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We report on the first detailed use of broadband cavity enhanced absorption spectroscopy (BBCEAS) as 

a detection system for immunoassay. A vertical R ≥ 0.99 optical cavity was integrated with a motorised 

XY stage, which functioned as a receptacle for 96 well microtiter plates. The custom built cavity 

enhanced microplate reader was used to make measurements on a commercially available osteocalcin 

sandwich ELISA kit. A 30 fold increase in path length was obtained with a minimum detectable change 

in the absorption coefficient, αmin(t), of 5.3 × 10
-5

 cm
-1

 Hz
-1/2

. This corresponded to a 39 fold increase in 

the sensitivity of measurement when directly compared to measurements in a conventional microplate 

reader. Separate measurements of a standard STREP-HRP colorimetric reaction in microtiter plates of 

differing optical quality produced an increase in sensitivity of up to 115 fold compared to a conventional 

microplate reader. The sensitivity of the developed setup compared favorably with previous liquid-phase 

cavity enhanced studies and approaches the sensitivity of typical fluorometric ELISAs. It could benefit 

any biochemical test which uses single pass absorption as a detection method, through either the label 

free detection of biologically important molecules at lower concentrations or the reduction in the 

amount of expensive biochemicals needed for a particular test, leading to cheaper tests.    

Enzyme linked Immunosorbent Assays (ELISA) are amongst the most widely used and important bio-

analytical techniques currently available. They are based on the detection of highly specific antibody 

antigen reactions with key characteristics of, accuracy, precision, limit of detection, measurement range, 

and cost. With the availability of a wide range of disease biomarkers and increased use of expensive 

reagents an ELISA can be costly to use if several biomarkers need to be measured in an investigation 
[1]

. 

The most commonly used ELISA detection method involves colorimetric detection through the use of 

visible wavelength absorption spectroscopy with an appropriate microplate reader. There are, however, 

a variety of other formats including simple dip strip ELISA 
[2]

. Absorption spectroscopy is simple and 

widely used but has relatively poor sensitivity when compared to other analytical techniques. This is 

because the measurement of a small absorption requires the measurement of a small difference between 

two large signals, corresponding to the intensity with and without sample, unlike for example 

fluorescence spectroscopy where the measurement can be made in principle against a zero background 

signal. Consequently, fluorometric detection of ELISA is typically 100 - 1000 times more sensitive than 

colorimetric detection 
[3]

. However, fluorometric detection requires the fluorescent labeling of some of 

the ELISA reagents whilst the cost of fluorometric microplate readers is significantly higher than basic 
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colorimetric microplate readers as more expensive optical components are required. Methods which can 

increase the sensitivity of colorimetric detection are therefore highly desirable as they would potentially 

allow this simpler, cheaper and label free detection method to be used for tests where currently only 

fluorometric detection has the required sensitivity. 

The Beer–Lambert law states that the absorbance is proportional to the path length of measurement and 

so the sensitivity of absorption measurements can be improved by increasing the path length. However, 

increasing the physical path length is not feasible for most bio-analytical applications. Over the past two 

decades the sensitivity of absorption spectroscopy has been greatly improved through the development 

of techniques based on the use of optical cavities. These have used high reflectivity dielectric mirrors to 

form an optical cavity around the sample which allows light entering through the back of one of the 

mirrors to be essentially multi-passed many times through the sample and thus greatly increase the 

effective path length of measurement. The first experimental studies were based on cavity ring down 

spectroscopy (CRDS) 
[4]

, which required powerful laser light sources and complex and expensive fast 

detection equipment to measure the decay in intensity of light exiting the cavity on a microsecond 

timescale. This ‘ring down time’ could be directly related to the absorption coefficient of an analyte. 

Later on an experimentally simpler variant, cavity enhanced absorption spectroscopy (CEAS) 
[5]

 was 

demonstrated. This required only the measurement of the time integrated intensity exiting the cavity and 

so could use slower and cheaper detection setups but had the disadvantage of requiring calibration 

measurements to obtain the absorption coefficient of analytes. Further experimental innovations were 

demonstrated through broadband CEAS (BBCEAS) 
[6]

, where a high intensity lamp was used as the 

light source instead of a laser and coupled with a multiplex detector to allow simultaneous measurement 

across a wide wavelength range. LED-BBCEAS has additionally reduced complexity and cost through 

the use of a high intensity LED as the light source 
[7]

. Most of the previous cavity based measurements 

have been made on gas-phase analytes as low background scattering and absorption by gases allows a 

very high number of passes (>10
4
 with suitable high reflectivity mirrors) to be achieved. Only a few 

liquid-phase cavity based studies have been reported to date as the solvent related scattering and 

absorption losses are much higher 
[8][14]

. However, for bio-analytical applications the majority of 

analytes are in the liquid-phase. Many of the previous liquid-phase studies have used CRDS and have 

focused on using CRDS as a detection method for high performance liquid chromatography (HPLC). 

Recently LED-BBCEAS has been applied to liquid-phase measurements both in cuvettes 
[15], [16]

 and 

also as a detector for HPLC measurements 
[17]

. The sensitivity of these measurements was comparable 

to the CRDS measurements whilst using a substantially less complex and lower cost experimental setup. 

There have been no previously reported CEAS studies that have been applied to more complex and 

practically relevant liquid-phase assays such us immunoassay. 

We have previously described the use of the CEAS detection for measurements in microtitre plates 
[18]

. 

We now demonstrate the first use of LED-BBCEAS to absorption measurements for immunoassay in 

microtiter plates. Absorbance based microplate readers are one of the most commonly used instruments 

for bioassays. Their importance in clinical investigations is significant, however, the use of high cost 

analytes and antibodies make the consumable cost of certain bioassays expensive. The potential benefits 

of increasing the sensitivity of colorimetric detection include making the sensitivity of colorimetric 

bioassays comparable to fluorometric bioassays and also a reduction in the quantity and cost of 

expensive reagents needed to make a measurement for colorimetric bioassays where the existing 

sensitivity is sufficient.  

 

 

 



3 

 

EXPERIMENTAL SECTION 

The optical cavity.  Figure 1 shows a schematic of the experimental setup used. The optical cavity was 

constructed such that the linear cavity transmission axis and beam propagation direction was in the 

vertical plane to allow integration with the microplate reader which needed to move in the horizontal 

plane.  The light source was a 1W Luxeon O Star white LED (Philips Lumileds Lighting Company, 

USA) which output ~50 mW in the range ~400-700 nm. The divergent output was collimated using a 

series of lenses and irises such that a 2 mW, nearly collimated beam of ~4 mm diameter was impingent 

on the first cavity mirror. The optical cavity was formed by two identical 25 mm diameter high 

reflectivity (R ≥ 0.99), concave mirrors (radius of curvature of = –100 mm, Layertec, Germany), which 

covered the range 420 nm - 640 nm and were separated by ~100 mm. The custom built microplate 

reader consisted of a motorised XY stage (Thorlabs MAX202, UK) controlled by a stepper motor 

controller unit (Thorlabs BSC103, UK) and associated personal computer (PC) based control software. 

The stage was able to move 105 mm in the x direction and 70 mm in the y direction with 10 μm 

accuracy. The microplate reader was placed between the cavity mirrors using a custom built lockable 

mount based on 4 translating post holders, which allowed fine adjustment of the tilt relative to the cavity 

mirrors. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The schematic of the LED-BBCEAS experimental setup with an integrated custom built 

microplate reader. 

 

During the course of experiments, three different types of 96 well microtiter plates were used to make 

measurements on liquid samples. Experiments were performed on either (i) glass bottomed (Thermo 

Scientific, UK, 12 mm pathlength and 370 μL well capacity) (ii) polystyrene bottomed microtiter plates 

(Microtest Ltd, UK, 11 mm pathlength and 360 μL well capacity) or (iii) protein coated  polystyrene 

microtiter plates (IDS Ltd, UK, 11 mm pathlength and 360 μL well capacity) provided with the 

Osteocalcin ELISA. 

 

The light exiting the cavity was focused by a 5 cm focal length lens onto the input of a 2 m long, 600 

μm diameter fibre optic cable (Thorlabs M29L02, UK). The light leaving the fibre was focused by a 
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fibre optic collimator (Thorlabs F240-SMA, UK) onto the 100 μm entrance slit of the detection 

spectrometer. This consisted of an Andor Shamrock SR163 spectrograph coupled to a thermoelectrically 

cooled Andor iDus DV420-OE CCD camera, which operated over the range ~420 nm - 550 nm with ~1 

nm resolution when used with a 1200 lines/mm grating. The spectrometer and recording of spectra was 

controlled through the software program SOLIS (Andor, UK) which ran on a PC which was connected 

to the CCD camera via a USB connection. Comparative conventional single pass microtiter plate 

measurements were made using a BioTek, Synergy HT Multi-Mode Microplate Reader (BioTek, USA) 

which had a stated minimum detectable change in absorbance of 1 × 10
-3

. 

 

Experimental methodology. Previous studies have shown that the absorption in a gas-phase CEAS 

experiment can be expressed by 
[19]

:  

 

                     
     

    
 
      

   
            

        
                      (1)         

                    

where, I0() and I() are the measured transmitted intensities with and without the absorber in the 

cavity,   is the base path length through the sample in the cavity in cm, R() is the average wavelength 

dependent mirror reflectivity, ε is the wavelength dependent extinction coefficient in ng
-1

 mL cm
-1

, and 

C is the concentration of the sample in ng mL
-1

. This expression, which is valid for all reasonable 

absorptions, shows that in a cavity experiment, I0()/I() is linearly proportional to the concentration of 

the analyte. It can be seen from Eqn.1 that the enhancement offered by a cavity experiment over a single 

pass experiment is due to the term 
 

        
 . If this is set to be the wavelength dependent cavity 

enhancement factor (CEF), then the expression can be rearranged in terms of CEF 
[8]

:  

 

                                           
 
     

    
   

      

          
                             (2) 

 

Therefore, the CEF can be calculated at a given cavity absorption wavelength and concentration if the 

extinction coefficient of the analyte at a given wavelength ε and the base path length of measurement 

are known, or if the cavity absorption and single pass absorbance (denominator term in Eqn.2) for the 

same sample is known. The CEF values can be averaged over several readings to obtain a more 

representative value. For measurements where the plot of cavity absorption against concentration was 

not expected to be linear, such as immunoassay standard curves, this was the approach taken. 

Alternatively if  
     

    
   

      
is plotted versus concentration and the gradient of the linear plot 

divided by 2.303εl, then a value of the CEF at a given wavelength and averaged over a range of 

concentrations is obtained. In this case of a linear relationship between cavity absorption and 

concentration a linear regression is fitted and the gradient obtained by a least squares method. The 

standard deviation in the measurement of the gradient can also be used to calculate the standard 

deviation in the CEF value. Although for gas-phase cavity measurements the CEF() = 
 

        
 and thus 

can be used to determine the mirror reflectivity at a given wavelength, for the present liquid-phase 

measurements in a microtiter plate, the CEF value contains significant contributions from both solvent 
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and microtiter plate related scattering and absorption losses and thus is a measure of the total cavity loss. 

i.e. 

 

                                      
 

         
                                                 (3) 

 

where Ltotal() is the per pass total cavity loss at a given wavelength and Lscat+abs() is the per pass 

scattering and absorption loss from the microtiter plate and solvent at a given wavelength.  

 

The CEF value can be used to calculate the effective path length of measurement at a given wavelength 

(leff = l × CEF) where l is the base path length. The effective path length is used in the calculation of the 

sensitivity of the measurement which is defined in terms of the minimum detectable change in the 

absorption coefficient αmin (also known as noise-equivalent absorption coefficient 
[19]

). This is given by 

the expression:  

 

                                      
             

    
                                (4) 

 

where ∆ABSmin is the minimum detectable absorbance change in the cavity absorption spectrum. This 

was determined by recording two successive I0 spectra for a blank solution and calculating an 

absorbance spectrum by treating one of the spectra as the I spectrum. Ideally this 'blank' spectrum 

should consist of a flat line centered around an absorbance of zero. ∆ABSmin could be calculated from 

this spectrum by measuring the standard deviation in absorbance around the wavelength of 

measurement which was usually the wavelength of peak cavity absorption.  

 

The value of αmin could also be used to calculate the limit of detection (LOD) of an analyte which is 

defined as the smallest amount that can be reliably measured 
[15]

. It was calculated from the expression: 

 

                                                   
      

       
                                               (5) 

 

To allow a fairer comparison of the sensitivity of an experiment, the ∆ABSmin values were normalised to 

one second of measurement by taking the total acquisition time in seconds () into account by using the 

following expression:  

 

                                                       (6) 

   

The time normalised αmin(t) value with units of  cm
-1

 Hz
-1/2

 for each measurement was given as: 

 

                            
                

    
                       (7) 

 

Optimisation and alignment of the setup. The BBCEAS measurements in a microtiter plate 

introduced some new experimental challenges. Initially, the alignment of the empty cavity was 
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optimised by iterative adjustment of the kinematic controls on the top and bottom cavity mirror mounts, 

such as to maximise the output reaching the detector. This procedure was repeated when an empty 

microtiter plate was introduced into the cavity by the adjustment of the 4 lockable mounts relative to the 

cavity mirrors. The insertion of the microtiter plate led to a decrease in output intensity as a result of 

additional scattering and absorption losses. The glass bottomed microtiter plates, introduced a loss of 

~20% compared to the ~50 - 70% loss of the lower optical quality polystyrene microtiter plates. The 

addition of phosphate buffer solution (PBS) as a blank solution for measurements, introduced a further 

cavity loss of ~10%. It was noticed that the total cavity loss (as measured by the intensity reaching the 

detector) was sensitive to the level of liquid in the well. The losses were high at levels below full well 

capacity, rapidly decreased as full well capacity was approached and then increased again as full well 

capacity was exceeded. On closer examination, the loss appeared to be related to the shape of the 

liquid/air interface. At levels less than full well capacity the shape of the meniscus was concave and 

resulted in higher interface scattering losses. As the level approached full well capacity the meniscus 

flattened leading to a substantial reduction in interface scattering losses. When the full well capacity was 

slightly exceeded the shape of the meniscus became convex, again leading to increased interface 

scattering losses. Consequently, to minimise interface losses, careful adjustment of the liquid level in the 

well was made using a syringe to optimise both the liquid level and shape of the interface. This was 

achieved through maximising the intensity reaching the detector. 

 

Colorimetric reaction. Preliminary experiments to optimise the experimental setup were performed on 

a colorimetric reaction involving the enzyme linked conjugate Streptavidin-Horseradish Peroxidase 

(STREP-HRP), as this reaction was also used as part of the subsequent osteocalcin ELISA assay. The 

reaction was performed in both glass and polymer bottomed microtiter plates to determine the relative 

optical losses of the two types of microtiter plates.  

A 25 µg mL
-1

 STREP-HRP conjugate was used as a stock solution to prepare serial dilutions of the 

enzyme linked protein in the range from 0.1 ng mL
-1

 to 0.8 ng mL
-1

. The colorimetric reaction was 

carried out in clear 7.0 mL sterile plastic containers (Bijou PP, SLS Ltd) under dark conditions. 3,3',5,5'-

tetramethylbenzidine (TMB) was used as a non-carcinogenic substrate solution and was pipetted into 

each STREP-HRP solution in a 1:10 ratio (100 µL of STREP-HRP and 1 mL of TMB). After 15 minutes 

incubation time the chromogenic substrate was enzymatically oxidised to a blue coloured product. Upon 

addition of 1mL of sulphuric acid to each vial a yellow colour change took place and samples were 

immediately transferred into appropriate microplate wells for absorption measurement at 450 nm in the 

cavity. Phosphate buffer solution (PBS) at a pH 7.4 was used as a blank solution for each of the samples. 

The absorption at 450 nm directly reflected the quantity of streptavidin present in each sample. Cavity 

absorption measurements were repeated three times at each concentration in the range 0.1 ng mL
-1

 to 0.8 

ng mL
-1

 and the results were compared with single pass absorption measurements in a 1 cm quartz 

cuvette, using a conventional UV-Visible double beam spectrometer (Jasco V-630). 

 

Sandwich ELISA. A commercially available ELISA kit (N-MID Osteocalcin, IDS diagnostics) was 

chosen for the application of BBCEAS. The assay is a well-known immunological diagnostic test 

widely used in metabolic bone disorder clinical research. The test is designed to detect and quantify 

osteocalcin in human serum and plasma. Osteocalcin is a non-collagenous calcium binding protein 

mainly produced by osteoblasts. After synthesis, it is delivered to bone matrix and also partially released 

into the circulation system. As it originates from bone, the amount of osteocalcin present in serum 

directly reflects bone formation activity. Indication of osteoblast activity is a valuable aid in identifying 

individuals at a risk of developing osteoporosis or conditions that are associated with both high and low 

bone turnover respectively, such as growth hormone deficiency or hyper- and hypo-parathyroidism. The 
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method was based on a sandwich ELISA, using a biotinylated monoclonal antibody as a capture 

antibody and an HRP-labelled monoclonal antibody as a detection antibody. Detection is accomplished 

by measuring the activity of the peroxidase enzyme with a chromogenic substrate. The absorption of the 

resulting coloured product is directly proportional to the concentration of osteocalcin present in the 

sample.   

The ELISA kit contained a 96 well polystyrene microtiter plate. The bottom of each well was coated 

with a layer of streptavidin. Each subunit of the tetrameric protein can strongly bind four molecules of 

biotin.  During the assay the strong bond between the two compounds is utilized to attach biotin-labelled 

osteocalcin antibody to the streptavidin coated plate.  

 

Assay procedure. The complete ELISA procedure was carried out at room temperature (~22°C). The 

antibody solution was prepared by adding 10 mL of the diluted conjugated solution to both the 

peroxidase, and biotinylated antibody and then mixing equal volumes of the two solutions together. The 

ELISA kit contained synthetic human osteocalcin standards (CAL 1-5) which were reconstituted with 

500 μL of distilled water, resulting in solutions of concentration 3.7 ng mL
-1 

to 61.6 ng mL
-1

. CAL 0 was 

a blank solution which contained PBS, protein stabilizer and preservatives.  

Figure 2 shows a schematic of the ELISA procedure. Immuno strips incubation required 20 µL of the 

CAL 0-5 standards to be pipetted into appropriate wells (a), followed by addition of 150 µL of the 

mixed antibody solution (b). The strips were incubated for 120±5 minutes without any mixing under 

dark conditions. The wells were washed 5 times with approximately 300 µL of washing buffer solution 

to remove excess antibody solution (c). For the final stage, 250 µL of chromogenic TMB substrate 

solution was pipetted into each well except the one containing the PBS blank solution (d). After 15±2 

min incubation in the dark, TMB was oxidized by the enzyme HRP attached to the detection antibody to 

yield a blue colour. The reaction was stopped by adding 250 µL of H2SO4 stopping solution to each 

well, resulting in a final yellow colour (e). The total volume of liquid added slightly exceeded the total 

capacity of the well (360 µL) leading to a convex bulge on top of the well. A flat surface layer was 

ensured to minimise interface losses as described previously (f). Comparison was made by determining 

the osteocalcin ELISA standard calibration curve using a conventional microplate reader (BioTek, 

Synergy HT) to make absorbance measurements at 450 nm. 

 

 

 

 

 

 

 

Figure 2. Osteocalcin assay procedure: (a) CAL 0-5 standards, (b) mixed antibody solution, (c) removal 

of excess antibodies, (d) TMB substrate solution, (e) H2SO4 stopping solution, (f) Cavity enhanced 

measurement. 

 

(a) (b) (c)   (d) (e) (f) 
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RESULTS AND DISCUSSION 

Colorimetric reactions. The colorimetric reaction between STREP-HRP and TMB was studied in both 

polystyrene and glass bottomed microtiter plates. Figure 3 shows (a) a representative cavity absorption 

spectrum of STREP-HRP in a glass bottomed plate in the range 400 nm - 520 nm  and at a concentration 

of 0.2 ng mL
-1

 and (b) a cavity absorption plot in a polymer plate at concentrations ranging from 0.1 ng 

mL
-1

 to 0.8 ng mL
-1

. Table 1 lists the figures of merit for the measurements along with those for the 

osteocalcin ELISA measurements. It can be seen that the CEF value at 450 nm for the measurements in 

the glass bottomed microtiter plates (55.6) is significantly higher than that in the polymer bottomed 

plates (33.8) as a result of the better optical quality which produces lower optical losses in the optical 

cavity. This also leads to lower ∆ABSmin values as a higher intensity reaches the detector and as the noise 

is proportional to the square root of the intensity at the detector, for cases such as these which are 

essentially shot noise limited. This also contributes to lower αmin(t) and LOD values. However, the 

polymer bottomed microtiter plate results still produce a substantial improvement in both path length 

and sensitivity (42 fold, Table 1) when compared to a single pass measurement. This is important 

because current bio-analytical microtiter plate measurements are typically performed in polymer 

bottomed microtiter plates.    

  

 

Figure 3. (a) Representative cavity absorption spectrum of the STREP-HRP conjugate obtained in a 

glass bottomed microtiter plate. (b) Cavity absorption plot in a polymer bottomed microtiter plate. 
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Table 1. Summary of the results in terms of the assay plate, the base path length, the CEF value at 450 

nm and the standard deviation of the measurement, the αmin(t) and the LOD of the analyte, and the 

minimum detectable change in absorbance noise ΔABSmin(t)  at 450 nm with R≥0.99 mirror set. 

 

Osteocalcin ELISA. BBCEAS measurements were made on the calibration solutions from a 

commercial osteocalcin kit. These results were compared with measurements performed in a standard 

microplate reader to determine the CEF values at 450 nm using Eqn. 2 whilst other figures of merit are 

also listed in Table 1. Figure 4 shows (a) the cavity enhanced absorption plot of human osteocalcin 

standards (CAL 1-5) and the blank solution (CAL 0) as a function of concentration in the range 0 ng 

mL
-1

 to 61.6 ng mL
-1

 and (b) the single pass calibration curve using the standard microplate reader. Both 

plots show a characteristic sigmoidal curve due to cooperative binding between the antibody and 

antigen. The reduction in average number of passes (30.2) when compared to polymer bottomed plates 

for STREP-HRP (33.8) was most probably the result of the increasing effect of stray light in the 

spectrometer on the higher analyte concentrations (Table 2) which produced very large absorptions. This 

would be expected to lead to the measured absorption being lower than the true absorption and thus an 

underestimate of the calculated CEF value. Although the better optical quality of the ELISA microtiter 

plate produced lower optical losses in the optical cavity and resulted in lower ∆ABSmin(t), the lower CEF 

value contributed to higher αmin(t) and LOD values. The results obtained in the studied concentration 

range were significant as they showed the ability of the system to measure higher analyte concentrations 

and thus broaden its applicability.  

 

 

 

Figure 4. The absorption versus concentration plot of human osteocalcin ELISA in the range 0 ng mL
-1

 

to 61.6 ng mL
-1

. The error bars represent the standard deviation of the measurements. (a) The 

measurement in the cavity enhanced microplate reader. (b) The corresponding calibration curve obtained 

in the standard microplate reader.  

 

Technique Sample Microtiter plate 
 

l /cm CEF ΔABSmin(t)  αmin(t) /cm-1 Hz-1/2 LOD (ng mL-1) 

 
  

 
  

   

CE-Plate Reader STREP-HRP Glass  1.2 55.6 ± 1.3 5.25 × 10-4 1.81 × 10-5 9.35 × 10-5 

CE-Plate Reader STREP-HRP Uncoated polymer  1.1 33.8 ± 0.8 8.02 × 10-4 4.96 × 10-5 2.56 × 10-4 
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Table 2. The value of the CEF at 450 nm obtained for individual human osteocalcin standards (CAL 1-

5) in the concentration range 0 ng mL
-1

 to 61.6 ng mL
-1

. The average CEF and the standard deviation of 

the measurement is also listed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparison with previous studies. Table 3 compares the best figures of merits from our study with 

some of the previously reported liquid-phase cavity enhanced studies in cells of 1 cm base path length. 

 

When comparing the sensitivity of our measurements with measurements in a conventional microplate 

reader our results (Table 1) are between 39 and 115 fold more sensitive, showing that a very significant 

increase in sensitivity can be achieved without much additional cost or experimental complexity. The 

increase in sensitivity also means that colorimetric measurements can begin to approach the sensitivity 

of fluorometric measurements. 

 

Table 3. Comparison between this study and the data available from previous liquid-phase cavity 

studies as a function of technique, the mirror reflectivity, the light source, the cell used, the wavelength 

of measurement, the base path length and the lowest value of αmin, the minimum LOD and the extinction 

coefficient for the analyte in question. 

 

CE-Plate Reader  OST ELISA 

OST standards Conc./ng mL-1 CEF 

   
CAL 0 0.00 32.5 

CAL 1 3.70 36.2 

CAL 2 8.40 32.6 

CAL 3 15.9 29.7 

CAL 4 38.8 26.9 

CAL 5 61.6 23.2 

 Average CEF             30.2 ± 4.6 

Study Technique R≥ Light source Cell λ/nm l/cm αmin /cm-1 LOD/ng mL-1 ε/ng-1 mL cm-1 

  
 

 
 

    
 

STREP-HRP CE-Plate Reader 0.99 white LED glass plate 450 1.2 1.81 × 10-5 9.35 × 10-5 2.52 × 10-1 

OST ELISA CE-Plate Reader 0.99 white LED 
polymer 

plate 
450 1.1 5.33 × 10-5 2.75 × 10-4 2.52 × 10-1 

  
 

 
 

    
 

Qu et al. [20] BBCEAS 0.99 LED cuvette 527 1.0 6.5 × 10-5 4.1 × 10-1 2.1 × 10-4 

Seetohul et al. [17] BBCEAS 0.99 LED HPLC cell 556 1.0 1.9 × 10-5 1.0  1.9 × 10-4 

Fiedler et al. [21] BBCEAS 0.99 lamp cuvette 607 1.0 2.0 × 10-5 - - 

Xu et al. [22]  CRDS 0.9997 pulsed laser cuvette 607 1.0 1.0 × 10-5 - - 

van der Sneppen et al. [23] CRDS 0.9995 Nd:YAG laser cuvette 355 1.0 3.0 × 10-5 8.4 4.7 × 10-5 

van der Sneppen et al. [23] CRDS 0.9991 Nd:YAG laser cuvette 273 1.0 1.0 × 10-3 1.3 × 102 - 
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Most of the previous liquid-phase cavity studies in 1 cm base path length cell have been performed 

using generally more complex and expensive experimental setups and also higher reflectivity mirrors. 

The first study by Xu et al. 
[22]

 CRDS on the C-H stretching fifth vibrational overtones of benzene and 

reported a value of αmin of 1.0 × 10
-5

 cm
-1

. HPLC-CRDS measurements by van der Sneppen et al. 
[23]

 at 

355 nm and 273 nm had lower sensitivity as a result of the decreased performance of the high 

reflectivity mirrors in the deep UV region. Fielder et al. 
[21]

 made the first demonstration of liquid- phase 

BBCEAS whilst Seetohul et al. 
[17]

 reported the first HPLC-BBCEAS measurements. Qu et al. 
[20]

 made 

BBCEAS measurements using a simple low cost webcam based spectrometer. The sensitivity of the 

measurements in the present study compares favorably with all the previous studies showing that similar 

levels of sensitivity can be achieved in microtiter plates as in cuvettes.  Table 3 lists the best LODs 

obtained in this study and the comparison with the LODs, where available, of previous liquid-phase 

cavity studies. The value of the LOD is affected both by the calculated value of αmin and the absorptivity 

for the particular analyte. As would be expected the glass bottomed microtiter plate gave the lowest 

LOD for the strong absorber STREP-HRP. The increased losses in polymer bottomed plates led to 

higher αmin and LOD values. The LODs in this study compare favorably with previous studies taking 

into the account the differences in the extinction coefficients of the analytes studied.  

We have shown here a successful application of LED-BBCEAS detection for immunoassay and 

colorimetric reactions in a microplate reader. The LED-BBCEAS approach has been shown to provide 

around a 100 fold increase in sensitivity over conventional microplate readers which can lead to lower 

LODs and/or reduced consumption of reagents within the assay and allow colorimetric detection to 

approach the sensitivity of fluorometric detection.  

Further work. Although our LED-BBCEAS system showed significant improvement over 

conventional microtiter plate readers and the performance of the technique compares favourably with 

previous liquid-phase cavity studies, the current sensitivity could be improved by a number of 

modifications. Losses related to the shape of the liquid/air interface can be further reduced by  use of 

automated liquid dispensing to measure out accurately the exact amount of samples needed to fill the 

well  and/or use of a lid to cover the surface of the microtiter plate to flatten the meniscus. It should be 

noted that the use of higher reflectivity cavity mirrors to increase the number of passes through the 

cavity would be ineffective due to the dominant optical losses from the polymer microtiter plate. Higher 

sensitivity could be achieved by using high quality glass bottomed microtiter plates but this would 

require appropriate coatings specific for antigen-antibody binding. A number of further improvements 

could be made, including fibre coupling the light exiting the cavity on to the thermoelectrically cooled 

CCD detector for higher light throughput and improved signal to noise.  

CONCLUSION 

We describe the first report on the detailed use of cavity enhanced detection for immunoassay 

measurements in microplate readers. A vertical R ≥ 0.99 optical cavity using a broadband LED light 

source and a CCD spectrograph was integrated with a custom built microplate reader to perform 

colorimetric bio-analytical measurements. The major advantage over conventional microplate readers is 

provided by the increased sensitivity of the setup which has the benefit of lower detection limits in 

conjunction with reducing the consumable cost of currently expensive bioassays. Experiments 

performed on a commercially available osteocalcin ELISA showed a 39 fold improvement in sensitivity 

when compared to measurements in a standard microplate reader, whilst measurements on the STREP-

HRP reaction showed up to a 115 fold increase in sensitivity. This makes colorimetric detection 

approach the sensitivity of fluorometric detection in microplate readers. In comparison with previous 

liquid-phase CEAS and CRDS studies in 1 cm cuvettes, the lowest αmin values from our studies were 

found to offer similar sensitivities, using microtiter plates with generally higher optical losses. Further 
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improvements can be made in light coupling as well as developing a more compact and robust 

integrated cavity enhanced detection system. 
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