
A synergy of costly punishment and
commitment in cooperation dilemmas

Journal Title
XX(X):1–11
c©The Author(s) 2016

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

The Anh Han1 and Tom Lenaerts2,3

Abstract
To ensure cooperation in the Prisoner’s Dilemma, individuals may require prior commitments from others, subject to
compensations when agreements to cooperate are violated. Alternatively, individuals may prefer to behave reactively,
without arranging prior commitments, by simply punishing those who misbehave. These two mechanisms have been
shown to promote the emergence of cooperation, yet are complementary in the way they aim to promote cooperation.
Although both mechanisms have their specific limitations, either one of them can overcome the problems of the
other. On one hand, costly punishment requires an excessive effect-to-cost ratio to be successful, and this ratio can
be significantly reduced by arranging a prior commitment with a more limited compensation. On the other hand,
commitment-proposing strategies can be suppressed by free-riding strategies that commit only when someone else
is paying the cost to arrange the deal, whom in turn can be dealt with more effectively by reactive punishers. Using
methods from Evolutionary Game Theory, we present here an analytical model showing that there is a wide range of
settings for which the combined strategy outperforms either strategy by itself, leading to significantly higher levels of
cooperation. Interestingly, the improvement is most significant when the cost of arranging commitments is sufficiently
high and the penalty reaches a certain threshold, thereby overcoming the weaknesses of both mechanisms.
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Introduction

The problem of explaining the evolution of cooperative
behaviour has been actively investigated in many fields,
from Evolutionary Biology, Ecology, Computer Science
to Economics and Social Science. Several mechanisms
responsible for the evolution of cooperation have been
proposed, from kin and group selection to direct and
indirect reciprocity, to structured populations, and to
punishment (Nowak 2006b,a; West et al. 2007; Perc et al.
2013; Sigmund 2010). An extensive body of theoretical
and experimental evidence have shown that arranging
prior commitments with posterior compensations promotes
the evolution of cooperation (Ostrom 1990; Nesse 2001;
Gerber and Wichardt 2009; Cherry and McEvoy 2013;
Miettinen 2013; Han et al. 2013a, 2015b,c), even when
the interaction is one-shot, i.e. not repeated. Arranging
prior commitments, such as through enforceable contracts
or pledges (Chen and Komorita 1994), deposit-refund
schemes (Gerber and Wichardt 2009; Cherry and McEvoy
2013; Sasaki et al. 2015) or even emotional or reputation-
based commitment devices (Frank 1988; Nesse 2001),
enforces others to cooperate, as it requires them to reveal
their preferences or intentions (Chen and Komorita 1994;

Sterelny 2012; Han et al. 2011, 2012a; Han 2013). This
behaviour is ubiquitous in various human activities, ranging
from personal to group and international relationships
(Frank 1988; Chen and Komorita 1994; Nesse 2001; Cherry
and McEvoy 2013). For instance, contracts are a popular
kind of commitment, playing a key role in enforcing
cooperation in modern societies (Skyrms 1996; Nesse
2001). Commitments are also widely studied and utilised
in multi-agent and autonomous agent systems, in order to
ensure high levels of cooperation among agents (Schelling
1990; Wooldridge and Jennings 1999; Castelfranchi and
Falcone 2010; Winikoff 2007).

Another important mechanism that promotes cooperation
in one-shot interactions is costly punishment, where a
punisher pays a cost to punish another player who
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misbehaves (Fehr and Gachter 2002; Fehr and Gächter
2000; Boyd et al. 2003; Henrich et al. 2006; Hauert
et al. 2007; Egas and Riedl 2008; Wu et al. 2009; Guala
2012; Traulsen et al. 2012). Unlike commitment, this
strategy does not request a prior agreement from the co-
player before the interaction. Instead, players will reactively
punish those that misbehave (if he or she can be identified)
once the interaction has taken place. Several theoretical and
experimental studies have shown that this kind of costly
punishment can evolve in well-mixed populations only if
it is cost-effective, i.e. when the punished agent suffers a
sufficiently higher cost than the punisher (Sigmund et al.
2001; Boyd et al. 2003; Carpenter 2007; Anderson and
Putterman 2006; Nikiforakis and Normann 2008; Egas and
Riedl 2008; Wu et al. 2009) ∗. This issue has also been
shown to be facilitated in structured populations as a result
of strategies segregation (Brandt et al. 2003; Nakamaru and
Iwasa 2005; Perc and Szolnoki 2012; Szolnoki and Perc
2013): spatial interactions may make it possible for costly
punishers to avoid being exploited by second-order free-
riders and fight against defectors more effectively (Helbing
et al. 2010a,b).

These two strategies, i.e. commitments and costly pun-
ishment, compel others to cooperate in a complementary
manner. Commitment proposers force participants in a
game to reveal their intentions or preferences (Chen and
Komorita 1994; Han et al. 2015c,a). Yet, even when co-
players accept the commitment and behave appropriately,
they can still decide not to initiate such agreements them-
selves as this is costly, and defect when no agreement is
established. Especially when the commitment cost is high,
this kind of free-riders, which benefit directly from the
efforts of commitment proposing strategies, can dominate
(Cherry and McEvoy 2013; Han et al. 2013a), leading to
destruction of cooperation and social welfare. Punishing
strategies do not experience this problem. They can effec-
tively deal with different types of players free-riding on
the investments of commitment proposers, especially since
they defect when no agreement was established. Yet, within
the context of well-mixed populations as was mentioned
earlier, costly punishment only thrives when there is an
excessive effect-to-cost ratio (Carpenter 2007; Anderson
and Putterman 2006; Nikiforakis and Normann 2008; Egas
and Riedl 2008; Wu et al. 2009; Han et al. 2013a), which is
not the case for commitment proposing strategies: Arrang-
ing a prior agreement regarding the posterior compensation
does not require that compensation to scale with the cost
of setting up the agreement, as was shown in (Han et al.
2013a, 2015b), reducing significantly the punishment fine
necessary to induce an effect on the level of cooperation.
Given this complementarity, we hypothesise that a weighted

combination of these two mutually complementary strate-
gies should lead to a better solution in coping with free-
riding behaviours and as a consequence with the evolution
of cooperation.

Resorting to Evolutionary Game Theory (EGT) methods
(Maynard-Smith 1982; Hofbauer and Sigmund 1998;
Sigmund 2010), we study the conditions for when a
weighted combination of these two strategies may lead to a
more favourable outcome for cooperative behaviour in the
one-shot Prisoner’s Dilemma (PD) (Trivers 1971; Sigmund
2010). In this game, rational choice determines that it is
better for each player not to cooperate, even though both
would be better off cooperating (see detailed description
in the next section). Consequently, evolutionary game
dynamics predicts that under those conditions cooperation
disappears (Hardin 1968; Nowak 2006b,a; Sigmund 2010).
Here, the synergy of the two strategies, arranging prior
commitments and costly punishment, will be characterised
by a single parameter, which describes the probability that
either strategy is used in the PD. We study both analytically
and through numerical simulations, the range of this value
that will allow the combined strategy to overcome the
weaknesses of both strategies, thereby leading to a higher
level of cooperation than the one achieved by either strategy
by itself. Our results show that there is always a wide range
of values for this parameter where the synergistic strategy
performs better than both strategies independently.

The remainder of this paper is structured as follows. The
next section describes the model combining commitment
and punishment strategies in the one-shot Prisoner’s
Dilemma, and the EGT methods used to analyse the model.
Then, in Results section, analytical and numerical results
are presented. The paper ends with a discussion and some
directions for future work. We also provide a separate
Supporting Information (SI) text that contains additional
results and supporting analysis, which is referred to in the
paper where relevant.

Models and Methods
We first recall the definition of the Prisoner’s Dilemma
game and its extension with strategies that allow for the
creation of commitment strategies (Han et al. 2012b, 2013a)
or strategies using posterior costly punishment (Sigmund

∗Note that this argument appears to be valid in well-mixed populations
only when antisocial punishment, which has defectors punishing
cooperators, is not allowed or unavailable (Herrmann et al. 2008;
Rand et al. 2010; Rand and Nowak 2011; Hilbe and Traulsen 2012).
Institutionalising punishment (a.k.a. pool punishment) wherein the
punishment duty is shared or coordinated among several players rather
than being carried by a single player, can overcome the cost efficiency
issue (Boyd et al. 2010; Sigmund et al. 2010; Sasaki et al. 2012; Szolnoki
et al. 2011b; Hilbe et al. 2014; Schoenmakers et al. 2014).
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et al. 2001; Boyd et al. 2003). We then describe our
model for the synergy of prior commitments and posterior
punishment.

One-shot Prisoner’s Dilemma (PD)
As usual, for the one-shot Prisoner’s Dilemma (PD) game
the four possible outcomes resulting from the action choices
of the two players can be written down as a symmetric
payoff matrix (Trivers 1971; Sigmund 2010)

( C D

C R,R S, T
D T, S P, P

)
,

with the entries of this matrix satisfying the ordering
T > R > P > S (Coombs 1973). The interpretation of
these entries is explained as follows: Once the interaction
is established and both players have decided to play C
( D), both players receive the same reward R (penalty
P ) for mutual cooperation (mutual defection). Unilateral
cooperation provides the sucker’s payoff S for the
cooperative player and the temptation to defect T for the
defective one. Changing the ordering of the matrix entries
will result in different kinds of social dilemmas with their
specific Nash Equilibria. For the sake of mathematical
simplicity, the Donor game (Sigmund 2010), a special case
of the PD, is sometimes used: T = b, R = b− c, P =
0, S = −c, where b and c correspond to the benefit and
cost of cooperation, respectively.

Commitment and costly punishment in the
Prisoner’s Dilemma
Before playing the PD, a commitment strategy (denoted
by COMP), proposes to her co-player to commit to the
game and cooperate. As arranging agreements or exposing
others’ intentions may be costly, the proposer has to pay
an arrangement cost ε1. If the co-player agrees with the
deal, then COMP assumes that the opponent will cooperate,
yet there is no guarantee that this will actually be the
case. When the opponent accepted the commitment and
later does not cooperate, she has to compensate the non-
defaulting player at a personal cost δ1.

Next to the traditional unconditional cooperators (C, who
always commit when being proposed a commitment deal,
cooperate whenever the PD is played, but do not propose
commitment themselves) and unconditional cooperators
(D, who do not accept commitment, defect when the PD
takes place, and do not propose commitment), we consider
two commitment free-riding strategies, which have been
shown to become dominant under certain conditions in the
pair-wise PD situation (Han et al. 2013a):

1. Fake committers (FAKE), who accept a commitment
proposal yet do not cooperate whenever the PD takes

place. These players assume that they can exploit the
commitment proposing players without suffering the
consequences;

2. Commitment free-riders (FREE), who defect unless
being proposed a commitment, which they then
accept and cooperate subsequently in the PD. In other
words, these players are willing to cooperate when a
commitment is proposed but are not prepared to pay
the cost of setting it up.

In the following sections, we consider well-mixed, finite
populations of a constant size N , composed of those
five strategies, i.e. COMP, C, FREE, D, and FAKE. We
have shown, both analytically and numerically, that COMP
dominates when the cost of arranging commitment ε1 is
justified with respect to the cost of cooperation c and
the compensation δ1 is sufficiently high, leading to a
substantial level of cooperation (Han et al. 2013a) (see
also SI, Figure S1). If these conditions are not satisfied,
then either the FREE or FAKE players will dominate
the population making it also possible for D players to
dominate commitment proposers at higher initiation costs.
Important to understand is that the cost of setting up
the agreement (ε1) is the essential factor, since when the
compensation (δ1) reaches a certain threshold, increasing it
does not lead to any noticeable improvement for the level
of cooperation (Han et al. 2013a).

Adding now all five strategies, the following payoff
matrix for the pairwise PD is obtained (Han et al. 2013a):

M1 =


COMP C D FAKE FREE

COMP R− ε1
2

R− ε1 0 S + δ1 − ε1 R− ε1
C R R S S S
D 0 T P P P
FAKE T − δ1 T P P P
FREE R T P P P

.
(1)

Let us in turn determine the dominance conditions for
the costly punishment strategy (CP) (Sigmund et al. 2001;
Boyd et al. 2003; Hauert et al. 2007). It behaves as a
standard C player in the PD, but unlike a C player, it
punishes its co-player if she defects in the game. That
punishment consists in paying a personal cost ε2 to reduce
the defector’s payoff by δ2. Replacing COMP with CP
in the previous payoff matrix, provides the following new
payoff matrix

M2 =


CP C D FAKE FREE

CP R R S − ε2 S − ε2 S − ε2
C R R S S S
D T − δ2 T P P P
FAKE T − δ2 T P P P
FREE T − δ2 T P P P

.
(2)
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Similar to COMP, the lower the cost ε2, the higher
frequency of CP. But in contrast to COMP, the frequency
of CP increases with δ2 when assuming a specific value
of ε2 (see SI, Figure S1). However, when the cost of
commitment is sufficiently small, to reach the same level
of cooperation as in the commitment model a much more
severe punishment is required for an equivalent cost,
especially when the PD is less harsh. As such, commitment
effectively reduces the cost-to-impact ratio in this case, an
inefficient situation typically observed for CP in well-mixed
populations (Anderson and Putterman 2006; Egas and Riedl
2008; Han et al. 2013a).

The synergy of commitment and punishment
strategies.
We now introduce a new strategy, denoted by CPP, that
combines COMP and CP in the following manner: With
probability q, CPP uses strategy COMP, and CP otherwise
(i.e. with probability 1− q). Except for the payoff when
CPP player encounters another CPP player, the payoff
matrix in case of CPP reads

MCPP = q ×M1 + (1− q)×M2. (3)

The average payoff of a CPP player when playing with
another CPP player is

(1− q)2R+ (1− q)qR+ q(1− q)(R− ε1)+

q2(R− ε1/2) = R− ε1q + q2ε1/2.

In this expression, the four terms correspond to the
payoff they get for playing both C taking into account
the probabilities that i) both players do not propose the
commitment, ii) the focal player proposes and the other
does not, iii) the focal player does not propose and the other
does, and iv) both players propose.

Evolutionary dynamics in finite populations
Both the analytical and numerical results obtained here
use Evolutionary Game Theory (EGT) methods for
finite populations (Nowak et al. 2004; Imhof et al.
2005; Nowak 2006a; Sigmund 2010). In such a setting,
agents’ payoff represents their fitness or social success,
and evolutionary dynamics is shaped by social learning
(Hofbauer and Sigmund 1998; Sigmund 2010), whereby the
most successful agents will tend to be imitated more often
by the other agents. In the current work, social learning
is modeled using the so-called pairwise comparison rule
(Traulsen et al. 2006), assuming that an agentAwith fitness
fA adopts the strategy of another agent B with fitness fB
with probability p given by the Fermi function (Szabó and
Tőke 1998; Traulsen et al. 2006; Sigmund 2010; Perc and

Szolnoki 2010),

pA,B =
(

1 + e−β(fB−fA)
)−1

.

The parameter β represents the ‘imitation strength’ or
‘intensity of selection’, i.e., how strongly the agents base
their decision to imitate on fitness difference between
themselves and the opponents. For β = 0, we obtain the
limit of neutral drift – the imitation decision is random. For
large β, imitation becomes increasingly deterministic.

In the absence of mutations or exploration, the end states
of evolution are inevitably monomorphic: once such a state
is reached, it cannot be escaped through imitation. We thus
further assume that, with a certain mutation probability,
an agent switches randomly to a different strategy without
imitating another agent. In the limit of small mutation rates,
the dynamics will proceed with, at most, two strategies in
the population, such that the behavioural dynamics can be
conveniently described by a Markov Chain, where each
state represents a monomorphic population, whereas the
transition probabilities are given by the fixation probability
of a single mutant (Fudenberg and Imhof 2005; Imhof et al.
2005; Nowak et al. 2004). The resulting Markov Chain has
a stationary distribution, which characterises the average
time the population spends in each of these monomorphic
end states.

Let N be the size of the population. Suppose there are at
most two strategies in the population, say, k agents using
strategy A (0 ≤ k ≤ N ) and (N − k) agents using strategy
B. Thus, the (average) payoff of the agent that uses A and
B can be written as follows, respectively,

ΠA(k) =
(k − 1)πA,A + (N − k)πA,B

N − 1
,

ΠB(k) =
kπB,A + (N − k − 1)πB,B

N − 1
.

(4)

Now, the probability to change the number k of agents
using strategy A by ± one in each time step can be written
as (Traulsen et al. 2006)

T±(k) =
N − k
N

k

N

[
1 + e∓β[ΠA(k)−ΠB(k)]

]−1

. (5)

The fixation probability of a single mutant with a strategy
A in a population of (N − 1) agents using B is given by
(Traulsen et al. 2006; Karlin and Taylor 1975; Nowak et al.
2004)

ρB,A =

1 +
N−1∑
i=1

i∏
j=1

T−(j)

T+(j)

−1

. (6)

In the limit of neutral selection (i.e. β = 0), ρB,A equals the
inverse of population size, 1/N .

Considering a set {1, ..., s} of different strategies,
these fixation probabilities determine a transition matrix
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M = {Tij}si,j=1, with Tij,j 6=i = ρji/(s− 1) and Tii =

1−
∑s
j=1,j 6=i Tij , of a Markov Chain. The normalized

eigenvector associated with the eigenvalue 1 of the
transposed of M provides the stationary distribution
described above (Karlin and Taylor 1975; Fudenberg and
Imhof 2005; Imhof et al. 2005), describing the relative time
the population spends adopting each of the strategies.

Risk-dominance An important measure to compare the
two strategies A and B is which direction the transition
is stronger or more probable, an A mutant fixating in a
population of agents using B, ρB,A, or a B mutant fixating
in the population of agents using A, ρA,B . It can be shown
that the former is stronger, in the limit of large N , if
(Kandori et al. 1993; Sigmund 2010)

πA,A + πA,B − πB,A − πB,B > 0. (7)

Results

Conditions for the viability of CPP
We derive analytical conditions for which CPP can be a
viable strategy for the emergence of cooperation in the
Donation game (see Methods). In other words, we wish
to determine when CPP is successful against the defective
and free-riding strategies, and this is relative to q. Using the
inequality in Equation (7), we obtain the conditions under
which CPP is risk-dominant against the three strategies D
and FAKE and FREE, respectively

δ2(1− q) + q(b+ c− ε1 + ε2) +
q2ε1

2
− 2c− ε2 > 0,

(8)

δ2(1− q) + 2qδ1 + q(ε2 − 2ε1) +
q2ε1

2
− 2c− ε2 > 0,

(9)

δ2(1− q) + q(b+ c) + q(ε2 − 2ε1) +
q2ε1

2
− 2c− ε2 > 0.

(10)
We observe that the left hand side of Equation (10) is
smaller than or equal to the left hand side of Equation
(8). Thus, satisfying the inequality in Equation (10)
implies satisfying the inequality in Equation (8). Hence,
in order for CPP to be risk-dominant against the three
defective strategies, we only need to guarantee that the two
inequalities in Equation (9) and (10) hold. By solving the
system of these two inequalities, we can analytically derive
the range of q for which CPP is risk-dominant against all
free-riders (see SI for details), which are corroborated by
numerical simulation results in the next section.

We now derive some properties of these inequalities for
varying q, and for some special cases. First, we observe that
whenever punishment is carried out, at least to some degree
(i.e. q < 1), the two conditions are satisfied whenever δ2
is sufficiently large, regardless of values of the other costs

(see a proof in SI). This is in contrast to COMP where if
the cost of arranging commitment, ε1, exceeds a certain
limit, COMP is not risk-dominant against the commitment
free-riders FREE, however large δ1 is. This can be seen
explicitly by simplifying Equation (10), substituting for
q = 1, which is equivalent to (Han et al. 2013a)

b− c− 3ε1
2

> 0. (11)

In order to obtain further meaningful comparison of CPP
to COMP and CP, we consider that prior commitment and
costly punishment have the same cost of setting up as well
as the same effect of compensation/punishment when the
co-player misbehaves (i.e. defects in the PD after having
agreed to cooperate in the former case, and defects in the
PD in the latter). That is, we assume ε1 = ε2 = ε and δ1 =
δ2 = δ. Then, Equation (9) can be simplified to

δ > ε+
2c

1 + q
− q2ε

2(1 + q)
. (12)

The right hand side of Equation (12) is a decreasing
function of q (see SI), implying that the larger q is, the
easier this condition can be satisfied. In other words, the
larger q the better FAKE players can be restrained by CPP
players (as can already be inferred from the numerical
results shown in Figure 1).

When q = 0, CPP is reduced to CP. Hence, CP is risk-
dominant against the three defective strategies when

δ > ε+ 2c. (13)

Similarly, when q = 1, CPP is reduced to COMP, which is
risk-dominant against all the defective strategies when

ε <
2(b− c)

3
,

xδ >
3ε

4
+ c.

(14)

Comparing conditions specified in Equation (13) and
Equation (14), it follows that when ε is sufficiently small
(namely, bounded up by 2(b− c)/3), then a smaller δ
is required for the risk-dominance of COMP against all
defective strategies than CP (see also SI, Figure S1).

Now, Equation (10) can be simplified to

δ − 2c− ε+ q
(
b+ c− δ − ε(1− q

2
)
)
> 0. (15)

When δ is sufficiently large compared to the benefit and cost
of cooperation, the left hand side is a decreasing function of
q (see SI). Hence, it is more difficult for CPP to be risk-
dominant against FREE players as q increases (see also
Figure 1).
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a b c

Figure 1. Frequency of each strategy as a function of q, in a population of five strategies CPP, C, D, FAKE and FREE. For a
large range of q, CPP has a higher frequency than both the commitment proposing strategy COMP (i.e. CPP with q = 1) and the
costly punishment strategy CP (i.e. CPP with q = 0). The payoffs being used are, T = 2, R = 1, P = 0, S = −1; imitation
strength, β = 0.1; population size, N = 100; ε1 = ε2 = ε = 0.75; δ1 = δ2 = δ where δ = 5 in panel (a), δ = 10 in panel (b) and
δ = 15 in panel (c).

δ

a b c

qq q
Figure 2. The range of q in which CPP is more frequent than both COMP and CP (the light grey area), as a function of δ, for (a)
ε = 0.1, (b) ε = 0.5 and (c) ε = 1. In general, CPP is more frequent for a wide range of q, which is larger for smaller ε. The range
is largest when δ is sufficiently high (but not too high). Both the lower and upper bounds of the range decrease (not strictly) with
δ. The payoffs being used are, T = 2, R = 1, P = 0, S = −1; imitation strength, β = 0.1; population size, N = 100.

Varying usage of prior commitments and
punishment can cope better with various types
of free-riders

The analytical observations above are clarified by looking
at Figure 1, where we plot the frequencies of the five
strategies CPP, C, D, FAKE and FREE (see Methods) as
a function of q, for different values of δ and identical ε. For
a large enough δ that sufficiently restrains FAKE players,
increasing it further does not enhance the frequency or

performance of COMP (i.e. CPP with q = 1). But that is
not the case for CP, since the frequency of CP (i.e. CPP with
q = 0) against D, FAKE and FREE always increases with
δ (see also Figure S1 in SI). In general, we observe that
FAKE players can be restrained better as q increases, i.e.
when commitment is used more often. On the other hand,
the FREE players are better coped with for smaller q, i.e.
when punishment is used more often, especially for larger
δ (comparing the three panels). This means that a balance
between arranging prior commitments and using reactive
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a b c

δ

ε ε ε
1

0

Figure 3. (a) Frequency of CPP at optimal value of q, (b) the improvement in percentage of CPP in comparison to maximum of
CPP and CP, and (c) optimal value of q ∈ [0, 1] where CPP has the highest frequency, as a function of ε and δ (where
ε1 = ε2 = ε and δ1 = δ2 = δ). The frequency of CPP increases with δ, and exhibits a significant improvement in comparison to
the average of CP and COMP. Furthermore, the larger δ, the lower optimal value of q. The payoffs being used are,
T = 2, R = 1, P = 0, S = −1; imitation strength, β = 0.1; population size, N = 100.

costly punishment may provide a strategy that performs
better than either strategy by itself.

Indeed, we observe that there is a wide range of q where
CPP is better than both COMP and CP, in all the panels
of Figure 1. The ranges are in close accordance with the
analytical results (see SI, Section 3). Furthermore, in Figure
2 we plot the range of q in which CPP is better than both
COMP and CP, for varying δ as well as for different values
of ε. In general, CPP is more frequent for a wide range
of q, and this range is larger for smaller ε. The range is
largest when δ reaches a certain threshold, as whereafter
commitment does not provide further advantage for the
combined strategy. However, when δ is small, COMP
is crucially important to reduce the impact-to-cost ratio,
especially for a smaller ε, as can be seen from the fact that
the upper bound of the range is close to 1 (i.e. 100% use
of commitment). Furthermore, we can observe that both
the lower and upper bounds of this range decrease when
δ increases, because punishment is more beneficial then.

As we have seen, there is always a wide range of
parameters’ values in which CPP is better than both COMP
and CP individually. But what is the actual improvement,
e.g. in terms of the improved level of cooperation, that
one may obtain with the combined strategy?. To that
extent, we search for the optimal value of q, at which
CPP has the highest frequency (Figures 3a and 3c), for
varying both ε and δ. We can see that, CPP retains
the important property of CP, i.e. its frequency increases
with δ (Figure 3a). Furthermore, we observe a significant
improvement compared to the highest frequency of COMP
and CP (Figure 3b). As expected, the improvement is
most significant (even more than 100%) when δ reaches

a certain threshold. But interestingly, it occurs when the
cost ε is sufficiently large, because in that case, the
performance of COMP is severely demolished. These
interesting observations are robust for varying the benefit-
to-cost ratio (see SI, Figure S2).

Moreover, to gain further understanding about when CPP
performs best, in Figure 3c we plot as a function of ε and
δ the optimal value of q where CPP reaches its highest
frequency. We observe that the optimal value of q is a
decreasing function of δ, which reaches its minimum for
intermediate values of ε. That is, it is more advantageous to
use more punishment when the effect-to-cost is sufficiently
high. This observation is robust for various configurations
of the PD (see SI, Figure S3). We also observe that the less
harsh the PD becomes, using more commitments is more
beneficial to reach high levels of cooperation.

Discussion
Both costly punishment and arranging prior commitment
have been shown to provide important pathways for the
evolution of cooperation (Boyd et al. 2003; Hauert et al.
2007; Hilbe and Traulsen 2012; Chen and Komorita 1994;
Han et al. 2013a, 2015b,c; Han 2016), and both are widely
used in diverse human activities to enforce cooperation
and regulate collective behaviour (Fehr and Gachter 2002;
Fehr and Gächter 2000; Nesse 2001; Henrich et al. 2006;
Sterelny 2012). Interestingly, we have shown in this paper
that a simple synergy of the two mechanisms can lead to a
even better one that promotes a higher level of cooperation
than either strategy by itself, for a wide range of parameters’
values. Each strategy has its own weakness, which the
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combined strategy can overcome. On one hand, arranging
prior commitment reduces the effect-to-cost ratio required
by costly punishment to perform efficiently, particularly
when the cost of arrangement is sufficiently low. On the
other hand, costly punishment can enable one to deal with
commitment free-riders, who can escape sanctioning when
interacting with the commitment strategy. In addition, one
important feature of costly punishment is that its efficiency
always increases with the effect-to-cost ratio of punishment,
which is not possessed by the commitment strategy, even
when the cost of arrangement is low. Our results show
that the combined strategy retains this important property
of costly punishment. Furthermore, the improvement that
can be achieved through the combined strategy, in terms
of frequency (compared to the best of the two strategies
separately), is most significant when the cost is sufficiently
large and the impact of punishment reaches a threshold.
This is a notable observation since the performance of
the commitment strategy is demolished in the former case
and the performance of costly punishment is reduced in
the latter one. As such, our results have shown that the
combined strategy can overcome the weaknesses of both
strategies. Hence, as an implication, our results provide
novel insights for the design of self-organised or distributed
multi-agent and autonomous agent systems (Bonabeau
et al. 1999) that require cooperation among agents in a
competitive environment.

In addition, our results suggest that free-riders of various
types might be better dealt with by simply varying the use
of two complementary mechanisms that can efficiently deal
with the same kind of strategic situations (i.e. the one-
shot PD herein). It would be optimal to be able to identify
what kind of free-riders one is dealing with and use the
most appropriate mechanism, but it might be difficult to do
so when the information available about the co-players is
insufficient for decision making, which is particularly the
case in the non-repeated interactions. By varying the use of
the available mechanisms (in our case, costly punishment
and commitment), we can suppress more types of free-
riders. Related to this, we envisage that our combined
strategy can be improved through using additional cognitive
skills, e.g. intention recognition (Han et al. 2011, 2015c),
to recognise the type of free-riders one is dealing with and
then use the best mechanism to deal with that type.

Our model is closely related to the models in (Sigmund
et al. 2010; Szolnoki et al. 2011a) where peer and pool
punishments are studied when present as two separate
strategies at the same time in either a well-mixed
or structured (network) population. These models were
designed to investigate which of the two sanctioning
mechanisms is preferred when both of them are available
to a society, a question which has also been studied
experimentally in (Putterman et al. 2011; Traulsen et al.

2012). Although pool punishment and prior commitment
are similar in the sense that both require prior arrangements
for the sanctioning of defectors at a later stage, our
work differs in that, commitment and peer punishment are
combined into one single strategy, aiming to show that
these two mechanisms can support each other in dealing
with various types of free-riders. Nonetheless, as shown
in SI (Section 6, Figure S4) where we analyse various
types of CPP strategies in co-presence in the population
(including CP and COMP as the extreme types of CPP, with
q = 0 and 1, respectively), a similar observation regarding
the emergence of a weighted combination of the two
mechanisms is obtained. Namely, there is a wide range of
parameters where CPP with an intermediate value of q is the
most abundant in the population: neither CP nor COMP can
be dominant when using separately. That said, it would be
interesting to see in the context of the models in (Sigmund
et al. 2010; Szolnoki et al. 2011a) whether a weighted
combination of pool and peer punishment can outperform
either of them when using separately.

Similarities can also be found with the model that
analyses the probabilistic sharing of punishment duty in
the context of the Public Goods Game (PGG) (Chen et al.
2014). In a PGG group interaction, punishers share the
duty of punishing defectors. That is, when facing defectors,
a punisher only punishes with a certain probability, and
cooperates otherwise. A similar approach is conditional
punishment, wherein punishment duty is proportional to the
number of punishers in the group (Szolnoki and Perc 2013).
Both approaches have been shown to be more efficient
for promoting cooperation in structured populations than
mere punishment as they enable costly punishers to defer
defectors more efficiently, especially when punishment
is expensive (i.e. having a low effect-to-cost ratio). We
go beyond those results by showing that the synergy
between costly punishment and commitment provides a
more efficient solution than mere punishment even in well-
mixed populations, wherein cooperation is harder to emerge
(Santos et al. 2006). Moreover, the efficiency of the model
in (Chen et al. 2014) is based on the fact that punishers can
share punishment duty, which would clearly become less
efficient, if not inapplicable, for a two-player game as in our
setting. To the contrary, our model can be readily extended
to group interactions typically found in the PGG (Han et al.
2015b).

Various extensions to the current model can be described.
First, in this work we have not taken into account the fact
that punishment might be antisocial, in which defectors
can also punish cooperators. Antisocial punishment is
widespread in nature (Herrmann et al. 2008), which has
been shown to be detrimental for the emergence of
cooperation (Rand and Nowak 2011; Hilbe and Traulsen
2012; Han 2016). To the contrary, arranging a prior
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commitment ensures that this kind of antisocial behaviour
does not occur, because only those who agreed to commit
can be punished for misbehaving (Han et al. 2013a). Hence,
it would be interesting to see whether our combined strategy
can overcome this weakness of costly punishment when
antisocial punishment is possible. Another setting where the
combination of commitment and costly punishment might
be of interest is that of the repeated interaction setting,
where both commitment and costly punishment have been
used in support of apology (Okamoto and Matsumura
2000; Han et al. 2013b; Martinez-Vaquero et al. 2015).
Hence, it would be interesting to see whether and how the
combined strategy can support apology more efficiently,
leading to a better outcome for cooperation. Last but
not least, as discussed above, the cost efficiency issue of
costly punishment can be efficiently dealt with in structured
populations (Brandt et al. 2003; Nakamaru and Iwasa 2005;
Helbing et al. 2010a,b). Thus, it would be interesting to
study how the synergistic effect of commitment and costly
punishment would change in such a setting.

In short, our results have shown that, although both
commitment and costly punishment might promote the
evolution of cooperation in the one-shot interaction setting,
they can actually complement each other to assemble a
better combined solution that ensures a more favourable
outcome for cooperative behaviour. By varying the use
of the available mechanisms one can suppress more
various types of free-riders, even without looking at which
mechanism is best for the situation at hand.
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Szolnoki, A., Szabó, G., and Perc, M. (2011b). Phase diagrams for
the spatial public goods game with pool punishment. Physical
Review E, 83(3):036101.

Traulsen, A., Nowak, M. A., and Pacheco, J. M. (2006). Stochastic
dynamics of invasion and fixation. Phys. Rev. E, 74:11909.
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