTL
model checking with fairness do not scale well for large
scale systems with a large number of SCCs. In Automata-
based LTL model checking with fairness, the verification
process is overlapped with the state space generation, which
is the product of M and B¬ϕ. The verification process may
immediately reports failure, if it detects a fair SCC. While
sometimes the verification process has heavy costs, since the
fair SCC does not exist or appear after a large number of SCCs
being detected. In this paper, we extend the concurrent imple-
mentation [11] of Tarjan’s algorithm based on known state
space to concurrent SCC detection for LTL model checking
with on-the-fly generated state space. We aim to improve the
verification performance. Furthermore, we develop an efficient
approach for parallel fairness checking.

The main challenges of utilizing parallel computing to
accelerate Automata-based LTL model checking with fairness
are: (1) Tarjan’s algorithm is a DFS process, which has
attracted many researches on its parallelization. However, all
researches work on the complete state space. It is challenging
and significant to convert a parallel Tarjan’s algorithm to be
available for on-the-fly generated state space. 2) An efficient
data distribution approach is necessary since the state space
is unknown in advance. It is also important to maintain data
consistency. 3) The sequential algorithm mentioned in [21]
verifies the fairness after the generation of a complete SCC,
which can be regarded as an independent part from the
verification process. A better way for fairness checking is
promising.

To solve these challenges, we expand the concurrent
Tarjan’s algorithm from Lowe [11] to fulfil the Automata-
based LTL model checking for SCC detection on on-the-fly
generated state space. Our key contributions in this paper are
as follows: 1) Lowe’s Tarjan’s algorithm depends on complete
state space (unrooted mode). Although he mentioned rooted
mode in both [12] and [11], there is no details or experiments
for this. We expand the algorithm to fit the on-the-fly state
space generation. Based on it, we build the parallel approach
to cover the features of on-the-fly SCC-based LTL model
checking. 2) We build our own data distribution rules for on-
the-fly generated state space. 3) We design and develop an
efficient on-the-fly parallel fairness checking approach, which
performs the fairness checking during the generation of SCC

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322320438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

instead of performing it separately after the generation like [21]
does. 4) We implement our approach in the Process Analysis
Toolkit (PAT) [17] and make it work on a wide range of
system models. Our evaluation shows that after integrating
our approach, we achieve a 2X performance improvement in
LTL model checking which involve the exploration of a large
number of SCCs. And 2X∼45X speedup for fairness checking.

The structure of this paper is as follows: In Section II,
we introduce the background and related work, including the
concurrent Tarjan’s algorithm from Lowe [11]. In Section III,
we present our design of the concurrent on-the-fly SCC detec-
tion for automata based (LTL) model checking with fairness
assumption. In Section IV we present our experiments and
evaluation. Finally, we present the conclusion and future work
in Section V.

II. BACKGROUND AND RELATED WORK

A. Automata-based Model Checking for LTL

Given a system model M and an LTL property ϕ, model
checking is to check M |= ϕ. The model of concurrent systems
Mc can be represented as a composition of several interleaving
processes, each of which is expressed as labelled transition
systems.

Definition 1: Given a set of invisible and visible events Σ,
a labelled transition system (LTS) is a 3-tuple M = (S, s0,→)
where S is a set of states, s0 ∈ S is the initial state, → ⊆
S × Σ× S is a transition relation.

In Automata-based model checking, the negation of ϕ is
expressed in an equivalent Büchi automaton B¬ϕ (Def. 2),
which is then composed with the LTS representing the system
model. The composition process, formal defined in Def. 3,
generates the state space of Mc. Each state in the state space
of Mc is a meta-state (i.e., a vector of states), which we
define as sv = S × SB, where n ∈ 1..n, SB ∈ B¬ϕ. Then,
checking Mc |= ϕ can be done as checking of the emptiness
of the product between Mc and B¬ϕ. SCC detection is a key
subroutine in this process.

Definition 2: A Büchi Automaton is a tuple A =
(ΣB, SB, ρ, b0, F), where Σ is an alphabet, SB is a set of Büchi
states, ρ : SB × Σ is a nondeterministic transition function,
b0 ∈ SB is an initial state, and F ⊆ B is a set of accepting
states.

Definition 3: Given a LTS representing the system model
M = (S, s0,→) and a set of alphabets (events) Σ, a Büchi
Automaton B¬ϕ, the composition of M and B¬ϕ is a transition
system: M ×B¬ϕ = (S×B, (s0, b0)),→). The corresponding
set of events is Σ∪ΣB. The transition relation after the parallel
composition is the smallest transition relation which satisfies
the following:

1) ((s1, b1), α, (s′1, b
′
1)) ∈→ if (s1, α, s

′
1) ∈→ ∧... ∧

(sn, α, b
′
n ∈→).

2) ((s1, b1), α, (s′1, b1)) ∈→ if (s1, α, s
′
1) ∈→ ∧α /∈ ΣB

3) ((s1, b1), α, (s1, b
′
1)) ∈→ if (b1, α, b

′
1) ∈→ ∧α /∈ Σ.

Scalability of LTL model checking suffers from state
space explosion [4]. On-the-fly model checking [5] checks the
emptiness while constructing the product state space of the

Algorithm 1: Sequential on-the-fly LTL Model Checking
Input: M ,B, s0, b0

1 Define OGTrans,StepStack,TaskStack,SCCSet ;
2 Product : S0 = GenerateIniS(s0, b0,M,B) ;
3 Add(OGTrans, S0);
4 TaskStack.push(S0);
5 i = 0, preorder = {}, visited = {};
6 while TaskStack! = EMPTY do
7 S = TaskStack.peek();
8 if S /∈ preorder then
9 preorder[S] = i;

10 i + +;

11 done = true;
12 if S ∈ visited then
13 S′[] = visited[S];
14 forall the Si ∈ Sn do
15 if Si /∈ preorder then
16 if done then
17 TaskStack.push(Si);
18 done = false;

19 else
20 s′n[] = (S.sn).MakeOneMove(M);
21 Product : S′[] = GlobalSuccessor(s′n[], S.bn);
22 forall the S′i ∈ S′[] do
23 if S′i /∈ preorder then
24 OGTrans[S].add(S′i);
25 if done then
26 TaskStack.push(S′i);
27 done = false;

28 visited.add(S);

29 if done then
30 lowlinkS = S.lowlink;
31 preorderS = lowlinkS;
32 forall the Si ∈ OGTrans[S] do
33 if Si /∈ SCCSet then
34 if preorder[Si] > preorderS then
35 S.lowlink = Min(S.lowlink, Si.lowlink);

36 else
37 S.lowlink = Min(S.lowlink, preorder[Si]);

38 if lowlink == preorder then
39 SCCSet.add(S);
40 backtrack Stepstack → SCCSet;
41 Optional: Fairness Checking; if ISFair then
42 Record Result;
43 Generate Counterexample;
44 report Counterexample;

45 forall the S′i ∈ SCCSet do
46 visited.remove(Si);
47 OGTrams.remove(Si);

48 else
49 StepStack.push(S);

50 return Result;

interleaving processes. In this context, Automata-based LTL
model checking does SCC exploration on the composition of
ϕ and B¬ϕ with Tarjan’s algorithm. The sequential implemen-
tation of this process is shown in Algorithm , which is the
version in PAT [21].

B. Fairness Assumption and Model Checking with Fairness

Fairness is typically needed to prove liveness, which is
concerned with a fair resolution of nondeterminism [13].
Without fairness, liveness verification may output unrealistic
loops during which one process or event is infinitely ignored
by the scheduler or one processor is infinitely faster than
others [16].

Given a LTS M = (S, s0,→) with event set Σ we first
provide the following definitions on events and processes,
where α is a typical element of Σ: (1) enabledEvt(s) is the
set of enabled events at s ∈ S such that {α | (s, α, s′) ∈→}.
(2) enabledProc(s) is the set of enabled processes at s. That is,
if a process p ∈ enablePro(s), it can progress in the system
state s. (3) engagedEvt(s, α, s′) indicates the engaged event α
(4) engagedProc(s, α, s′) indicates the set of processes which
progress via the transition (s, α, s′) ∈→.

Given an execution Rj
i ,

Rj
i = ((s0, b0), α0, ...(si, bi), αi...(sj , bj), αj , (sj+1, bj+1))

where sj ∈ S and bj ∈ A¬ϕ. There is an SCC
in this execution which indicates si = sj+1, bi = bj+1.
If (b0, b1...bk...) is accepting to A¬ϕ, Rj

i is accepting.
With specific fairness assumption, Rj

i is fair if and only
if (s0, α0, s1, α1...sk, αk...) is fair. Several more defini-
tions are shown: (1) alwaysEvt((Ri)

j) = {α | ∀k :
{i..j}, α ∈ enabledEvt(sk)} (2) alwaysPro((Ri)

j)={p|∀k:
{i..j}, p ∈ enabledPro(sk)}. (3) onceEvt((Ri)

j) = {α |
∃k :{i..j}, α∈ enabledEvt(sk)}. (4)oncePro((Ri)

j)={p|∃k:
{i..j}, p∈ enabledPro(sk)}.

We consider five categories of fairness assumptions: (1)
Strong Global Fairness (SGF): An execution satisfies SGF if
and only if for all (s, α, s′) ∈→ , if s = si for infinitely many
i , si = s and αi = α and si+1 = s′ for infinitely many i. (2)
Event-level Strong Fairness (ESF): An execution R satisfies
ESF if and only if for all events α, if α is infinitely often
enabled, then αi = α for infinitely many i. (3) Event-level
Weak Fairness (EWF) [9]: An execution R satisfies EWF if
and only if for all α, if α finally becomes enabled forever
in R, then αi = α for infinitely many i. (4) Process-level
Strong Fairness (PSF): An execution satisfies PSF if and only
if for all processes p, if p is infinitely often enabled, then p ∈
engagedProc(si, αi, si+1) for infinitely many i. (5) Process-
level Weak Fairness (PWF): An execution E satisfies PWF
if and only if for every processes p, if p eventually becomes
enabled forever in E, then p ∈ engagedProc(si, αi, si+1) for
infinitely many i.

In particular, for automaton-based model checking with
fairness assumption, we always build the LTL formula with
fairness constraints. But the size of the Büchi automaton is
exponential to the size of the LTL formula, which makes it
infeasible to handle large formulas. e.g., formulas with many
fairness constraints. Thus, in this paper, our sequential SCC-
based LTL model checking with fairness algorithm adopts the
solution of PAT [17] and handles the fairness checking on the
generated SCC as follows. Given an SCC S in the product of
M and A¬ϕ and fairness assumption F , if there is no such S
that S is accepting and:

1) onceEvt(S) ⊆ engagedEvt(S) ⇐⇒ M satisfies FESF .
2) alwaysEvt(S) ⊆ engagedEvt(S) ⇐⇒ M satisfies

FESF .
3) oncePro(S) ⊆ engagedPro(S) ⇐⇒ M satisfies FPSF .
4) alwaysPro(S) ⊆ engagedPro(S) ⇐⇒ M satisfies

FPWF .

C. Related work

Parallel computing has been widely used to deal with
model checking problems. [1] presents the GPU acceler-

ated state space generation. Our previous work [19] presents
the GPU-based counterexample generation for LTL model
checking. [20] presents the GPU-based on-the-fly reachability
checking. [7] and [8] present a multicore NDFS algorithm
for LTL model checking. [10] proposes a parallel LTL model
checking algorithm which starts multiple threads to generate
the SCC when it is detected, and the fairness checking occurs
in the thread for SCC generation. [6] presents a state com-
pression and reconstruction approach. It builds a state space
exploration algorithm based on the shared memory multi-
core architecture. [3] presents a novel emptiness checking
approach for LTL model checking, which is based on SCC
enumeration and support TGBA. Its key feature it the usage
of a global union-find data structure. [15] presents a parallel
SCC decomposition based on the set-based SCC algorithms
instead of Tarjan’s algorithm. [11] introduces some concurrent
DFS-based algorithms, such as concurrent Tarjan’s algorithm
for SCC detection. It is the main related work for our approach.
We describe it in detail below.

Concurrent Tarjan’s Algorithm: Lowe [11] design a con-
current Tarjan’s algorithm for SCC detection. Given a system
model M with complete state space, the SCC exploration starts
from multiple different states. They define an object Search
as the unit for exploration, and an object Scheduler for the
arrangement of searches to threads. Compared to traditional
Tarjan’s algorithm, Lowe’s approach differs in three parts: 1) If
a state is visited, it should record the ID of the corresponding
Search. A state can only be visited by one Search. 2) If a
Search i explores a state that records other Search’s ID j,
i is suspend to j. 3) The suspended relation can be broken
when the status of the state becomes completed, which means
the state has been detected to be in one SCC. One iteration
of the overall process is shown in Fig. 1: Each Search has
its own Taskstack and Stepstack. It follows the sequential
Tarjan’s algorithm to explore the successors (child) of its initial
state. Then based on the description above, they introduce a
SuspendingRealtion set. Searches need to check if there is a
cycle in the SuspendingRelation, shown in part A in Fig. 2.
If so, the states in the Searches that related to this cycle are
transferred to one single Search to block this cycle, shown in
part B, Fig. 2. This cycle is also an SCC. More details can
be found in [11]. When any search finds an SCC, all states in
SCC should be marked as completed to activate the Searches
which are suspended.

The difference between our work and Lowe’s is that
we expand the concurrent SCC detection for automata-based
LTL model checking with fairness assumption based on the
concurrent Tarjan’s algorithm. We support the concurrent on-
the-fly SCC detection, in which the state space is unknown in
advance. Although Lowe mentioned this mode (rooted mode)
in both [11] and [12], he doesn’t supply details or experiments.
We also support the parallel on-the-fly fairness checking.

III. CONCURRENT ON-THE-FLY SCC DETECTION FOR
MODEL CHECKING UNDER FAIRNESS ASSUMPTION

The core in the emptiness checking of automata-based
model checking is SCC detection. Thus, our approach is based
on the concurrent Tarjan’s algorithm (Section II-C). Our target
is to expand it to construct a concurrent version for the on-
the-fly generated state space. To this end, we first present

Search

Explore
State

Child in
searches

YES
Suspend to

the state

Add to its
State list

No

In StepStack Yes
Update
Lowlink

State
complete

Wait for
unblock

Child Unseen

Yes

Generate
SCC

Unblock
Searches

Add to
TaskSteck,
StepStack

Figure 1. Execution Process in One Iteration

S1 S3S2

N11

N12

N13

N21

N22

suspend

N31

N32

N34

suspend

suspend

N33

Part A

S3

N31

N32

N34

N33

Part B

N12

N13

N22

S1 S2

N11 N21

Figure 2. Blocking Cycle

several key challenges, which indicate the efforts on making
the concurrent Tarjan’s algorithm feasible for automata-based
model checking with on-the-fly generated state space: (1) In
this context, the state space is generated by the composition of
transition system and büchi automaton. Thus, the state space
is unknown in advance, and the simple predefined ID for each
state in the concurrent Tarjan’s algorithm is not available. (2) In
concurrent Tarjan’s algorithm, if a state is explored in a search,
there is no duplicate state being explored in any other searches
since the state space is known in advance. However, duplicate
elimination is an important problem for concurrent on-the-fly
generated state space. If there are duplicate states, the judgment
on the suspension of a search cannot be made correctly. (3)
Preservation of data consistency in the synchronization process
is another challenge for concurrent SCC detection on on-the-fly
generated state space, which require upgrading of the execution
process and data structures.

In this section, we present how our approach solves the
above challenges in detail.

M
InitTarjanNode

A

State space
generation

Sequential

TarjanNode TarjanNodeTarjanNode ...

SearchParams
.StealingList

Scheduler

GSearch 1

Thread 1

GSearch 2 GSearch n

Thread nThread 2 ...

Successors
Sync, ID Generation

SharedMemory

Array:
SuccTN[]

SuccTN[0]
unseen

Parallel

IF exists in
StealingList

TaskStep.push

SuccTN[0] in
StepStack

Yes

SCC
generation,

Fairness

Update
StealingList

Yes

Add SuccTN[]
To StealingList

No

Yes SearchParams
.PendingList

.BlockList

SharedMemory

Unblock()
Update

PendingList

No
Status(SuccTN[
0]):completed

Suspended to
SuccTN[0],

Block(),
Update

BlockList

Any Search
Blocked

Get GSearch
from

PendingList

Allocate New
Search to

Thread

Thread wait for
new Search

NO

StepStack.push

Fairness
Checking

Mark with GSID

Branch A

Branch B

Detect Suspend
Cycle

Break Cycle

PendingList:
Empty

Create New
GSearch from
StealingList

Figure 3. Overall Process

A. Overview of our approach

We introduce the overall execution process of our approach
in Fig. 3. For readability, the figure shows only the main
procedure of our approach. We present the complete algorithm
later in this section.

First, we describe some essential concepts in our approach:
(1) We define GSearch as our scheduling unit. Different than
Search in Fig. 1, GSearch is a combination of state space gen-
eration and exploration. Each GSearch has a GSID to identify
itself. Each GSearch has its own TaskStack and StepStack.
A GSearch also needs to record the status of itself, e.g.,
whether the GSearch is suspended to any state. (2) A Thread
is the physical execution unit. A thread can handle multiple
GSearches based on scheduling. (3) We define the TarjanNode
to indicate the state generated on the fly by GSearch, which is a
meta-state. In TarjanNode, we define the SID and GSID. SID is
the identification of TarjanNode in global state space, which is
constructed by the string concatenation of S1S2...SnSA. GSID
represents the GSearch that explores this TarjanNode. We also
define the status, suspendlist, which refer to the concurrent
Tarjan’s algorithm. enableEvt and ParticipatingProcesses are
defined for the fairness checking. (4) We define SearchParams
as the shared space among all GSearches. It consists of
StealingList, PendingList, BlockList, SCCList, SuspendMap

and the generated state space OGTrans. StealingList is to store
all the generated TarjanNodes. It is a unique hash structure
for duplicate elimination since TarjanNodes are generated
concurrently in all GSearches. BlockList stores all GSearches
that have been suspended. PendingList stores the resumed
GSearch, which is waiting for Scheduler to allocate the free
thread for it. SuspendMap stores the suspended relationship.
e.g., GSearch1 is suspended to TarjanNode2. visited set is also
contained in SearchParams, which indicates the states that have
been expanded. (5) We integrate the Scheduler from Lowe. It
takes the charge of creating new GSearch and assigning it
to a free thread. A thread is regarded as free if the GSearch
it handles is suspended to any state. If there is no GSearch
in PendingList, new GSearches are created by assigning new
initial states. The GSID is maintained by Scheduler.

Within the multi-core environment, we start multiple
GSearches for each thread at the beginning. Thus, we can see
in Fig. 3, the startup sequential state space generation process
is to generate an initial set of states for each GSearch. This is a
difference from the concurrent Tarjan’s algorithm with known
state space. Fig. 3 shows the execution process of one GSearch.
With initial TarjanNode, GSearch initiates the preorder for it
and generates the successors by the parallel composition. The
synchronization operation is needed if synchronized events
exist. The generated successors should be transferred to the
array of TarjanNode SuccTN[]. We initilize the SID and other
variants in TarjanNode. SuccTN[0]1 is the next TarjanNode to
be expanded based on the rule of DFS. Thus, GSearch1 should
judge whether SuccTN[0] has been seen in other GSearches
by accessing the StealingList.If not, SuccTN[0] is marked with
GSearch1’s GSID. If SuccTN[0] is not in StepStack, it is
pushed to the TaskStack. Only SuccTN[0] belongs to GSearch1.
Other TarjanNodes in SuccTN[] should be directly transferred
to StealingList. Duplicate elimination is handled with the
unique SID. It should be noted that when a GSearch writes
its GSID to SuccTN[0], it should also update the StealingList
if SuccTN[0] exists in StealingList without the mark of any
GSID. Then the initial TarjanNode should also be pushed to
StepStack.

Branch A in Figure 3 presents that if GSearch1 detects that
SuccTN[0] is marked with other GSearch’s GSID, it checks the
status of SuccTN[0]. If SuccTN[0] is not completed, GSearch1
is suspended to SuccTN[0]. It updates the SuspendMap and the
BlockList, and detects if a blocking cycle exists. If this is the
case, it blocks the cycle by transferring all related TarjanNode
to another one GSearch (refer to Fig. 2 in Section II-C).
GSearch1 becomes blocked and waits to resume. When a
blocked GSearch is resumed, it is transferred to PendingList.
Scheduler works on two tasks: (1) When a GSearch is sus-
pended and waiting for resuming, the corresponding thread
becomes free. If the PendingList is empty, it creates a new
GSearch for the free thread. 2) If the PendingList is not empty,
it gets GSearch from PendingList and pushes it to the free
thread.

Branch B in Figure 3 is the common lowlink updating
process and the condition that a cycle being detected. In our
approach, the fairness checking starts concurrently with the
generation of the complete SCC. After the generation of the

1here we give the example in the first iteration, hence we regard SuccTN[0]
as unexpanded

complete SCC, the suspended relationship should be updated.
All GSearches which are suspended to TarjanNode in the SCC
are resumed and continue their exploration.

B. Data distribution

The data distribution in our approach for each search con-
sists of two parts: startup distribution and runtime distribution.

Firstly, in the on-the-fly LTL model checking, the state
space is not known in advance. It is generated during the prod-
uct between M and B¬ϕ. M is also the parallel composition
of component LTSs. So at the beginning, we always just have
one initial state. Based on Section II-C, in that algorithm, fixed
number of threads are started for concurrent searches at the
beginning, which start on different states to follow different
traces to increase the possibility to find SCC. For our approach,
we should also start multiple GSearches for high efficiency.
The difference is that for on-the-fly generated state space, we
first start the state space generation for several iterations to
generate partial state space. Then we base on the number
of cores in the working machine to start the corresponding
number of threads and GSearches. So at the beginning, the
parallelism can be fully utilized.

Secondly, during the concurrent search process in our
approach, the data distribution is based on the state space
generation. When GSearch is started, each GSearch marks
its startup state with its GSID. Then each GSearch stores all
generated successor states in its Stepstack and DFSstack. It
should be noticed as the state space generation is a concurrent
process in many threads, it is impossible to config the global ID
to identify each successor state as [11] does. In our approach,
we mention in Section II-A that each state is indeed composed
of many states from component LTSs and the automaton, so
we can use a string to identify the generated states, which
is the montage of each states’ ID in the original component
LTS or the Büchi Automaton. As GSearch works on a DFS
process, each GSearch only marks the front state in the
DFSstack with its GSID, then all successors are copied to
the StealingList and the outgoing relations are copied back to
the table OutgoingTrans. The key point is that before marking
any successor state, the GSearch should visit the StealingList
to check if this successor state is visited or marked with other
GSID, and then decide if the search should continue, backtrack
or suspend.

C. Concurrent State Space Generation

In our approach, the state space is generated concurrently
by all active GSearches. Each GSsearch handles the successor
generation independently. During the successor generation,
event synchronization operations are involved in both the
parallel interleaving of Mi and the composition between M
and B¬ϕ. We allocate a private array for each GSearch to tem-
porarily store the generated successors. Event synchronization
also works on this array. When we convert each successor state
(si, bi) to TarjanNode, we need to explore all si to fill up the
information for fairness checking. These are all independently
handled by each GSearch. The key point is, the state space
generation in the concurrent environment refers to a lot of
operations on shared space. e.g., the SearchParam. Thus, it is
important to handle the concurrent access to prevent any data
inconsistency.

In order to ensure the consistency of shared data, lock is
used throughout the program. In general, each shared variable
should have a separate lock to ensure that at one time, only one
GSearch can access it. SearchParams, as we have mentioned in
Section III-A, is the structure to store shared variables among
GSearches. In order to ensure synchronization2, most collec-
tion variables in SearchParams are created as the concurrent
collection data type, which is provided by C#.NET. For other
shared variables, the SearchParams has static locks to ensure
their synchronization. In order to ensure synchronization and
correctness of the program, we present some details of locks
below, which indicate how errors occur without these locks.
• TarjanNode.visitLock: A TarjanNode is a shared vari-

able. During the exploration of the state space, each
GSearch checks the TarjanNode via the following
steps: (a) Checks the status. (b) Checks whether it
is the first unexpanded successor in GSearch. If yes,
the GSearch visits the node. These steps are supposed
to be atomic. Otherwise, two GSearches may take
the same TarjanNode and cause errors, as shown in
Fig. 4. Two GSearches are handled by two threads.
The first GSearch is taking the TarjanNode and hasn’t
finished, while the other GSearch is also checking
the ownership of the node. Two GSearches take the
same node and none of them being suspended. Thus,
visitedlock is necessary to lock these three steps.

• Suspendmap.Lockitself : The updating and accessing of
the SuspendedMap should be synchronized, otherwise
blocking cycle may be missed. For example, in Fig. 5,
one GSearch is checking whether blocking cycle ex-
isted or not. When it gets the conclusion that no cycle
exists, and it has not added new suspension into the
map, other GSearch starts to check the SuspendedMap
to get the path. Both of the GSearches think that there
is no blocking cycle and add the suspension into the
map. At this condition, blocking cycle occurs but no
one handles it. Then deadlock occurs.

• TarjanNode.block() & TarjanNode.unblock(): Two or
more GSearches may become blocked on the same
TarjanNode concurrently. Moreover, the TarjanNode
may be detected in an SCC at the same time. Shown
in Fig. 6, when the first GSearch is updating the status
of the TarjanNode but not yet finished, the second
GSearch is checking TarjanNode’s GSID. The second
GSearch thinks that the TarjanNode is incomplete and
starts to block itself on this node. However, the first
GSearch sets the node as complete and unblocks all
blocked searches on this node. In this situation, the
status of this node has already been completed and
cannot go through the unblocking process again. The
first GSearch cannot get a chance to be active again.

D. On-the-fly Parallel Fairness Verification

We introduce the definition of fairness assumption and
our major efforts on on-the-fly parallel fairness checking in
previous sections. Our fairness checking is based on the ex-
ploration of SCCs. When the concurrent LTL model checking
algorithm detects the existence of an SCC, it needs to generate

2Different from event synchronization, this represents the synchronization
of data.

Thread 1-
Gsearch 1

Thread 2-
Gsearch 2

Check Whether the TarjanNode been
Expanded

If Not

Get the first Unexpanded Successor

Mark with GSID

Check Whether the TarjanNode been
Expanded

Get the first Unexpanded Successor

Mark with GSID

If Not

Figure 4. TarjanNode Synchronization

Check Whether the There is a blocking
cycle

If not exist

Add suspension to SuspendedMap

Check Whether the There is a blocking
cycle

If not exist

Add suspension to SuspendedMap

Thread 2-
Gsearch 2

Thread 1-
Gsearch 1

Figure 5. SuspendedMap Synchronization

the complete SCC. Shown in Fig 7, our key idea is to overlap
part of the fairness checking process with the SCC generation
process and do on-the-fly parallel checking so as to increase
the performance. For instance, we overlap the generation of
the sets enabledEvt, enabledPro, engagedEvt and engagedPro
which base on the complete exploration of the SCC. Then
we do parallel exploration to deal with these sets to generate
the verification result. If any thread finds the condition that
makes the SCC fair/unfair, the checking process terminates. In
specific, Given an SCC Scc, we present the detail design for
ESF/PSF as a sample. We also specify the SGF.

Sequential Algorithm: The algorithm explores every com-
ponent si in Scc. For each state, the algorithm gets its engaged
event list and add to the engagedEvt/Pro(Scc). Then it explores
each component again to find which component has any event
α ∈ enabledEvt/Pro(si) but /∈ engagedEvt/Pro(Scc). These
states are regarded as bad states. Then the algorithm removes
these bad states from Scc to get Scc′, and calls the modified
Tarjan’s algorithm again to check whether there is an SCC in
the Scc′. If so, Scc is fair. Or it is not fair.

Parallel On-the-fly Approach: engagedEvt/Pro(Scc) are
generated during the generation of Scc. Bad states are gen-
erated and removed from the SCC concurrently with the lock.
Each thread takes charge of several components of Scc. The
new SCC is used to call the modified Tarjan’s Model Checking
algorithm. The modified Tarjan based model checking algo-
rithm is not the concurrent version mentioned in Section II-B
because the overhead generated by concurrency may be more
expensive than the advantages provided as the size of a single
SCC may be limited.

For SGF, the sequential algorithm explores every compo-
nent si in Scc. When si is being explored, it generates the
enabledEvt(si), in which it contains a set of event ID. Then
the algorithm explores all successors of si. For successors
that also ∈ Scc, in the corresponding events that leads to
the transition to these successors, if the ID of any event
eid ∈ enabledEvt(si), Scc is fair. For SGF, there is no need to
generate a set that based on the complete exploration of Scc,
so this algorithm doesn’t contain the on-the-fly part. In the
parallel algorithm, shared memory is used to store Scc, and a
fixed number of threads start to check all components. Checked

Status(TarjanNode) = Completed

Remove GSearch from BlockList

If Status(TarjanNode) != Completed

Block(Gsearch)

Add GSearch to BlockList

Thread 2-
Gsearch 2

Thread 1-
Gsearch 1

Foreach GSearch suspended to TarjanNode

Unblock(Gsearch)

Status(TarjanNode) = Completed

Remove GSearch from BlockList

If Status(TarjanNode) != Completed

Block(Gsearch)

Add GSearch to BlockList

Thread 2-
Gsearch 2

Thread 1-
Gsearch 1

Foreach GSearch suspended to TarjanNode

Unblock(Gsearch)

Figure 6. Block and Unblock GSearch Synchronization

Backtracking
TStack

lowlink=preorder

SCC No

Yes

Fairness
Checking

Generate
Enabled/Engaged/

Always Set

Explore all
SCC

components

Report
Result

Backtracking
TStack

lowlink=preorder

SCC

No
Intersect/Union to
Enabled/Engaged/

Always Set

Fairness
Checking

T1 T2 Tn

Explore
Compo
nents

Explore
Compo
nents

Explore
Compo
nents

...

Report
Result

Terminate Terminate

Figure 7. Parallel On-the-fly Fairness Checking

components are marked. If any thread finds the component that
makes Scc fair, it broadcasts to other threads and all thread
terminate.

E. Algorithm

In this section, we present the algorithm of the concurrent
on-the-fly SCC detection for LTL model checking with fairness
assumption synthesizing our descriptions in the preceding
sections. They are shown in Algorithm 2, Algorithm 3 and
List. 1.

We describe the startup of our approach in Algorithm 2.
SearchParams is defined in line 1. Line 2 is a Sequential state
space generation processThis process generates some states
which are stored in the StealingList. It should be guaranteed
that no duplicates exists. Scheduler starts in Line 3 to create
GSearch. The number of threads is same as the initial number
of GSearches. All GSearches work concurrently.

We present the algorithm of GSearch in Algorithm 3 and
List 1, which is the key algorithm of our approach. All opera-
tions are based on TarjanNode instead of the original state. In
Algorithm 3, all GSearches access the shared memory to visit
M , A¬ϕ and SearchParams. All key differences compared to
sequential algorithm are shown with underline. Each GSearch
has its own TaskStack and StepStack. In line 1, GSearch gets
its initial state and converts it to a initial TarjanNode. The
iteration for SCC detection starts in line 3. Line 4 is to set the

Algorithm 2: Startup of Concurrent on-the-fly SCC
detection for Automata-based Model Checking

Input: M , A¬ϕ
1 Define Shared SearchParams, Local StepStack,TaskStack ;
2 Duplicate Elimination:Sequential LTL Model Checking →

SearchParams.StealingList;
3 Start a thread for Scheduler; Scheduler: create GSearch(i)
← SearchParams.StealingList[i];

4 Start n threads;
5 Scheduler: allocate GSearches to all threads to work concurrently;

Algorithm 3: GSearch-Concurrent on-the-fly SCC detec-
tion for Automata-based Model Checking

Input: M , A¬ϕ, SearchParams
1 T = TarjanNode(SearchParams.StealingList[GSID]);
2 TaskStack .push(T ← Mark(T,GSID));
3 while ¬TaskStack .Empty do
4 Get T , Update T .preorder ; done = true;
5 if T ∈ SearchParams.visited then
6 T ′[] = SearchParams.visited[T];
7 forall the Ti ∈ T ′[] do
8 if Ti.preorder = false then
9 Module:Add New Task;

10 else
11 succTN [] = T .MakeOneMove(M,A¬ϕ);
12 forall the T ′i ∈ succTN [] do
13 lock and AvoidDup: SearchParams.OGTrans[T].add(T ′i);

14 lock: Sync T ′i with SearchParams.StealingList ;
15 if T ′i .preorder = false then
16 Module:Add New Task;

17 SearchParams.visited.add(T);

18 if done then
19 update lowlink;
20 if lowlink == preorder then
21 SCCSet.add(T);
22 backtrack Stepstack → SCCSet&Fairness;
23 SearchParams.SCCList.Add(SCCSet);
24 T ′i .complete = true;
25 Resume GSearches suspended to T ′i ∈ SCCSet ;
26 lock: Update SearchParams.PendingList ;
27 Option: Concurrent On-the-fly Fairness Checking;
28 if ISFair then
29 Record Result; Generate Counterexample;

30 forall the T ′i ∈ SCCSet do
31 lock:SearchParams.visited.remove(Ti);
32 lock:SearchParams.OGTrans.remove(Ti);

33 else
34 StepStack .push(T);

local preorder of TarjanNode in a certain GSearch. Line 5
and 10 lead to two conditions shown below:

(1) From line 5 to 9. If the TarjanNode T is in Search-
Params.visited, it has been expanded. Then in lines 6 to 9,
GSearch gets and chooses the available successor to push into
TaskStack, which is handled in the module Add New Task.
We present that in List. 1. We judge whether the successor
TarjanNode belongs to other GSearches in line 1. If not, we
just mark the first available successor with GSID and push it
into TaskStack in line 3 to 6. If the successor already exists
in SearchParams.StealingList but not been occupied by any
GSearch, we should update its GSID. If the successor belongs
to another GSearch and hasn’t being completed, GSearch is
suspended to this successor in lines 11 to 14. It updates the
SuspendedMap and detects whether this operation generates a

blocking cycle. If so, it breaks this cycle, refers to Fig. 2 in
Section II.

(2) From line 10 to 17. If the visiting TarjanNode T is
not expanded, GSearch generates successors based on T by
the interleaving between M and A¬ϕ (line 11). It updates
the OGTrans[T] without duplication (line 13). This operation
should use lock to avoid conflicts. For each TarjanNode in
SuccTN[], GSearch synchronizes the value of it with the data
in StealingList (line 14). It checks whether the TarjanNode has
been expanded before or been occupied by other GSearch. If
it is a new TarjanNode without being marked with any GSID,
the module Add New Task works as mentioned. Line 17 marks
T as expanded. During the process from line 5 to 17, if all
successors of T have been expanded, it comes to line 19. It
is to update the lowlink of T and is same to the sequential
algorithm.

GSearch generates an SCC in lines 20 to 26. The status
of all TarjanNodes in SCC is marked as completed . All
GSearches that being suspended to these TarjanNodes are
resumed to be ready for scheduling. If fairness checking is
required, the concurrent on-the-fly fairness checking works
in line 27. It should be noted that in line 22, the fairness
checking has started and overlaps with the generation of SCC.
This is part of our concurrent on-the-fly fairness checking,
which can improve the performance of fairness checking. If the
detected SCC satisfies the fairness assumption, on-the-fly LTL
model checking enters the counterexample generation process.
Line 31 and 32 work as we always need to generate all SCCs.
In line 34, if the SCC is not detected, GSearch pushes T to
the local StepStack .

Listing 1. Add New Task
1 if(Ti.GSID = −1){
2 if(done){
3 Ti.mark(GSID);
4 lock: Update SearchParams.StealingList;
5 TaskStack.push(Ti);
6 done = false; break;
7 }
8 }
9 else{

10 if{Ti.status 6= completed}{
11 lock: Update SearchParams.SuspendedMap;
12 Check Block Cycle, lock:break cycle;
13 lock: Update SearchParams.BlockList;
14 Wait for Resume;
15 }
16 }

F. Complexity

In order to compare with sequential Tarjan’s algorithm and
Lowe’s concurrent version with unrooted mode, We discuss
the complexity of concurrent on-the-fly SCC detection without
the complexity of state space generation. Given a transition
system with N nodes and E edges, the sequential Tarjan’s
algorithm shows the complexity of O(N + E) and Lowe
shows the complexity of concurrent Tarjan’s algorithm is
O(N 2 + E). Our concurrent on-the-fly SCC detection has
extra node transfer for the construction of global outgoing
transition relationships and the StealingList mentioned before.
The complexity of these part is O(N) since we use lock and
hash table to avoid duplicates. Thus, the complexity of our
concurrent on-the-fly SCC detection without the complexity
of state space generation is also O(N 2 + E).

Table I. EVALUATION OF LTL MODEL CHECKING (TIME IN SEC)

Model Proc |S| |T | |SCCs| PAT-O PAT-C SP
MsS 1000 9 ∗ 103 1.8 ∗ 104 0 222.6 207.3 1.1
MsS 1200 2.6 ∗ 104 5.3 ∗ 104 0 611.9 523.4 1.2
MsS 1500 3.3 ∗ 104 6.7 ∗ 104 0 1104 626 1.76
CC 4 1.5 ∗ 104 7 ∗ 104 5.2 ∗ 103 1.05 1.57 0.67
CC 5 5 ∗ 105 3.3 ∗ 106 1.6 ∗ 105 49.7 31.9 1.6

ABP 100 2.1 ∗ 105 7 ∗ 105 1 10.8 23.2 0.5
ABP 200 8 ∗ 105 2.7 ∗ 106 1 53 92 0.58
ABP 300 1.8 ∗ 106 6 ∗ 106 1 150.2 247 0.61
Lift.1 3,2 3.2 ∗ 105 7.2 ∗ 105 1349 39.6 24.7 1.6
Lift.2 3,2 3.8 ∗ 105 8.7 ∗ 105 1569 45.8 33.4 1.4
Lift.3 3,2 4.6 ∗ 105 1.5 ∗ 106 983 55.6 32.6 1.7

IV. IMPLEMENTATION AND EVALUATION

We implement our approach using C# in Process Anal-
ysis Toolkit (PAT) [17]. We call it PAT-C. We evaluate the
performance of PAT-C by comparing it to the original PAT
with sequential on-the-fly LTL model checking and fairness
checking, which we call PAT-O and PAT-OF. We conduct our
experiments on a laptop with Intel(R) Xeon(R) CPU E5-1650,
3.2GHZ, 12 cores, 16GB RAM.

In our experiments, |S|, |T | and |SCCs| separately rep-
resent the number of states, the number of transitions and
the number of SCCs. LSCC and SSCC separately represent
the size of the largest SCC and smallest SCC. SP means the
speedup. For the testing models, MsS represents the Miners
Scheduler. CC represents Consensus with Crashes. DP rep-
resents Dining Philosophers. ABP represents Alternation Bit
Protocol. KvR.1/2 represents K-valued Register.12. MLS.12
represents Multiple Lift Sysmtem 12. TBM represents DBM
Testing.

A. Performance Evaluation on SCC Detection for Model
Checking

We conduct the performance evaluation on multiple LTS
models on a range of state space. We initialize 12 GSearches.
We start 12 threads in parallel to handle these GSearches
concurrently since our machine owns 12 cores. It should be
noted that in order to completely evaluate the performance of
our approach, in our experiments we find all SCCs instead
of just one. We involve four models in this part: MsS, CC,
ABP and Lift. Our experimental results are shown in Table I:
(1) The product between MsS model and the Büchi Automaton
generates no SCCs. Hence, our approach works as a concurrent
complete state space generation process. We use 1000, 1200
and 1500 processes for our experiments. From Table I, we can
observe: (1) Our approach gains up to 2X speedup compared
to the sequential LTL model checking, which is significant
since the original execution cost is fairly large. 2) The product
between CC&Lift.1/2/3 model and the Büchi Automaton can
generate a large number of small SCCs. Results in Table I show
that with a large number of small SCCs, our approach can
also gain around 2X speedup compared to the sequential LTL
model checking in PAT. 3) The product between ABP model
and the Büchi Automaton generates just one large size SCC.
Results in Table I show that the performance with these kind
of models is expected to be even slower than the sequential
LTL model checking in PAT.

In conclusion, our approach can generally improve the
performance of automata-based LTL model checking. The
performance is better for larger state spaces. The performance

Table II. TESTING MODEL FOR FAIRNESS CHECKING

Model Proc |S| |T | |SCCs| LSCC SSCC
DP 8 1.4 ∗ 105 1.08 ∗ 106 51 3 ∗ 104 1
DP 9 5.3 ∗ 105 4.5 ∗ 106 66 1.1 ∗ 105 1
DP 10 1.9 ∗ 106 1.8 ∗ 107 83 4.2 ∗ 105 1

Peterson 4 5.1 ∗ 104 2.1 ∗ 105 5 4.5 ∗ 104 1
Peterson 5 1.4 ∗ 106 7.2 ∗ 106 17 1.3 ∗ 106 1

CC 4 1.2 ∗ 104 5.4 ∗ 104 3.8 ∗ 103 2 1
CC 5 3.8 ∗ 105 2.5 ∗ 106 1.2 ∗ 105 2 1

KvR.2 4,3 6.2 ∗ 105 2.5 ∗ 106 1042 4.1 ∗ 105 104
KvR.2 5,3 3.7 ∗ 106 1.5 ∗ 107 2748 2.3 ∗ 106 256
KvR.2 4,4 3.8 ∗ 106 1.8 ∗ 107 6342 2.4 ∗ 106 104
MLS.1 2,2,3 3.8 ∗ 105 1.9 ∗ 106 940 2.7 ∗ 105 4
MLS.1 3,2,2 1.2 ∗ 106 5.1 ∗ 106 1416 9.8 ∗ 105 4
MLS.1 2,2,4 1.5 ∗ 106 9.3 ∗ 106 3243 1.1 ∗ 106 4
MLS.2 2,2,3 6.5 ∗ 105 3.5 ∗ 106 3029 3.5 ∗ 105 1
MLS.2 3,2,2 2.2 ∗ 106 9.5 ∗ 106 5457 1.5 ∗ 106 1
MLS.2 2,2,4 2.7 ∗ 106 1.6 ∗ 107 8345 1.4 ∗ 106 1
DBM 2,4 4.2 ∗ 104 1.7 ∗ 106 1 1.4 ∗ 104 -
DBM 2,5 9.5 ∗ 104 4.5 ∗ 106 1 3.2 ∗ 104 -
DBM 2,6 1.9 ∗ 105 1.1 ∗ 107 1 6.3 ∗ 104 -
PMC 50,1000 1 ∗ 106 2 ∗ 106 51 2 ∗ 104 2 ∗ 104

PMC 60,1000 1.2 ∗ 106 2.4 ∗ 106 61 2 ∗ 104 2 ∗ 104

PMC 80,1000 1.6 ∗ 106 3.2 ∗ 106 81 2 ∗ 104 2 ∗ 104

decreases at ABP model since it has only one large SCC in
the state space. Thus, based on our approach, all GSearches
easily encounter TarjanNode in other GSearches. According to
the cycle breaking rules, our approach works like a sequential
algorithm as all data is transferred to one GSearch. The par-
allelism cannot be well utilized and a lot of time is consumed
at transferring nodes. Finally the concurrent on-the-fly model
checking is more suitable for the models with a large amount
SCCs and trivial average SCC size so as to reduce the cost of
suspending, which is also indicated in [11].

B. Performance of On-the-fly Parallel Fairness Verification

We conduct the experiments on fairness checking using
different models with different SCC numbers and SCC sizes.
For each type of fairness, we choose three models and we
perform the experiments independently. The features of our
test models are shown in Table II. These models differ in the
number and size of SCCs, which can help reflect the features
of our approach. In this part, the parallelism started is less
then 11 threads, which is adjusted dynamically based on the
scheduling of the Microsoft .Net platform.

In our experiments, we measure the time cost in mil-
liseconds. Firstly, we compare our approach to the sequential
fairness checking in PAT. The results of ESF, EWF, PWF
and PSF checking is shown in Table III. We can see that our
approach for fairness checking can gain significant speedup for
most models3. The performance improvement is more visible
when the state space consists of a lot of SCCs and the average
SCC size is large. A performance decrease is observed at the
CC model because all SCCs in the state space are very small,
with the size of 1 or 2. For Peterson, where the state space
consists of just 5 SCCs, the performance is also decreased.
Under this condition, the overhead of parallelism is more
dominant than the advantage of parallelism. Secondly, as we
mentioned in Section III-E, our approach generates the sets
for fairness checking together with the SCC generation, so
it introduces costs to the SCC generation process. We count
the cost of the entire SCC generation and Fairness checking
for some models, which is shown in the right side of ”/” in

3Here all models represent the state space generated from the product
between the model and the Büchi Automaton.

Table III. EVALUATION OF ESF&EWF CHECKING (TIME IN MS)

Model Proc ESF Checking EWF Checking
PAT-OF PAF-C SP PAT-OF PAF-C SP

DP 8 1.1/1.5 ∗ 103 48/304 25/5 - - -
DP 9 1.5/1.6 ∗ 104 81/1218 188/13 - - -

Peterson 4 29 30 0.97 - - -
Peterson 5 1.1 ∗ 103 267 4.3 - - -

CC 4 3 3 1 3 95 −
CC 5 137 157 0.87 157 3415 −

KvR.2 4,3 - - - 119 4 29.7
KvR.2 5,3 - - - 716 16 44.8
KvR.2 4,4 - - - 750 38 19.7

Table IV. EVALUATION OF PSF&PWF CHECKING (TIME IN MS)

Model Proc PWF Checking PSF Checking
PAT-OF PAF-C SP PAT-OF PAF-C SP

DP 8 50 1 50 1327/1705 14/364 95/5
DP 9 224 1 224 1.7/1.8 ∗ 104 48/1497 364/11

MLS.1 2,2,3 153/1728 4/1270 38/1.4 187 71 2.6
MLS.1 3,2,2 892/6100 3/5100 298/1.2 617 161 3.8
MLS.1 2,2,4 733/7256 9/5453 81/1.35 819 288 2.9
MLS.2 2,2,3 257/2797 4/2019 64/1.3 340 219 1.6
MLS.2 3,2,2 1432/12601 19/10613 77/1.2 1.1 ∗ 103 475 2.4
MLS.2 2,2,4 1290/13382 16/11800 80/1.2 1.4 ∗ 103 833 1.7

Table III. We can see that our approach can still gain significant
speedup. The reason why the speedup is not as high as the
results in the left side of ”/” is that the SCC generation
cost a lot compared with the fairness checking. It can also
be concluded that the parallelization of fairness checking can
bring more performance improvements for weak fairness type
than strong fairness type. The reason is that the weak fairness
checking does not have to update any shared variables(bad
states), therefore lock operation is not necessary. In contrast, in
strong fairness checking, a lock exists. During the execution,
some threads need to wait for other threads for the right to
access.

The results of SGF checking is shown in Table V. For
SGF checking, as we mentioned in Section III-E, the complete
checking process works in parallel after the generation of SCC.
Hence, we just record the fairness checking time and compare
it with the sequential version. We can see besides the CC
model with very small SCC, our approach gains around 5X
speedup for the DBM and around 4X speedup for the PMC.

Finally, we compare our experimental results with the
previous results of Liu, Sun and Dong [10], which also works
on the parallel on-the-fly LTL model checking in PAT. In [10],
the major Tarjan process is taken in one thread and SCC
generation is taken in parallel by forking new threads to handle
it. The performance of both the approach in [10] and this paper
depends on the ratio of SCCs and the average SCC size. The
differences are that the on-the-fly LTL model checking in [10]
works better than sequential algorithm only with large number
of large size SCCs. Our approach can also gain performance
improvement without any SCC, which is not possible for
the approach in [10]. The large number of small size SCCs
may influence the fairness checking process in both of these
approaches. But for large sized SCCs, the approach shown
in this paper may have better performance improvement than
PAT as we start the exploration from different directions and
the process is on-the-fly. In conclusion, the approach in this
paper can be suitable for much more types of models and gain
more performance improvement than the approach in [10].

V. CONCLUSION AND FUTURE WORK

In this paper, we expanded the concurrent Tarjan’s algo-
rithm and developed a concurrent on-the-fly SCC detection for

Table V. SGF CHECKING (TIME IN MS)

Model Proc PAT-OF PAT-C SP
DBM 2,4 1.7 ∗ 103 353 4.8
DBM 2,5 5.4 ∗ 103 1.1 ∗ 103 4.95
DBM 2,6 1.5 ∗ 104 2.9 ∗ 103 5.1
PMC 50,1000 1.1 ∗ 103 370 3.2
PMC 60,1000 1.7 ∗ 103 453 3.7
PMC 80,1000 1.9 ∗ 103 605 3.1
CC 4 1 83 -
CC 5 77 2.7 ∗ 103 -

automata-based (LTL) model checking with fairness checking.
To this end, we built a novel abstract data structure for
concurrent LTL model checking taking data consistency into
account. In addition, we developed a parallel on-the-fly fairness
checking approach for different types of fairness assumptions.
We also implemented our proposed approach in the practical
model checker PAT. Our experiments show that our approach
achieves significant speedup comparing to the sequential ver-
sion of PAT. In the future, we plan to transfer our approach
work to many-core (GPU) platform, which support massive
parallelism and promises to accelerate the performance of
model checking.

REFERENCES

[1] W. Anton and B. Dragan. GPUexplore: Many-Core On-the-Fly State
Space Exploration Using GPUs. In TACAS, pages 233–247. 2014.

[2] C. Baier, J.-P. Katoen, et al. Principles of model checking, volume
26202649. MIT press Cambridge, 2008.

[3] V. Bloemen, A. Laarman, and J. van de Pol. Multi-core on-the-fly SCC
decomposition. In PPoPP, page 8. ACM, 2016.

[4] E. M. Clarke, W. Klieber, M. Nováček, and P. Zuliani. Model checking
and the state explosion problem. In Tools for Practical Software
Verification, pages 1–30. 2012.

[5] J.-M. Couvreur. On-the-fly verification of linear temporal logic. In
FM99łFormal Methods, pages 253–271. Springer, 1999.

[6] S. Evangelista, L. M. Kristensen, and L. Petrucci. Multi-threaded
explicit state space exploration with state reconstruction. In ATVA,
pages 208–223. Springer, 2013.

[7] S. Evangelista, A. Laarman, L. Petrucci, and J. Van De Pol. Improved
multi-core nested depth-first search. In ATVA, pages 269–283. Springer,
2012.

[8] S. Evangelista, L. Petrucci, and S. Youcef. Parallel nested depth-first
searches for LTL model checking. In ATVA, pages 381–396. Springer,
2011.

[9] L. Lamport. Proving the correctness of multiprocess programs. TSE,
(2):125–143, 1977.

[10] Y. Liu, J. Sun, and J. S. Dong. Scalable multi-core model checking fair-
ness enhanced systems. In Formal Methods and Software Engineering,
pages 426–445. Springer, 2009.

[11] G. Lowe. Concurrent Depth-First Search Algorithms. In TACAS, pages
202–216. 2014.

[12] G. Lowe. Concurrent depth-first search algorithms based on Tarjans
Algorithm. STTT, 18(2):129–147, 2016.

[13] J. Pang, Z. Luo, and Y. Deng. On automatic verification of self-
stabilizing population protocols. Frontiers of Computer Science in
China, 2(4):357–367, 2008.

[14] A. Puhakka and A. Valmari. Liveness and fairness in process-algebraic
verification. In CONCUR, pages 202–217. Springer, 2001.

[15] E. Renault, A. Duret-Lutz, F. Kordon, and D. Poitrenaud. Parallel
explicit model checking for generalized Büchi automata. In TACAS,
pages 613–627. Springer, 2015.

[16] J. Sun, Y. Liu, J. S. Dong, and J. Pang. Towards a Toolkit for Flexible
and Efficient Verification under Fairness. Technical report, Technical
Report TRB2/09, National Univ. of Singapore, 2008.

[17] J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards Flexible
Verification under Fairness. In CAV, pages 709–714, 2009.

[18] R. Tarjan. Depth-first search and linear graph algorithms. SIAM journal
on computing, 1(2):146–160, 1972.

[19] Z. Wu, Y. Liu, Y. Liang, and J. Sun. GPU Accelerated Dynamic
Counterexample Generation in LTL Model Checking. In ICFEM, pages
413–429, 2014.

[20] Z. Wu, Y. Liu, J. Sun, J. Shi, and S. Qin. Gpu accelerated on-the-fly
reachability checking. In ICECCS, pages 100–109. IEEE, 2015.

[21] L. Yang. Model checking concurrent and real-time systems: the PAT
approach. PhD thesis, 2009.

