
The Magic of Algorithm Design and Analysis

Teaching Algorithmic Skills using Magic Card Tricks

João F. Ferreira
School of Computing
Teesside University
Middlesbrough, UK

HASLab/INESC TEC
Universidade do Minho

Braga, Portugal
joao@joaoff.com

Alexandra Mendes
Faculty of Arts

York St John University
York, UK

a.mendes@yorksj.ac.uk

ABSTRACT

We describe our experience using magic card tricks to teach algo-

rithmic skills to first-year Computer Science undergraduates. We

illustrate our approach with a detailed discussion on a card trick

that is typically presented as a test to the psychic abilities of an

audience. We use the trick to discuss concepts like problem de-

composition, pre- and post-conditions, and invariants. We discuss

pedagogical issues and analyse feedback collected from students.

The feedback has been very positive and encouraging.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computers and Information

Science Education—Computer science education; F.1.0 [Computation

by abstract devices]: General

Keywords

Algorithms; Algorithmic Problem Solving; Invariants; Pre/Post-

conditions; Hoare Triples; Magic Card Tricks; Puzzles and Games

1. INTRODUCTION
There is a growing number of educators who advocate the use of

recreational problems and so-called “unplugged” activities to teach

computer science concepts [2, 4, 12]. We have ourselves been using

“unplugged” activities for a few years to teach algorithmic problem

solving at undergraduate level [7, 8]. Recently, inspired by the en-

gaging work done in the project cs4fn [4, 5, 13, 14], we incorpo-

rated magic card tricks into our activities.

In this paper, we describe our experience using magic card tricks

to teach algorithmic skills to first-year Computer Science (CS) un-

dergraduates. Our main contribution is to show how more formality

can be added to the presentation of card tricks so that they can be

presented at university level (this was suggested as future work in

[4]). We enrich the contribution by including some pedagogical

comments and by discussing feedback provided by the students.

We start in Section 2, where we discuss in detail a card trick that

is typically presented as a test to the psychic abilities of an audi-

ence. The trick was taken from [14], a booklet on magic tricks that

Accepted version by ITiCSE’14.

.

has been used to demonstrate computer science concepts to school

students. After we describe the trick, we present a detailed explana-

tion of why it works, highlighting the algorithmic techniques used

along the way. In Section 3 we discuss some pedagogical consider-

ations that make the teaching of algorithmic skills using card tricks

more effective. We have collected feedback from first-year CS un-

dergraduates who attended a learning session based on the trick.

We analyse the feedback in Section 4. In Section 5 we present re-

lated work and we conclude the paper in Section 6, where we also

discuss some of the next steps.

2. ALGORITHMIC CARD TRICKS
Algorithmic card tricks (also called self-working tricks) are tricks

that do not involve any hidden mechanisms like rigged decks or

double lifts. In other words, if the spectator replicates the visible

steps performed by the magician, the same (surprising) result will

be achieved. Essentially, we can describe algorithmic card tricks

as algorithms that manipulate cards. We believe that card tricks are

excellent vehicles to teach important algorithmic skills, because:

• Students think about the underlying algorithms on a more ab-

stract level, ignoring implementation and computer language

details;

• The kinaesthetic and interactive nature of manipulating cards

helps students visualise the algorithms: they can quickly ver-

ify properties and test new hypotheses using the cards;

• Students learn that algorithmic problem solving applies to

areas outside computer science;

• The recreational nature of card tricks promotes student en-

gagement;

• Card tricks can be used to illustrate important concepts like

loops and invariants, assertions, and problem decomposition.

2.1 Example: are you psychic?
In this section, we present a card trick whose analysis and proof

of correctness is non-trivial. The trick is typically presented as a

test to the psychic abilities of an audience. We analyse the under-

lying algorithm and show how the card trick can be used to prac-

tise problem decomposition and the identification of pre- and post-

conditions. The correctness of the algorithm is proved by identify-

ing and formulating two invariants. To describe the trick, we follow

the explanation found in [14] (but we include more graphical aids).

2.1.1 Description of the card trick

We start by getting five pairs of cards out of the pack. Any five

pairs can be used, but for simplicity, let us choose the five pairs

2r 2♠ , 3r 3♠ , 4r 4♠ , 5r 5♠ , and 6r 6♠ .

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322320223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Next, set the cards up in one ordered pile as shown in Figure 1.

Show the pile to the audience and explain that the trick is about to

start.

6
♠

♠
6

♠

♠

♠

♠

♠

♠

5
♠

♠
5

♠

♠

♠

♠

♠

4
♠

♠
4

♠

♠

♠

♠

3
♠

♠
3

♠

♠

♠

2
♠

♠
2

♠

♠

6
r

r

6

r

r

r

r

r

r

5
r

r

5

r

r

r

r

r

4
r

r

4

r

r

r

r

3
r

r

3

r

r

r

2
r

r

2

r

r

Figure 1: Five pairs of cards as one ordered pile.

To facilitate the explanation of the trick, we explain how to per-

form it with the faces of the cards up. However, when performing

the trick, the faces should be down!

Spread the cards in your hand and have the audience point to any

card. Split the pack at that point and place the top pile at the bottom

of the pack. Repeat this until the audience is happy the cards are

well mixed. For example, if the audience points to the four of hearts

shown in the left image of Figure 2, the resulting deck is the one on

the right image.

6
♠

♠
6

♠

♠ ♠

♠

♠ ♠

5
♠ ♠

5

♠

♠

♠

♠♠

4
♠

♠
4

♠

♠

♠

♠

3
♠

♠
3

♠

♠

♠

2
♠

♠
2

♠

♠

6
r

r

6

r

r

r

r

r

r

5
r

r
5

r

r

r

r

r

4
r

r
4

r

r

r

r

3
r

r
3

r

r

r

2
r

r
2

r

r

❄

✲

The audience
selects the 4r

4
r

r
4

r

r

r

r

3
r

r
3

r

r

r

2
r

r
2

r

r

6
♠

♠
6

♠

♠

♠

♠

♠

♠

5
♠

♠
5

♠

♠

♠

♠

♠

4
♠

♠
4

♠

♠

♠

♠

3
♠

♠
3

♠

♠

♠

2
♠

♠
2

♠

♠

6
r

r
6

r

r

r

r

r

r

5
r

r
5

r

r

r

r

r

Figure 2: Mix the cards until the audience is happy, by cutting

the pack at the point selected by the audience.

When the audience is happy the cards are well mixed, deal the

top five cards, one at a time, into a pile on the table, thereby revers-

ing their order. Place the remaining undealt cards in a second pile

beside them. By putting this second pile straight down you have

kept their order the same. For example, from the deck shown in the

right image of Figure 2, we get the two piles shown in Figure 3.

Please note that the card 5r is the top card in the right deck shown

in Figure 2. (Remember that when performing the trick, the cards

should have their faces down.)

5
r

r

5

r

r

r

r

r

6
r

r

6

r

r

r

r

r

r

2
♠

♠
2

♠

♠

3
♠

♠
3

♠

♠

♠

4
♠

♠
4

♠

♠

♠

♠

4
r

r
4

r

r

r

r

3
r

r

3

r

r

r

2
r

r
2

r

r

6
♠

♠
6

♠

♠

♠

♠

♠

♠

5
♠

♠
5

♠

♠

♠

♠

♠

Figure 3: Division into two piles. The left pile contains the top 5

cards of the right deck shown in Figure 2, in reverse order. The

right pile contains the remaining cards, in the original order.

Explain to the audience that as there are 5 cards in each pile you

will give them 4 chances to use their psychic powers. They can

have 4 swaps. A swap involves taking the top card on one of the

piles and placing it on the bottom of the same pile. Explain that

they can, for example, do all 4 swaps on one pile, 2 on each, or

3 on one and 1 on the other. It is their choice, remembering that

their aim is to be left with two matching cards. For example, if the

audience chooses to perform 3 swaps on the left pile of Figure 3

and 1 swap on the right pile of Figure 3, the resulting piles are the

ones shown in Figure 4.

2
♠

♠
2

♠

♠

3
♠

♠
3

♠

♠

♠

4
♠

♠
4

♠

♠

♠

♠

5
r

r

5

r

r

r

r

r

6
r

r

6

r

r

r

r

r

r

5
♠

♠
5

♠

♠

♠

♠

♠

4
r

r

4

r

r

r

r

3
r

r

3

r

r

r

2
r

r

2

r

r

6
♠

♠
6

♠

♠

♠

♠

♠

♠

Figure 4: Resulting piles if the audience chooses to perform 3

swaps on the left pile of Figure 3 and 1 swap on the right pile of

Figure 3.

Once the 4 swaps are made, remove the top card on each pile and

place them aside (with their faces down!). Point out that it does not

matter what they are as they are being discarded. Now there are 4

cards in each pile, as shown in Figure 5.

5
♠

♠
5

♠

♠

♠

♠
♠

4
r

r

4

r
r

r
r

3
r

r

3

r

r

r

2
r

r

2

r

r

2
♠

♠
2

♠

♠

3
♠

♠
3

♠

♠

♠
4
♠

♠
4

♠

♠

♠

♠

5
r

r

5

r

r

r

r

r

6
r

r

6

r

r

r
r

r

r
6
♠

♠
6

♠

♠

♠
♠

♠

♠

Figure 5: After the top card on each pile is removed, we are

left with two piles of 4 cards. We place the two removed cards

aside.

At this point, offer the spectator 3 swaps in total, and once the

swaps are done remove the top two cards from the piles. There

are now three cards left in each pile, so give them two swaps this

time, and again remove the top card from both piles. This leaves

two cards in each pile. This is their final chance to get it right. Tell

the audience that one swap is left, and one card can make all the

difference. They choose their swap, and the top two cards from

each pile are discarded. Now it is time to reveal the final two single

cards left on the table. They match! The audience chose freely

how to mix the cards and which cards to eliminate, so it was their

secret psychic powers that came through to ensure a match at the

end. Give their jaw time to drop, then dramatically reveal that all

the pairs of cards they removed match in value too.

2.1.2 Discussion and analysis of the trick

This trick can be used to discuss the specification of algorithms

(via Hoare triples), the identification of pre- and post-conditions,

problem decomposition, and the identification and formulation of

invariants [8]. It also provides a good example to discuss the con-

cept of proof of correctness, because students are very keen on un-

derstanding why the trick works.

In what follows, we explain our approach when presenting the

analysis of the trick to first-year CS undergraduates.

Formal specification and abstraction. The first step in the

analysis of the algorithm is to specify what it does. Using a Hoare

triple, a high-level specification can be written as:

{ 10 cards: 2r 3r 4r 5r 6r 2♠ 3♠ 4♠ 5♠ 6♠ }

perform card trick

{ 1 pair: pile1 = N ∧ pile2 = N

where N is the number on a card }

In the description of the trick we referred to both piles as “left”

and “right”. Here, we name them pile1 and pile2. The expression

“pile1=N ∧ pile2=N” means that pile1 and pile2 both contain one

card with the number N; we use the conjunction operator ∧ to de-

note “and”. The expressions between curly brackets correspond to

assertions. An expression of the form { P } S { Q } where P and Q

are predicates and S is a program statement (i.e., an algorithm) is

called a Hoare triple. It means that if P is true before the execution

of the statement S , execution of S is guaranteed to terminate in a

state where property Q is true. We are stating that when we start

the trick with the 10 cards 2r 3r 4r 5r 6r 2♠ 3♠ 4♠ 5♠ 6♠we are

always guaranteed to terminate with 1 pair of cards with the same

number.

An important algorithmic skill is the avoidance of unnecessary

detail, so we start by observing that the suits of the cards are irrel-

evant and the trick works with any five pairs. We can thus abstract

from the specific cards used and be more general by introducing

variable names to represent arbitrary cards:

{ 10 cards: ABCDE ABCDE }

perform card trick

{ 1 pair: pile1 = N ∧ pile2 = N

where N is the number on a card }

There are many (and possibly better) choices for expressing the pre-

and the post-condition. The one we use was tested and works well

with first-year CS undergraduates.

Problem decomposition. Now that we have a high-level specifi-

cation, a reasonable step is to decompose the problem into simpler

components. The algorithm can be decomposed into three main

parts: the “shuffling” process, where the audience chooses how to

mix the cards; the division into two different piles; and finally, the

part where multiple swaps are performed. We can express this de-

composition as follows:

{ 10 cards: ABCDE ABCDE }

shuffle

{ ? };

divide into two piles

{ ? };

perform swaps

{ 1 pair: pile1 = N ∧ pile2 = N

where N is the number on a card }

The goal now is to characterise the assertions marked with “?”. We

investigate each part separately.

The specification and decomposition of the problem are obtained

through an interactive discussion with the entire classroom. For the

remaining steps of the analysis, the students work together in small

groups.

Shuffling step. In the first part of the algorithm, we ask the audi-

ence to point to any card and we split the pack at that point, placing

the top pile at the bottom of the pack. We repeat this until the au-

dience is happy the cards are well mixed. Figure 2 shows how the

initial pack changes when the audience selects the four of hearts.

The figure also shows that the cards are indeed mixed, that is, the

order of the cards changes. However, there is a key property be-

ing maintained by this mixing process: the top five cards match

the bottom five cards. In other words, the sequence of numbers

corresponding to the top five cards is the same as the sequence of

numbers corresponding to the bottom five cards. This can be easily

observed in the right image of Figure 2, where the top five cards

are 5r 6r 2♠ 3♠ 4♠ and the bottom five cards are 5♠ 6♠ 2r 3r 4r .

This property is also satisfied by the initial configuration (shown

in the left image of Figure 2). Since the mixing process corre-

sponds to a finite sequence of rotations, the property will clearly be

maintained. In other words, it does not matter how many times the

pack is rotated, the top five cards will always match the bottom five

cards.

We can thus conclude that an invariant of the mixing process is:

the top five cards match the bottom five cards. A simple way to

specify this invariant is as follows:

{ 10 cards: the top five cards match the bottom five cards }

shuffle

{ 10 cards: the top five cards match the bottom five cards }

We can avoid the use of natural language and be more consistent

with the pre-condition written above, by introducing five new vari-

ables A′,B′,C′,D′,E′:

{ 10 cards: ABCDE ABCDE }

shuffle

{ 10 cards: A′B′C′D′E′ A′B′C′D′E′ }

The introduction of new variables is necessary because we do not

know what will be the first card in the sequence; nevertheless, we

are certain that the top five cards will match the bottom five.

Creating two piles. When the audience is happy the cards are well

mixed, we deal the top five cards, one at a time, into a pile on the

table, thereby reversing their order. We then place the remaining

undealt cards in a second pile beside them. By putting this second

pile straight down we keep their order the same. For example, from

the deck shown in the right image of Figure 2, we get the two piles

shown in Figure 3. It is easy to see that these piles are reverses of

each other. A simple way to specify this is:

{ 10 cards: A′B′C′D′E′ A′B′C′D′E′ }

divide into two piles

{ 10 cards: pile1 = E′D′C′B′A′ ∧ pile2 = A′B′C′D′E′ }

A more compact and formal way of writing the post-condition is as

follows:

{ 10 cards: A′B′C′D′E′ A′B′C′D′E′ }

divide into two piles

{ 10 cards: pile1[k] = pile2[4−k], for 0 ≤ k ≤ 4 }

The expression pile1[k] denotes the kth card of pile1. We start

counting at 0, so pile1[0] corresponds to the top card of pile1.

Using this notation and naming the piles in Figure 3 as pile1 and

pile2, we observe, for example, that pile1[0]=4=pile2[4 − 0] and

pile1[4]=5=pile2[4 − 4].

Performing swaps. The last step of the algorithm consists of an

iterative process, where a number of swaps are done and the size

of the two piles is reduced until the piles only have one card each.

We start with two piles of the same size (that are reverses of each

other) and we keep reducing the size of both piles by 1. Initially, in

the first iteration, each pile contains 5 cards, so the audience has to

perform 4 swaps. One card is removed from each pile, meaning that

in the second iteration each pile contains 4 cards and the audience

has to perform 3 swaps. More generally, if at a given iteration each

pile contains n cards, the audience has to perform n−1 swaps. This

can be modelled more precisely (but still at a high-level) as follows:

{ 10 cards: pile1[k] = pile2[4−k], for 0 ≤ k ≤ 4 }

swaps := 4 ;

do swaps ≥ 1 →

Ask for number j where 0 ≤ j ≤ swaps ;

Swap j cards in pile1 ;

Swap swaps− j cards in pile2 ;

Remove the top card from each pile ;

swaps := swaps−1

od

{ 1 pair: pile1 = N ∧ pile2 = N

where N is the number on a card }

We write do swaps ≥ 1→ · · · od to express a loop that executes

while swaps ≥ 1. So, the loop terminates (and the trick ends) when

no more swaps can be performed. Let us focus now on the step

where cards are swapped. The step “Swap j cards in pile1” puts

the card pile1[j] at the top of pile1, without affecting the relative

order of the other cards. Similarly, the step “Swap swaps− j cards

in pile2” puts the card pile2[swaps− j] at the top of pile2, without

affecting the relative order of the other cards. As a result, after the

swaps, the top cards on pile1 and pile2 are, respectively, pile1[j]

and pile2[swaps− j]. We can easily observe this in the transition

from Figure 3 to Figure 4. In Figure 3, we have pile1[3] = 6r and

pile2[1] = 6♠ . The two piles shown in Figure 4 are formed after

the audience chooses to perform 3 swaps on the left pile (pile1) of

Figure 3 and 1 swap on the right pile (pile2) of Figure 3. We can see

that the cards 6r and 6♠ are now at the top; moreover, the relative

order of the other cards is maintained.

Given that the initial value of swaps is 4, we conclude from the

pre-condition that pile1[j] = pile2[swaps− j]. As a result, after the

swaps are performed the top cards of both piles form a pair. So, af-

ter the step “Remove the top card from each pile”, a pair is removed

and the resulting piles are reverses of each other. This means that

an invariant of the loop is the property that the piles are reverses

of each other. Given that the value of swaps is decreased, we can

formulate the invariant as

pile1[k] = pile2[swaps−k], for 0 ≤ k ≤ swaps .

As discussed before, the invariant is valid initially when each pile

contains 5 cards. We have just discussed that the invariant is valid

after each iteration, when the size of each pile decreases by 1.

Therefore, the invariant will be valid on termination when each pile

contains 1 card. So, on termination we will have two piles with one

card each that are reverses of each other. This means that the two

remaining cards must match! More formally, we observe that the

final value of swaps is 0, so we can conclude immediately from the

invariant that pile1[0] = pile2[0].

Further discussion. The formulation of the last step can be sim-

plified by not introducing the variable swaps, because swaps can

be determined by the number of cards in the piles. However, when

presenting the trick, we feel that the introduction of variable swaps

facilitates discussion; it also provides the opportunity to discuss

program transformation: we often ask the students how can we

rewrite the algorithm without using that variable.

As mentioned above, we target first-year CS undergraduates. For

that reason, we avoid formalisms that students are not familiar with.

If we were teaching more advanced students, we could use modular

arithmetic to express the key properties of the algorithm and write

more formal proofs of correctness.

3. PEDAGOGICAL COMMENTS
Although, in our experience, the recreational nature of card tricks

naturally promotes student engagement, learning sessions still need

to be planned considering psychological constraints on learning. In

particular, sessions are more effective acknowledging that a) the at-

tention of students is typically maintained for about 10 to 15 min-

utes, after which learning drops off rapidly; b) a change of activity

every 15 minutes restores performance almost to the original level;

and c) a period of consolidation at the end of the session greatly

enhances retention [3].

We observed that the introduction of group work in the sessions

on magic tricks contributes to their effectiveness. It is known that

group work promotes active involvement and deep learning, mainly

because it increases the amount of time that students spend think-

ing about conceptual ideas [16], encouraging discussion and nego-

tiation of ideas and meaning. As stated in [17], “having to achieve

practical outcomes as a group can lead to more understanding of

processes due to having to plan explicitly, articulate and agree the

next steps forward”. Moreover, an important aspect of group work

is that reflective aspects are sharpened because students readily

identify each other’s learning in a way they do not with top-down

teacher-directed learning [3]. As part of a formal peer-review sys-

tem, one of the sessions where we present the card trick described

in the previous section was observed by another academic mem-

ber of staff. In her written comments, the observer confirmed that

engagement was positive: “Good student involvement and engage-

ment from the start [...]” and “From where I was sitting (at the

back) all students appeared engaged in the task”.

The observer also wrote that “students responded well to ques-

tions”. Our sessions are normally structured around questions (e.g.,

it is very common to start the discussion with the question “How

can we specify this algorithm?” or “How can we decompose the

problem into simpler and smaller problems?”). As [16] suggests,

this gives the students the opportunity to exercise responsible choice

in the method and content of study. Moreover, because often stu-

dents suggest multiple correct ways of tackling the problem, they

decide which path to follow; this gives them ownership of the learn-

ing process. Normally, the questions that we ask are convergent,

i.e., there is a correct (or “best”) answer in mind and students are

steered towards that answer. This promotes social construction of

knowledge, where learners contribute and agree on the structure as

it emerges [3].

4. EVALUATION
We have collected feedback from students to gain a better under-

standing of their opinion about the use of card tricks for teaching

algorithmic skills. As part of a first-year undergraduate module on

algorithms and data structures offered at Teesside University, we

delivered a one-hour session on the card trick presented in Section

2. All the students enrolled in the module are studying for a BSc in

Computer Science. Forty (40) students attended the session. They

had the opportunity to work in small groups of two or three stu-

dents. Each group had one deck of playing cards to replicate the

trick.

The feedback was collected through an online, voluntary ques-

tionnaire that was completed by 23 students, in their own time out-

side the classroom. The questionnaire was made of six compulsory

and three optional questions. Table 1 shows the first six questions

and the average of the results on a Likert scale from 1 to 5, where

1 corresponds to Strongly Disagree and 5 corresponds to Strongly

Agree.

The feedback is positive for all questions: the lowest average

score is over 4.2 and the overall average score is a very encourag-

ing 4.4. For questions 1, 4, and 6 there were no negative answers.

This clearly suggests that students enjoyed the session and that they

would like to have more sessions where card tricks are used to illus-

trate algorithmic concepts. It is also interesting to see that students

found the use of real playing cards helpful to understand the al-

gorithm. For questions 2 and 3, only one student disagreed with

the statements. Another student disagreed with the statement in

question 5. All other feedback for questions 2, 3, and 5 was either

neutral or positive indicating that, although there is still room for

improvement, the vast majority of students found the use of a card

trick engaging, motivating, and a good way to learn and practise

algorithmic skills. It is interesting to note that no student “Strongly

disagreed” with any of the statements.

These results are encouraging and a good indication that card

tricks are a good vehicle to teach important algorithmic skills.

The remaining three optional questions were more general:

1. What did you like about this session? (If anything)

(19 answers) Several students indicated the interactivity of

the session as one of the highlights: “I enjoyed the inter-

action, by using objects to explain algorithms”. Some stu-

dents indicated that the session was entertaining and unique:

“The uniqueness of the session. Nothing else done in this

interesting manner”. Being able to “visualise” the algorithm

through the card trick seems to be appreciated by several stu-

dents. One student wrote “Much more easier as I was able to

see exactly how it worked instead of thinking how it worked

and trying to get my head around previous tasks”. Other

answers regarding the visual aspect of the session included

“The engagement within the lecture, and particularly the vi-

sualisation in which helped me understand the algorithm a

lot better [sic]”, and “I like the way that I could see the al-

gorithm working”. Another student wrote “I liked how well

the use of the card trick was explained as the lecturer went

through the steps clearly while demonstrating it in a practical

way”. One student answered that he liked “Everything”. In

addition, feedback indicates that card tricks can benefit stu-

dents with certain learning difficulties: “I liked how I could

visually engage with the lecture, having an auditory learning

difficulty sometimes affects my ability to fully engage with

new material so having a visual aid and something I could

use with my hands helped me a lot”.

2. What did you dislike about this session? (If anything)

(10 answers) 7 answers did not point out anything wrong

with the session, most answering “Nothing” or “N/A”. One

of these 7 students wrote “I didn’t dislike anything really, it

helped me understand algorithms a lot more”. One student

indicated that it “Would be nice if there were more cards”;

we cannot be certain, but the student was possibly indicat-

ing that each student should be given one deck cards (instead

of one deck per group). One considered the session “a bit

fast-paced”. Another one wrote an answer unrelated with the

content of the session.

3. Please provide any further comments or suggestions that can

be used for improving this session. (If any)

(5 answers) Two students indicated that more hands-on demon-

strations could be included in future sessions. One of these

students wrote “More hands on as it makes it easier to un-

derstand the problem much quicker”. The other one stated

that other puzzles used throughout the module could also be

demonstrated in a similar visual way. Another student wrote

“I wouldn’t just use card tricks. Keeping things different and

interesting seems to help motivate people in my opinion”.

Two students did not provide suggestions, answering “None”

and “N/A”.

Overall the feedback was very positive and clearly the session

was a positive experience for the students. All suggestions for im-

provement include a more frequent use of similar approaches to

teaching.

5. RELATED WORK
The current leading work in this area is the cs4fn project [5],

whose goal is to enthuse school students about computer science

and teach advanced computing ideas. The project consists of a free

magazine, live interactive shows and a popular webzine. More de-

tails about their work with card tricks can be found in the booklets

[13, 14] and in the papers [4, 5]. The work presented in this paper

was developed after attending a cs4fn presentation where the card

trick “Are you psychic?” was shown. We enjoyed it so much that

we decided to add more formality to the presentation of the trick

and test it with our first-year undergraduate students. We also ex-

tended the presentation to include other algorithmic concepts, such

as pre- and post-conditions and problem decomposition. In [4], the

authors write that their “target audience has been school students

but the approach, with more formality added, could also be used to

illustrate theory to university students too. We leave this as further

work.”. Our work contributes towards this suggestion.

Other related work includes the CS Unplugged project [2], who

were pioneers in using magic to teach computing and algorithms.

In [11], a trick for demonstrating binary numbers is shown and in

[9, 10] a variety of tricks are used to demonstrate topics that include

algorithms, modular arithmetic, and binary encoding.

A related line of work is the use of recreational problems to teach

computer science. In [12], for example, the authors advocate a

wider use of recreational problems in teaching design and analy-

sis of algorithms. In [6], the authors introduce a sample syllabus

and course material for engineering and computer science, using a

puzzle-based learning approach; the main book on this approach is

[15]. In [1], the author presents a problem-based approach to algo-

rithmic problem solving, where all the problems have a recreational

flavour. A similar approach is followed in [8], where principles and

techniques of algorithmic problem solving are exemplified using

recreational problems.

Table 1: Questions and scores

Question Score

1 I enjoyed the session on "The Algorithmics of Card Tricks" (Lecture 11), where we analysed the algorithm

behind a card trick

4.52

2 The use of a card trick improved my engagement during the lecture 4.43

3 I think that card tricks are a good way to learn and practise algorithmic skills 4.43

4 I would like to have more sessions where card tricks are used to illustrate concepts on algorithm design and

analysis

4.30

5 The use of a card trick made me feel more motivated and interested in learning more algorithmic skills 4.26

6 Using real playing cards to simulate the card trick helped me understand better the underlying algorithm 4.43

6. CONCLUSION
Magic card tricks can be used to illustrate important algorithmic

skills. We have shown how we use a specific card trick to teach

first-year CS undergraduates concepts like problem decomposition,

pre- and post-conditions, and invariants. We have discussed some

pedagogical issues and we have analysed feedback collected from

students.

We started this project inspired by the excellent work reported

in [4], where the authors write that their “target audience has been

school students but the approach, with more formality added, could

also be used to illustrate theory to university students too. We leave

this as further work.”. Our work contributes towards their sugges-

tion and the feedback that we collected suggests that card tricks

can indeed be used to teach algorithmic concepts at first-year un-

dergraduate level.

We intend to further develop the work shown here by adapting

more tricks to teach first-year undergraduates. We also plan to test

a more formal approach with rigorous mathematical proofs with

students at a more advanced level. In both cases, we will perform

more evaluation on whether students truly understand Hoare triples,

and pre- and post-conditions.

ACKNOWLEDGEMENTS

We would like to thank all the students who provided feedback. We

are also grateful to Eudes Diemoz for his encouragement and to the

anonymous referees for their valuable comments.

REFERENCES

[1] Roland Backhouse. Algorithmic Problem Solving. John

Wiley & Sons Ltd., 2010.

[2] Tim Bell, Ian H. Witten, and Mike Fellows. Computer

Science Unplugged. 2010. Available at

http://csunplugged.org. Last accessed: 17 Mar 2014.

[3] John Biggs and Catherine Tang. Teaching for Quality

Learning at University: What the Student does (Society for

Research Into Higher Education). Open University Press,

4th edition, 2011.

[4] Paul Curzon and Peter McOwan. Teaching formal methods

using magic tricks. In “Fun with formal methods” at the

25th International Conference on Computer Aided

Verification (CAV 2013), St Petersburg, Russia, July 2013.

[5] Paul Curzon and Peter W. McOwan. Engaging with

computer science through magic shows. In Proceedings of

the 13th Annual Conference on Innovation and Technology

in Computer Science Education, ITiCSE ’08, pages

179–183, New York, NY, USA, 2008. ACM.

[6] Nickolas Falkner, Raja Sooriamurthi, and Zbigniew

Michalewicz. Puzzle-based learning for engineering and

computer science. Computer, 43(4):20–28, 2010.

[7] João F. Ferreira, Alexandra Mendes, Alcino Cunha, Carlos

Baquero, Paulo Silva, L.S. Barbosa, and J.N. Oliveira. Logic

training through algorithmic problem solving. In Tools for

Teaching Logic, volume 6680 of Lecture Notes in Computer

Science, pages 62–69. Springer Berlin Heidelberg, 2011.

[8] João F. Ferreira. Principles and Applications of Algorithmic

Problem Solving. PhD thesis, School of Computer Science,

University of Nottingham, 2010.

[9] Daniel D. Garcia and David Ginat. Demystifying computing

with magic. In Proceedings of the 43rd ACM Technical

Symposium on Computer Science Education, SIGCSE ’12,

pages 83–84, New York, NY, USA, 2012. ACM.

[10] Daniel D. Garcia and David Ginat. Demystifying computing

with magic, continued. In Proceedings of the 44th ACM

Technical Symposium on Computer Science Education,

SIGCSE ’13, pages 207–208, New York, NY, USA, 2013.

ACM.

[11] Gerald Kruse. “Magic numbers” approach to introducing

binary number representation in CSO. SIGCSE Bull.,

35(3):272–272, 2003.

[12] Anany Levitin and Mary-Angela Papalaskari. Using puzzles

in teaching algorithms. SIGCSE Bull., 34(1):292–296, 2002.

[13] P. W. McOwan and P. Curzon. The Magic of Computer

Science. 2008. Available from: http://www.cs4fn.org/

magic/downloads/cs4fnmagicbook1.pdf. Last

accessed: 17 Mar 2014.

[14] P. W. McOwan, P. Curzon, and J. Black. The Magic of

Computer Science II: Now we have your attention. 2009.

Available from: http://www.cs4fn.org/magic/

downloads/cs4fnmagicbook2.pdf. Last accessed: 17

Mar 2014.

[15] Z. Michalewicz and M. Michalewicz. Puzzle-based

Learning: Introduction to Critical Thinking, Mathematics,

and Problem Solving. Hybrid Publishers, 1st edition, 2008.

[16] Paul Ramsden. Learning to Teach in Higher Education.

Routledge, 2nd edition, 2003.

[17] Alison Shreeve, Shân Wareing, and Linda Drew. Teaching

for Quality Learning at University: What the Student does

(Society for Research Into Higher Education), chapter Key

aspects of teaching and learning in the visual arts. In [3], 4th

edition, 2011.

