
State-Taint Analysis for Detecting Resource
Bugs

Zhiwu Xu1 Dongxiao Fan1 Shengchao Qin2

1 College of Computer Science and Software Engineering, Shenzhen University, China
2 School of Computing, Teesside University, UK

Email: xuzhiwu@szu.edu.cn, fan123199@gmail.com, s.qin@tees.ac.uk

Abstract—To verify whether a program uses resources in
a valid manner is vital for program correctness. A number of
solutions have been proposed to ensure such a property for
resource usage. But most of them are sophisticated to use for
resource bugs detection in practice and do not concern about
the issue that an opened resource should be used. This open-
but-not-used problem can cause resource starvation in some
case as well. In particular, resources of smartphones are not
only scarce but also energy-hungry. The misuse of resources
could not only cause the system to run out of resources but
also lead to a shorter battery life. That is the so-call energy
leak problem.

Aiming to provide a lightweight method and to detect
as many resource bugs as possible, we propose a state-
taint analysis in this paper. First, take the open-but-not-used
problem into account, we specify the appropriate usage of
resources as resource protocols. Then we propose a taint-like
analysis which takes resource protocols as a guide to detect
resource bugs. As an application, we enrich the resource
usage protocols by taking into account energy leaks and use
the refined protocols to guide the analysis for energy leak
detection. We implement the analysis as a prototype tool
called statedroid. Using this tool, we conduct experiments
on several real Android applications and find several energy
leaks.

I. INTRODUCTION

Resource usage [1] is one of the most important char-
acteristics of programs. To verify whether a program
uses resources in a valid manner is vital for program
correctness. For example, a memory cell that has been
allocated should be eventually deallocated (otherwise it
may cause resource leak or memory leak), a file should
be opened before reading or writing, and an opening
camera (a popular resource for smartphones nowadays)
should be closed eventually.

A number of static analyses have been proposed to
analyse the correct usages of computer resources [1]–
[7]. Most of them adopt a type-based method to ensure
a resource-safe property. However, first, although sound,
they either require rather complex program annotations
to guide the analysis or are sophisticated to use for
resource bugs detection in practice, since one needs to
enhance a type system with resource usage information,
which is not easy to follow. Second, few of them concern
about that an opening resource should be used before its
closing. While in some cases it may cause no harm or just
minor problems to open/obtain a resource but then leave

it unused/unattended, in other cases this may lead to
more severe problems. For instance, when some resource
is very limited and is not released timely, this issue can
lead to a major problem, causing resource starvation
and severe system slowdown or instability. Specifically,
for mobile devices, such as tablets and smartphones,
which have become hugely popular, the resource is
rather limited, specially power energy (i.e. the battery
capacity). Most resources of mobile devices are not only
scarce but also energy-hungry, such as GPS, WiFi, camera,
and so on. The opening of these resources could be more
expensive, as they would consume energy continuously
to make a shorter battery life. This is the so-call energy
leak problem [8], that is, energy consumed that never
influences the outputs of a computer system.

In this paper, we propose a static analysis called state-
taint analysis to detect resource bugs, which is easy to
use in practice and helps detect the open-but-not-used
problem. First, take the open-but-not-used problem into
account, we specify the appropriate usage of resources
as resource protocols according to the API documenta-
tion of resources. A resource protocol describes how a
resource should be used or which action sequences are
appropriate. Resource protocols can be viewed as a kind
of typestate properties [2] , which can be represented
as finite state automata. Different resources can have
different specific automata. An action sequence that does
not satisfy resource protocols is considered as a resource
usage bug.

Intending to be used easily in practice and to find
as many bugs as possible, we propose a static analysis,
which takes a control flow graph (CFG) of a program
as input, and guided by the resource protocols to track
the resource actions among CFG. Following the idea
of taint-analysis [9], our analysis propagates the states
of resources among CFG. During the propagation, our
analysis will check whether the resource actions confirm
to the corresponding resource protocols (i.e. automata).
In detail, our analysis will verify that (i) whether all the
resource actions obey the resource protocols before the
exit of CFG, and (ii) whether all the states of resources
reaching the exit of CFG are accepted following the re-
source protocols. Our analysis is path-sensitive, so states
for one resource from different paths may be different

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322320436?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and preserved.
Moreover, energy leak becomes a critical concern for

smartphone applications. As an application, we use state-
taint analysis to detect energy leaks for smartphone appli-
cations. Usually, a resource bug can cause an energy leak,
if the bug keeps the resource open unnecessarily. We
distinguish the action sequences that may cause energy
leaks from the other inappropriate ones, and improve the
protocol with them. For example, to open an unneeded
resource will cause an energy leak, while to use a closed
resource will not. With the improved protocols as a
guide, we thus can use state-taint analysis to detect energy
leaks in smartphone applications.

Finally, we also implement the analysis as a tool called
statedroid. Using this tool, we conduct experiments on
100 real Android applications collected from F-Droid,
and find that 18 applications have energy leaks.

The contributions of our work can be summarised as
follows:

First, we specify the appropriate usage of resources
as resource protocols to ensure that an opened resource
should be used before closing and propose a static
analysis called state-taint analysis, which takes resource
protocols as a guide to detect as many resource bugs
as possible. Compared with the existing works [1]–[7],
which adopt type-based method, our analysis (i) is
lightweight and easier to use, yet still sound, and (ii)
helps detect the open-but-not-used problem.

Second, as an application, we use state-taint analysis to
detect energy leaks in Android applications. we analyse
which resource bugs could cause energy leaks, and
improve the resource protocols with them to be a guide
for the analysis.

Third, we implement the analysis as a tool called stat-
edroid. Then we use it to conduct experiments on several
real Android applications and find several energy leaks.

The rest of the paper is constructed as follows: Section
II illustrates some examples that have potential resource
bugs or energy leaks. Section III presents the main algo-
rithms of our analysis. Section IV gives an application
of using the analysis to detect energy leaks. Section V
presents the selected implementation and experiments.
Section VI reviews related work and Section VII con-
cludes the paper.

II. ILLUSTRATED EXAMPLES

In this section, we illustrate some examples that may
have potential resource bugs or energy leaks.

As an example, Figure 1 shows a code snippet about
the file resource. This program first opens a file (Line 3).
Then it writes (Line 4) and reads (Line 5) the file con-
ditionally. Finally, it close the files conditionally as well
(Line 6). The program is not resource-safe. First, it does
not always close the opened file, as the close condition
(Line 6) may not hold. For instance, an I/O exception is
generated by the read or write action and programmers

1 public c l a s s Test {
2 public s t a t i c void main (s t r i n g [] args) {
3 f i l e = new RandomAccessFile (” f i l e ” , ”rw”) ;
4 i f (write cond) f i l e . wri te (” t e x t ”) ;
5 i f (read cond) s t r = f i l e . read () ;
6 i f (c lose cond) f i l e . c l o s e () ;
7 }
8 }

Fig. 1. Snippet Code of File

forget to close the file for that case. Second, if neither
the write condition (Line 4) nor read condition (Line 5) is
met, then the opened file will not be used at all. In that
case, an unneeded file is created and left open to cause
resource wasting.

Considering energy consumption (i.e., energy leaks), a
resource bug can cause energy leak. Let us consider the
snippet Android code of network in Figure 2, which has
some potential energy leaks caused by resource bugs.

This program seems correct, but there are several
situations that may cause energy leaks. First, if the
download condition (Line 6) is not met, for instance, a user
does not click, then the program would not download
any data. This indicates that HTTP connection is left
open unnecessarily, in which case unnecessary waste of
energy takes place. Second, the use condition (Line 9)
may not be met either. In that case, the downloaded data
would not be used, signifying unnecessary energy con-
sumption (for the unnecessary downloading). Moreover,
if the download again (Line 10) condition is met, then the
variable result would point to the newly downloaded
data, leaving the previously downloaded one inaccessi-
ble. So the former data is never used, leading to energy
leak. Even worse, if the connection and the input stream
are used only to download the unwanted data, then it
is clearly unnecessary to open the connection and the
input stream. In other words, the program may open the
unneeded HTTP connection and input stream to waste
energy, yielding an energy leak. Finally, even they are
needed, the connection and the input stream are not
closed at last. Thus it remains open to consume energy
until the exit of the application. For saving energy and
according to Javadoc for HttpURLConnection, it should
be closed eventually1.

III. STATE-TAINT ANALYSIS

In this section, we present a static analysis called state-
taint analysis to detect resource bugs. First, we specify the
usage of resources as resource protocols, which describe
how a resource should be used. Second, we propose
a static analysis, which takes resource protocols as a
guide, to detect resource usage bugs. Finally, we present
examples to illustrate our analysis.

1There exists a discussion about this close question in stackoverflow.
Interesting reader can refer to [10].

1 public c l a s s T e s t A c t i v i t y extends A c t i v i t y {
2 protected void onCreate (Bundle b) {
3 URL u r l = new URL(” http ://www. android . com”) ;
4 HttpURLConnection huc =
5 (HttpURLConnection) u r l . openConnection () ;
6 i f (download condition) {
7 InputStream out = huc . getInputStream () ;
8 S t r i n g r e s u l t = S t r i n g . valueOf (out . read ()) ;
9 i f (use condit ion) tv . s e t T e x t (r e s u l t) ;

10 i f (download again) {
11 r e s u l t = S t r i n g . valueOf (out . read ()) ;
12 }
13 }
14 }
15 }

Fig. 2. Snippet Android Code of Network

i/cstart o

u

O

U
C

U

Fig. 3. Abstract FSA for General Resources

A. Resource Protocols

A resource usage protocol specifies how a resource
should be used. Different resources can have different
protocols. Action sequences that do not satisfy resource
protocols may lead to resource bugs. Resource protocol
can be viewed as a kind of typestate properties [2], which
can be represented as finite state automata.

Concerning the open-but-not-used problem, a resource
intuitively has (at least) three states, namely i/c (i.e.,
the resource is in the initial state or closed), o (i.e.,
the resource is opened or required), and u (i.e., the
resource is used). An abstract automaton for general
resource protocols is shown in Figure 3, where O, U
and C are abstract actions denoting the relevant opening
(or acquiring), using and closing (or releasing) APIs of
resources for short respectively. Usually, the appropriate
action sequences for a resource should be in form of “O,
U, . . . , U, C”, namely OU+C in regular expression. Note
that there is at least one use action between the open and
close actions.

Depended on their usages and API documentation,
different resources can have different specific automata
generated from the abstract one in Figure 3. Take the file
resource for example. There are two kinds of usage for
a file: read and write. These two usages seem the same in
some cases, so the automaton could be the one in Figure
3. While in other case, users would like to distinguish
these two usages, thus the automaton in Figure 4 can
be used instead, where State u is spitted into rd and
wr, and Action U into RD (representing read action) and
WR (representing write action). Moreover, the protocol

i/cstart o

wr

rd

O

WR

RD

C

WR

RD

C

WR

RD

Fig. 4. Specific FSA for File

i/cstart oO

C

Fig. 5. Specific FSA for WakeLock

for WakeLock can be the specific automaton in Figure 5.
Let action(r, s, A) denote the action function, which

returns the state obtained by performing action A on
State s according to Protocol r if the action succeeds, or
error otherwise:

action(r, s, A) =

{
s′ s A−→ s′ ∈ r
error otherwise

We also generalise the action function action to a se-
quence of actions as

action(r, s, A1 A2 . . . An) = action(r, action(r, s, A1), A2 . . . An)

B. Main Analysis
Aiming to find out those inappropriate action se-

quences which are likely to cause resource bugs, we
propose a taint-like analysis, which combines typestate
checking [2] and taint analysis [9]. Different from taint
analysis, our analysis propagates the states of resource
protocols among the control flow graph (CFG) of a
program instead of simple source tags. During the prop-
agation, typestate checking is performed meanwhile,
that is, states will be checked and changed depending
on the relevant action according to the corresponding
automata. In short, we take resource protocols as a guide
to perform a taint-like analysis on CFG.

Generally, different resources have different APIs, yet
the same actions, namely, open, use, and close. So for
simplicity, we focus on three abstract statements. Sim-
ilar to [11], we also consider the assignments and the
function calls, while the others are routine and omitted.
Therefore, our analysis considers the following kinds of
abstract statements:

p = open r p = q
use r p p = q.f
close r p p.f = q
q = c.m(a1, . . . , an)

where n is the number of parameters of method m in
class c, and r represents any kind of resource.

Let R denote the set of the possible resources, r range
over elements of R, S denote the set of the possible
resource states (i.e., {i, o, u}), s range over elements of S,
V denote the set of the variables or fields in a program,
and v range over subsets of V.

The analysis takes as input the control-flow graph
(CFG) of a program and the automaton specifying the
resource usage protocol. Besides states of the automaton,
the analysis also tracks which kinds of resources are
acquired and which variables and fields are “tainted”.
Formally, the data fact (or property) that the analysis
tracks is a set of tripes (r, s, v), meaning that the resource
r is at the state s, and may be managed by the variable set
v. We represent variables and fields as access paths [12]
up to a fixed length. An access path is an expression
comprised of a variable followed by a (possibly empty)
sequence of field names. For instance, p. f .g represents
an access path of length 2. Besides, different paths to
a node of CFG can obtain different states for the same
resource. As we would like to identify in which path a
resource could cause resource bugs, we include different
states for the same resource into a set rather than unify
them. Therefore, we do not need to impose a partial
order on states, although it can be done easily. The main
algorithm is essentially a classic data flow algorithm,
which is shown in Algorithm 1.

This algorithm starts from the entry nodes of CFG
with the empty data-fact mapping (Lines 1− 3). For each
node t, the algorithm applies its corresponding transfer
function, yielding a data fact d to its successors (Line 6).
The transfer functions either check whether the resource
action conforms to the corresponding resource protocol,
or propagate the resource information, which are pre-
sented in Section III-C. If the data fact d is different from
the original data fact D(t′) of a successor t′ (Line 8), that
is, some data facts are fresh, then the algorithm update
D(t′) by unioning D(t′) and d (Line 9), and enqueue t′

into the queue p (Line 11). The algorithm traverses over
CFG until p is empty, that is, until the data-fact mapping
is no longer updated (Lines 4− 11).

Since the states of the protocol automaton, the vari-
ables and fields are finite, (and the length of access paths
is limited), the triples are finite as well. Therefore, the
state-taint analysis algorithm terminates finally.

In addition to the statecheck of data facts during the
traversal of CFG (see the transfer functions in the next
subsection), after the data fact mapping is computed,
we also check the data fact at the exit node of each
function to ensure that the resources managed by the
local variables are released. The exit checking algorithm
is shown in Algorithm 2, where local(f) returns all the
local variables of the function f and r.accepts returns
the set of accepted states of automaton r. Note that, the
global or static variables are considered as local variables

Algorithm 1: State-Taint Analysis Algorithm
Input: CFG, resource protocol (an automaton)
Output: The data fact mapping D

1 for each node t ∈ CFG do
2 Let D(t) = ∅

3 enqueue each entry point into queue q
4 while q is nonempty do
5 t← dequeue p
6 d← apply the transfer function of t on D(t)

w.r.t. the resource protocol
7 for each successor t′ of t do
8 if d 6= D(t′) then
9 D(t′)← d ∪ D(t′)

10 if t′ /∈ q then
11 enqueue t′ into q

12 return D

of the main function.

Algorithm 2: Exit Checking Algorithm
Input: The data fact mapping D

1 for each exit of each function f do
2 for each (r, s, v) ∈ D(exit) do
3 if s /∈ r.accepts ∧ v ⊆ local(f) then
4 statecheck (r, s, v)

C. Transfer Functions

Consider the transfer functions for intra-procedural
analysis first, which are shown in Figure 6. For the open
action p = open r, it first creates a new data fact (r, o, {p})
and kills the data facts that were managed formerly
by p. Then it checks the newly generated data fact: if
a resource is managed by no variables and its state is
unaccepted, then a resource bug is reported. The use
and close actions change the states of resources managed
by p according to the resource protocol automaton re-
spectively. After that, the states are checked: if it is an
error state, then report it. The assign statement p = q
kills the data fact managed by p, and shares the resource
currently managed by q to p (i.e., if q is “tainted”, then
p is “tainted” as well). Similarly to p = q.f and p.f = q.

For inter-procedural analysis, we assume that there is
a call edge from a call statement to each of the possible
callees, and there is a return edge from the exit of a callee
to each of the call statements that could have invoked it.
Consider a call statement q = c.m(a1, . . . , an). Generally,
the call flow function fcall will transfer a resource r,
managed by an argument ai, to its corresponding formal
parameter pi. If the caller’s context contains a resource

Statement Transfer Function f (d)
p = open r {(r, o, {p})} ∪ statecheck(kill(d, p))

use r p statecheck({(r, action(r, s, U), v) | (r, s, v) ∈ li f t(d, p)}) ∪ (d \ li f t(d, p))
close r p statecheck({(r, action(r, s, C), v) | (r, s, v) ∈ li f t(d, p)}) ∪ (d \ li f t(d, p))

p = q {(r, s, (v ∪ {p.π}) | (r, s, v) ∈ d ∧ q.π ∈ v} ∪ statecheck(kill(d, p))
p = q.f {(r, s, (v ∪ {p.π}) | (r, s, v) ∈ d ∧ q. f .π ∈ v} ∪ statecheck(kill(d, p))
p.f = q {(r, s, (v ∪ {p. f .π}) | (r, s, v) ∈ d ∧ q.π ∈ v} ∪ statecheck(killalias(d, p, f))
others d

Function Output
remove(v, p) v \ {p.π | p.π ∈ v}, π is any access path

kill(d, p) {(r, s, remove(v, p)) | (r, s, v) ∈ d}
li f t(d, p) {(r, s, v) ∈ d | ∃q ∈ v. alias(p, q)}and report error when empty

killalias(d, p, f) {(r, s, remove(v, q. f)) | (r, s, v) ∈ d ∧ alias(p, q)}

statecheck(d) {(r, s, v) | (r, s, v) ∈ d ∧ s 6= error ∧ v 6= ∅}
if s = error ∨ (v = ∅ ∧ s /∈ r.accepts) then report

Fig. 6. Transfer Functions for Intra-Procedural

r, then fcall will also transfer r to the callee’s context by
replacing c with this. The call flow function is:

fcall(d) = ∪
{
{(r, s, this.π) | (r, s, c.π) ∈ d}
{(r, s, qi.π) | (r, s, ai.π) ∈ d}

The return flow function fret will do the opposite thing
instead. Besides, if the return value x is “tainted”, then
the assignment to q makes it “tainted” as well. The return
flow function is shown as follows:

fret(d) = ∪

{(r, s, c.π) | (r, s, this.π) ∈ d}
{(r, s, ai.π) | (r, s, pi.π) ∈ d ∧ ¬immut(ai)}
{(r, s, q.π) | (r, s, x.π) ∈ d}

where immut(a) returns true iff a is a primitive or
immutable data, such as Int, Sting, etc.

The alias analysis is triggered by the use or close
actions and the assignments to heap variables. The alias
analysis can be any alias analysis. The more precise
the alias analysis is, the more precise result we can
get. For instance, with a must-alias analysis fewer but
preciser result can be obtained than with a may-alias
one. Here we use the on-demand alias analysis adopted
by flowdroid [9], since it is efficient and context-sensitive.

D. Example
Consider the file example illustrated in Section II

again. For convenience, we focus on the resource actions
and represent them in our abstract statement presented
above. Figure 7 gives the CFG of the file example, where
di are data facts to be computed.

The open action generates (f , o, { f ile}) (i.e., d1), which
flows to d2− d5. While the wirte and read actions change
any state to w and r respectively. For d4, there are three
sources: d1, d2 and d3. According to the protocol in
Figure 4, the close action closes d2 and d3 normally except
for d1, since the state of d1 is o, indicating that the open

Fig. 7. Control Flow Graph of File Example

file has not been used yet. Finally, all the data facts above
will flow to the exit node, thus d5 is the union of d1− d4,
that is, d5 = d1 ∪ d2 ∪ d3 ∪ d4. All the data facts are shown
in Table I.

TABLE I
DATA FACTS FOR FILE EXAMPLE

di Data Fact
d1 {(f , o, { f ile})}
d2 {(f , w, { f ile})}
d3 {(f , r, { f ile})}
d4 {(f , c, { f ile}), (f , error, { f ile})}
d5

{(f , o, { f ile}), (f , w, { f ile}), (f , r, { f ile}),
(f , c, { f ile}), (f , error, { f ile})}

Let us check the data fact of the exit node. Only the

i/cstart o

u

O

U

C/el

O/el

C O/el
U

Fig. 8. Abstract FSA with Energy Leak

triple (f , c, { f ile}) is accepted. The data fact indicates
that (i) the file may be opened but not used or closed
in some situation (i.e., at the state o); (ii) the file may be
opened and then used to read or write, but not closed
eventually (i.e., at the state r or w); (iii) the file may be
opened and closed correctly without using (i.e., error).
These are the possible resource bugs that illustrated in
Section II.

IV. APPLICATION: ENERGY LEAK

Over the recent years, the popularity of smartphones
has increased dramatically. This has led to a widespread
availability of smartphone applications. Since energy is
a scarce resource for smartphones, mobile applications
should be energy efficient. However, many applications
are energy inefficient and can suffer energy leaks. Exist-
ing studies show that eliminating energy leaks can result
in a good reduction in energy consumption [8], [13].
Therefore, to detect energy leaks is a meaningful task
for smartphone applications. As an application, we show
our proposed state-taint analysis can be easily adapted to
detect energy leaks for smartphone applications.

As discussed in Section I, a resource bug can cause en-
ergy leak, e.g. if a resource is left open to consume energy
unnecessarily, as also illustrated in the Android code for
network in Section II, where the HTTP connection is kept
open. However, not necessarily all resource bugs lead to
energy leaks, for instance, to use a closed resource is a
resource bug but may not cause noticeable energy leak.
Therefore, we distinguish actions that may cause energy
leaks from other inappropriate actions, and enrich our
resource usage protocol with such a distinction.

Figure 8 shows an abstract automaton for the im-
proved protocol, where el denotes that the corresponding
action may cause an energy leak. Generally, if an unac-
cepted state of a resource reaches the exit node, then
an energy leak is caused by this resource, since it is
not closed eventually. Moreover, a resource should not
be opened again, since the former one is not yet used
and may remain open to consume energy. An opened
resource should be used before closing. Otherwise, to
open it is useless and could cause energy waste.

Let us use these improved protocols to guide state-
taint analysis to analyse the network example illustrated
in Section II. Similarly, we focus on the resource actions

and represent them in our abstract statement for conve-
nience. Due to limited space, we just consider the data
facts for the last action node (i.e. the last download action)
and the exit node of CFG, which are shown in Table II,
where hc, is and dl represent the HTTP connection, input
stream and downloaded data respectively2.

TABLE II
PARTIAL DATA FACTS FOR NETWORK EXAMPLE

Node Data Fact

result = open dl
{(hc, o, {huc}), (hc, u, {huc}), (is, u, {out}),

(dl, o, {result})} → el(dl,o,{result})

exit {(hc, o, {huc}), (hc, u, {huc}), (is, u, {out}),
(dl, o, {result}), (dl, u, {result})}

First, the analysis will generate an energy leak for
the download action, since the variable result may point
to some downloaded but unused data. Next, let us
check the data fact of the exit node. Only the triple
(dl, u, {result}) is accepted. The data fact indicates that
(i) the http connection may be opened but not used or
closed in some situation; (ii) the input stream is not
closed; (iii) the download data may not be used in some
situation. These are the possible energy leaks illustrated
in Section II earlier.

V. IMPLEMENTATION AND EXPERIMENTS

We have implemented our analysis as a tool called
statedroid to detect energy leaks for Android applications,
which consists of two parts: the front-end and the back-
end. The front-end parses an apk file and then builds
a control flow graph, which is passed to the back-
end as input. We build our tools based on flowdroid,
since its front-end almost does the same things as ours.
Interesting readers can refer to [9] for more details.
While the back-end takes as input the control flow graph
built by the front-end and the resource protocols, and
performs state-taint analysis and exit checking presented
in Section III. Our state-taint analysis is implemented
upon the IFDS framework [14].

To evaluate our analysis, we have conducted a series
of experiments on real Android applications by using
statedroid. First, we collected 100 real Android appli-
cations from F-Droid, a famous free and open source
Android application repository, since it is easy to obtain
the source codes for open source applications. Then we
performed our tool statedroid on each application, taking
the resource protocols for http connection as a guide.
Our experiments are run on a machine with Intel core
I5 CPU and 4GB RAM, running Ubuntu 14.04.

Among these 100 applications, our tool reports that
18 applications have energy bugs. Table III summarises
our findings3 of these 100 applications, where O denotes

2By present, we consider each resource separately. We left the
embedded resources for future work.

3We exclude the bugs caused by exceptions, as there are too many
such kind of bugs and not all of them are interesting.

an opened resource which is neither used nor closed, U
denotes an opened resource which is used but not closed,
C denotes a resource that is closed eventually without
using, T. denotes the total resource bugs reported by our
tool, and FP denotes the resource bugs reported by our
tool but cannot be rediscovered manually. The results
shows that lots of bugs are due to the unclosed-ness (i.e.,
O and U). The reason is that programmers are prone
to forget to close the resource for every exit. Moreover,
there are also many bugs due to the unused-ness (i.e.,
O and C). This is because programers are likely to open
the resource in advance and close the resource at the last
minute without considering it is in need or not.

We also performed manual analysis on the source
codes of these applications where energy bugs are re-
ported, and found that 13 energy bugs turn out to be
false positives. There are several reasons for these 13
false positives. The first one is the null pointer checking,
due to which 69.2% (9) false positives are generated.
However, since we maintain some relations between
resources and variables, we can improve our analysis to
check the null pointer for some variables by these rela-
tions, which would reduce the false positives and is left
for future work. The second reason is that a variable such
as state is used to simulate the status of resources, and
different actions are allowed to depend on this variable.
Our analysis can not catch this variable. Another reason
is that a type checking is performed before closing, for
example, con instanceof HttpURLConnection is performed
before closing con in applicatioin Mirrored.

In addition, the running time of our tool ranges from
2.4s to 152.8s with an average of 46.4s, and the memory
overhead is from 68.6MB to 1186.4MB with an average
of 648.5MB, which indicates that our tool is lightweight
and easy to use in practice.

TABLE III
RESULTS FOR SELECTED APPLICATIONS

App. O U C T. FP LOC Time Mem.
antennapod 1 4 0 5 0 28529 152.8 1010.5

bible 3 0 2 5 2 27099 122.0 800.5
coolreader 2 1 0 3 0 5326 58.1 307.1

cordova 12 2 2 16 0 38488 61.1 946.0
derbund 14 0 0 14 0 9981 9.4 718.8
gearshift 3 1 1 5 1 17504 131.0 609.4

giga 1 0 0 1 0 11636 9.4 436.8
goblim 1 1 0 2 0 9402 39.5 328.6

impeller 21 1 0 22 0 26426 46.0 651.5
kontalk 6 1 2 9 1 44480 128.6 1121.9

lico 2 0 0 2 0 3382 3.5 501.6
mirakel 2 2 0 4 0 37991 12.6 1091.6

Mirrored 1 2 1 4 4 2395 2.4 550.4
movement 2 0 0 2 1 991 13.8 68.6

muzei 2 0 0 2 2 3960 33.5 218.8
openmensa 0 3 0 3 0 7546 4.8 414.9

remote 0 1 0 1 0 3819 2.5 709.0
tether 1 1 0 2 2 9570 5.0 1186.4
Total 74 20 8 102 13 - - -
Aver. - - - - - 16029.2 46.4 648.5

VI. RELATED WORK

There are many related works about resource usage
analysis, such as resource management, API usages, and
energy bugs. Here we discuss some of the most related
ones.

Resource Usage Analysis. DeLine and Fähndrich [3]
proposed a type system to keep track of the state
(called a key) of a resource. The state of a resource
determines what operations can be performed on the
resource, and the state changes after operations are
performed. Therefore, keys in their type system roughly
correspond to the states of protocols in our state-taint
analysis. However, their keys did not consider the open-
but-not-used issue, that is, an opened resource should be
used. Moreover, their type system requires programmers
to provide explicit type annotations (including keys) to
guide an analysis, which is not so easy to give.

Igarashi and Kobayashi [1] formalized a general prob-
lem of how each resource is accessed as a resource usage
analysis problem, and proposed a type-based method
to check whether the inferred resource usage matches
the programmer’s intention. As a follow-up, Kobayashi
refined their type-based analysis by introducing a new
notion of time regions [6] , which can express how often
an action can perform in a region of time. Their type
system is powerful and can deal with concurrent access
to a resource. However, the type system is too complex
to use in practice for detecting resource bugs or energy
leaks.

Kang et al. [7] presented a path sensitive type system
for resource usage verification. They introduced typing
rules for conditions in branches to determine the boolean
value of condition as possible. In contrast, our analysis
just union branches simply, thus is approximated. For
example, if (f != null) then f.close() is correct for their type
system, but is considered problematic in our analysis.
Nevertheless, we can improve our analysis to handle
some branches with the consistent checking in [11]. Our
price is very low, while their price is to put lots of
information into types.

Marriott et al. [5] specified the resource usage policy
as an automaton and the program as a context-free
grammar, and then checked whether the language of the
grammar is contained in the automaton. This is very sim-
ilar to our analysis. But our analysis can analyse several
resources at the same time while their analysis does one
resource at a time. Besides, they did not consider the
open-but-not-used issue.

Torlak and Chandra [11] presented an effective data
analysis to detect resource leaks. Their analysis is very
close to our analysis, but our analysis can detect not only
resource leaks, but also other resource bugs and energy
leaks.

Fink et al. [15] proposed an effective typestate verifica-
tion in the presence of aliasing to check correct API usage

for various Java standard libraries. Their verification
tracks a must-alias set, a may-alias set and a must-not-
alias set meanwhile, thus it can handle aliasing very
well. In contrast, our approach considers just one must
or may alias set. Although less precise, ours incurs lower
cost and is simpler to use for detecting resource bugs.
Moreover, their verification did not ensure that a close
API should be called for a resource eventually nor that
a use API should be called for an opened resource.

Besides, there are some other works that analyse
or verify the bound usage or size property of re-
sources [16]–[20], while our analysis concerns about the
correct usage of resource (to avoid energy leaks).

Energy Bugs. There are many solutions proposed to
detect energy bugs for applications. Most of them rely
on energy profilers to record resource usage and relevant
events or codes. Although they can identify some energy
leaks and energy hots, they may not find the root causes
for the bugs. Interesting readers can refer to [21] for
more detail. Here we discuss those that adopt program
analysis, and consider the root causes of energy leaks.

Pathak et al. [22] proposed a data flow analysis to
check Wakelock API (i.e., on and off) to find no sleep
bugs. Chaorong Guo et al. [23] built a function call graph
and then checked whether require and release actions are
matched. These methods consider simper resource pro-
tocols, with only open and close states, than our analysis.

Zhang Lide et al. [8] presented a dynamic taint-
tracking to detect energy leaks resulting from unnec-
essary network communication. Yepang Liu et al. [24]
used Java Path Finder not only to monitor sensor and
wake lock operations to detect missing deactivation of
sensors and wake locks, but also tracked the utilization
of sensory data. Compared to our analysis, these two
methods considered partial usages of network, sensors
and wake locks.

VII. DISCUSSION AND CONCLUSION

We have proposed a state-taint analysis, guided by
user-specified resource usage protocols, for easy detec-
tion of resource usage bugs. The analysis is general as it
can work with different customised resource usage pro-
tocols. As an application, we have shown the proposed
state-taint analysis can be used to detect energy leaks
for Android applications. To demonstrate the viability
of the approach, we have implemented the analysis
in a prototype tool and carried out some interesting
experiments.

As for future work, we may consider embedded re-
sources whereby a resource may contain or open another
resource. We can improve the protocols and/or the anal-
ysis to take into account the relations between resources.
We can also improve our analysis to deal with the null
pointer checking to reduce false positives.

Acknowledgements. The authors would like to thank
the anonymous reviewers for their helpful comments.

This work was partially supported by the National
Natural Science Foundation of China under Grants
No. 61502308 and 61373033, Science and Technol-
ogy Foundation of Shenzhen City under Grant No.
JCYJ201418193546117.

REFERENCES

[1] A. Igarashi and N. Kobayashi, “Resource usage analysis,” in
POPL ’02, 2002, pp. 331–342.

[2] R. E. Strom and S. Yemini, “Typestate: A programming language
concept for enhancing software reliability,” IEEE Trans. Softw.
Eng., vol. 12, no. 1, pp. 157–171, jan 1986.

[3] R. DeLine and M. Fähndrich, “Enforcing high-level protocols in
low-level software,” in PLDI ’01, 2001, pp. 59–69.

[4] J. S. Foster, T. Terauchi, and A. Aiken, “Flow-sensitive type
qualifiers,” in PLDI 02, vol. 37, no. 5, 2002, pp. 1–12.

[5] K. Marriott, P. Stuckey, and M. Sulzmann, “Resource usage veri-
fication,” in APLAS 03, vol. 2895, 2003, pp. 212–229.

[6] N. Kobayashi, “Time regions and effects for resource usage anal-
ysis,” Acm Sigplan Notices, vol. 38, no. 3, pp. 50–61, 2003.

[7] H.-G. Kang, Y. Kim, T. Han, and H. Han, “A path sensitive type
system for resource usage verification of c like languages,” in
APLAS ’05, 2005, pp. 264–280.

[8] L. Zhang, M. S. Gordon, R. P. Dick, Z. M. Mao, P. Dinda, and
L. Yang, “ADEL: An automatic detector of energy leaks for
smartphone applications,” in CODES+ISSS ’12, 2012, pp. 363–372.

[9] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise con-
text, flow, field, object-sensitive and lifecycle-aware taint analysis
for android apps,” in PLDI ’14, 2014, pp. 259–269.

[10] Do I need to call HttpURLConnection.disconnect after finish us-
ing it, http://stackoverflow.com/questions/11056088/do-i-need-
to-call-httpurlconnection-disconnect-after-finish-using-it.

[11] E. Torlak and S. Chandra, “Effective interprocedural resource leak
detection,” in ICSE ’10, 2010, pp. 535–544.

[12] O. Tripp, M. Pistoia, P. Cousot, R. Cousot, and S. Guarnieri,
“Andromeda: Accurate and scalable security analysis of web
applications,” in FASE 13, vol. 7793, 2013, pp. 210–225.

[13] X. Ma, P. Huang, X. Jin, P. Wang, S. Park, D. Shen, Y. Zhou,
L. K. Saul, and G. M. Voelker, “edoctor: Automatically diagnosing
abnormal battery drain issues on smartphones,” in NSDI 13, 2013,
pp. 57–70.

[14] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural
dataflow analysis via graph reachability,” in POPL ’95, 1995, pp.
49–61.

[15] S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay, “Effective
typestate verification in the presence of aliasing,” in ISSTA 06,
2006, pp. 133–144.

[16] W.-N. Chin, H. H. Nguyen, S. Qin, and M. Rinard, “Memory
usage verification for oo programs,” in SAS 05, 2005.

[17] W.-N. Chin, S.-C. Khoo, S. Qin, C. Popeea, and H. H. Nguyen,
“Verifying safety policies with size properties and alias controls,”
in ICSE 05, 2005.

[18] G. He, S. Qin, C. Luo, and W.-N. Chin, “Memory usage verifica-
tion using hip/sleek,” in ATVA 09, 2009, pp. 166–181.

[19] M. Bartoletti, P. Degano, G. L. Ferrari, and R. Zunino, “Types and
effects for resource usage analysis,” in FOSSACS 07, 2007, p. 3247.

[20] W.-N. Chin, H. H. Nguyen, C. Popeea, and S. Qin, “Analysing
memory resource bounds for low-level programs,” in ISMM’08,
2008.

[21] M. A. Hoque, M. Siekkinen, K. N. Khan, Y. Xiao, and S. Tarkoma,
“Modeling, profiling, and debugging the energy consumption of
mobile devices,” ACM Comput. Surv., October 2015.

[22] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff, “What is keeping
my phone awake?: Characterizing and detecting no-sleep energy
bugs in smartphone apps,” in MobiSys ’12, 2012, pp. 267–280.

[23] C. Guo, J. Zhang, J. Yan, Z. Zhang, and Y. Zhang, “Characterizing
and detecting resource leaks in android applications,” in ASE
2013, 2013, pp. 389–398.

[24] Y. Liu, C. Xu, S. Cheung, and J. Lu, “Greendroid: Automated
diagnosis of energy inefficiency for smartphone applications,”
TSE, vol. 40, no. 9, pp. 911–940, 2014.

