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Based on the generalized Lorenz-Mie theory framework, the reflection and transmission of an incident 
Gaussian beam by a chiral slab were investigated, by expanding the incident Gaussian beam, reflected 
beam, internal beam as well as transmitted beam in terms of cylindrical vector wave functions. The 
unknown expansion coefficients were determined by virtue of the boundary conditions. For a localized 
beam model, numerical results of the normalized field intensity distributions are presented, and the 
propagation characteristics are discussed concisely in this paper. 
 

1. INTRODUCTION 
The interaction of electromagnetic (EM) waves with chiral media has drawn considerable attention 

over the years, for many potential applications involving antennas, antenna radomes (chiral covers), 
microstrip substrates, and waveguides. Owing to the optical activity, in a chiral medium a linearly 
polarized wave undergoes a rotation of its polarization as it propagates, and there exist two 
eigenwaves, the right and left circularly polarized waves (RCP and LCP waves) with different phase 
velocities. For many fundamental canonical problems, analytical solutions have been provided. The 
EM plane wave scattering by an optically active sphere or cylinder has been analyzed by using the 
vector wave functions [1, 2]. On implementation of the EM boundary conditions for the corresponding 
characteristic plane waves, a theoretical study has been presented of the plane wave propagation 
through a dielectric-chiral interface and through a chiral slab [3, 4]. As for the case of a shaped beam, 
which is of practical importance, Yokota et al. studied the scattering of a Hermite-Gaussian beam by a 
chiral sphere via establishing the relations between the multipole fields and the conventional Hermite- 
Gaussian beam [5]. By using an angular spectrum of plane waves to represent the incident field, the 
refraction at a dielectric-chiral interface of near fields of a constant current line source has been 
examined by Lakhtakia et al. [6], and of a two-dimensional (2D) Gaussian beam by Hoppe et al. [7]. 
Adopting the same angular spectrum representation approach, Huang et al. discussed the lateral shifts 
from a slab of lossy chiral metamaterial illuminated by a 2D Gaussian beam [8]. The light pressure 
exerted on a chiral sphere by a Gaussian beam has also recently been studied [9]. In one recent paper 
[10], within the generalized Lorenz-Mie theory (GLMT) framework we have obtained an explicit 
description of the expansion of a Gaussian beam (focused TEM00 mode laser beam) in terms of 
cylindrical vector wave functions (CVWFs). In this paper, the use of such an expansion enables us to 
construct an analytical solution to the reflection and transmission of a Gaussian beam by a chiral slab. 

The body of this paper proceeds as follows. Section 2 provides a theoretical procedure for the 
determination of the reflected, internal and transmitted fields for a Gaussian beam incident on a chiral 
slab. In Section 3, numerical results of the normalized field intensity distributions are presented, and 
the conclusions are drawn in Section 4. 

 

2. FORMULATION 
2.1 Expansions of Gaussian beam, reflected beam and transmitted beam in cylindrical coordinates 
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As shown in Fig.1, the planes  and 0z dz   of the Cartesian coordinate system  are 
the interfaces between the free space and a chiral slab of thickness  with an infinite area. An 
incident Gaussian beam propagates along the axis 

Oxyz
d

zO   which lies in the plane  of the system 
, with the middle of its beam waist located at origin 

xOz
Oxyz O  on the axis . The angle of 
incidence or the angle made by the axis 

zO 
zO   with the axis  is Oz  , and origin  of the system 

 has a coordinate  on the axis 
O

Oxyz 0z zO  . In this paper, the time-dependent part of the EM 
fields is assumed to be )texp( i . 

Free space 

Transmitted beam y dz   

Chiral medium Internal beam 

          
Fig.1. Geometry of an incident Gaussian beam from free space on a chiral slab 

In [10], by transforming the spherical vector wave functions into the CVWFs [11], an EM field 
expansion of an incident Gaussian beam (focused TEM00 mode laser beam) has been obtained in terms 
of the CVWFs in the system , which, for the sake of subsequent applications of boundary 
conditions, can be written as 
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and  is the same expression as , except that the integrated range of i
2E i

1E   is from 2  to  . 
In Eq. (2),  sin0k , cos0kh  ,  is the free-space wavenumber, and ,  

are the Gaussian beam shape coefficients. 
0k TEmI , TMmI ,

  For a TE polarized Gaussian beam, the coefficients ,  are  TEmI , TMmI ,
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where  (Gaussian beam shape coefficients in spherical coordinates), when the Davis-Barton 
model of the Gaussian beam is used [13], can be computed with its localized approximation as [14, 
15] 
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where )(1 00wks  , and  is the beam waist radius. 0w
For a TM polarized Gaussian beam, its corresponding expansions can be obtained by replacing the 

coefficients  with , and  with . TEmI , TMmiI , TMmI , TEmiI ,

It is worth mentioning that the coefficients ,  in Eqs. (3) and (4) are expressed in 
terms of beam shape coefficients in spherical coordinates. Obviously it is an extrinsic method. 
Gouesbet et al. introduced an intrinsic method known as “cylindrical localized approximation” to 
evaluate the coefficients [16]. 

TEmI , TMmI ,

Equation (1) can be interpreted as an incident Gaussian beam being expanded into a continuous 
spectrum of cylindrical vector waves, with each cylindrical vector wave having a propagation vector 

zhr ˆˆ0  k . The angle between and the positive  axis is 0k z  , so that only  represents 
the cylindrical vector waves that are incident on the interface 

i
1E

0z . 
Following Eq. (2), the reflected beam and transmitted beam can be expanded in terms of the 

CVWFs, as follows: 
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For the sake of brevity, only the expansions of the electric fields are written, and the corresponding 
expansions of the magnetic fields can be obtained with the following relations 
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2.2 Description of electromagnetic fields within a chiral slab 

The constitutive relations for a chiral medium can be expressed by [8, 9] 
  HED 000  ir                                     (9) 

EHB 000  ir                                    (10) 

where  is the chirality parameter. 
The EM fields in a chiral medium ( ) are the sum of the right-handed waves ( ) and 

left-handed waves ( ). As discussed in [17], the CVWFs can be combined to represent 
( ) and ( ). Then, the EM waves within the chiral slab (internal beam) that propagate 
towards the interface  can be described by the following equations, 
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and similarly, the EM waves towards the interface 0z  are governed by 
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2.3 Reflection and transmission of Gaussian beam by a chiral slab 

The unknown expansion coefficients )(ma , )(mb  in Eq. (6), )(me , )(mf  in Eq. (7),  

)(mc , )(md  in Eqs. (11) and (12) as well as )(mc , )(md   in Eqs. (13) and (14) can be 
determined by using the following boundary conditions 
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where the subscripts r  and   respectively denote the r  and   components of the EM fields. 
Eqs. (16) and (17) are valid for every value of Mm  , 1 M , …, M  and 0  to 
2 , where M  is the convergence number of the summation of series, and then from the fields 

expansions the boundary conditions in Eq. (16) can be written as 
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and the boundary conditions in Eq. (17) as 
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From the system consisting of Eqs. (18)–(25), the unknown expansion coefficients can be 

determined. By substituting them into Eqs. (6), (7) and (11)-(14), the reflected, transmitted and 
internal beams can be obtained respectively.  

 

3. NUMERICAL RESULTS AND DISCUSSIONS 
In this paper, the focus will be on the normalized field intensity distributions, which are defined 

respectively by the following set of equations, 
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By substituting the r ,   and  components of the CVWFs into Eqs. (1), (6), (7), (11) and (13) 
[12], the 

z
r ,   and  components of the electric fields of the incident Gaussian beam, reflected 

beam, transmitted beam as well as internal beam can be obtained, and then the explicit expressions of 
Eqs. (26)-(28) can be derived.  
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Fig.4. 

2

0ErE  for the same model as in Fig.2 at 0z  in the  plane illuminated by a TE 

polarized Gaussian beam 

xOz

In the following calculations, the normalized field intensity distributions are shown in the  
plane for a chiral slab (

xOz
4r , 1r , 8.0 ) illuminated by a Gaussian beam (TE or TM 

polarized) with an angle of incidence 2arctan  and 00 z . The slab thickness is assumed 

to be 010d , with 0  as the wavelength of the incident Gaussian beam. 
As for the problem in this paper of the Gaussian beam propagation through an infinite chiral slab, in 

numerical results the convergence number M  is dependent on the beam waist radius . To our 0w



computation, a better convergence accuracy (three or more digits of accuracy) of the fields series 

expansions can be readily achieved when  for the localized Gaussian beam model. 20M

0

Figure 2 shows the normalized field intensity distributions for a chiral slab illuminated by a TE 
polarized Gaussian beam with 0 2w . From Fig.2 we can see that inside the chiral slab an 
incident Gaussian beam splits into two waves, corresponding to the RCP and LCP waves respectively. 
Due to the refraction of the RCP and LCP waves at the interface dz  , two distinct transmitted 
waves appear in the region , which is also observed in Fig.3. The normalized field intensity 
distributions are displayed in Fig.3 for the same model as in Fig.2 but illuminated by a TM polarized 
Gaussian beam with 

d

0

z 

20 w . In Fig.3, the normalized field intensity of the reflected beam 
becomes too much smaller, as a result of the Brewster angle phenomenon. 

The normalized reflected field intensity distribution 
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versus x  is plotted in Fig.4 for the same model as in Fig.2 at 0z  in the  plane, for 
incidence of a TE polarized Gaussian beam with 

xOz
00 3w . In Fig.4, different from the assumption 

that the beam waist center of the incident Gaussian beam is located at 0x , the first field intensity 
peak in the reflected beam is shifted along the negative x  axis by a distance of about 041.0  , 
which is known as the lateral shift associated with an incident shaped beam [8]. 

In experiment, it is more attractive to realize the scenario of this paper in the millimeter-wave 
regime. In [18], Jaggard et al. presented a macroscopic model of the interaction of EM waves with 
chiral structures, i.e. electrically small perfect conductor helices, right- or left-handed. Then, a chiral 
slab can be fabricated by embedding many short metallic right- or left-handed helices of arbitrary 
orientation in a dielectric slab. A dielectric hybrid-mode horn antenna has been devised and analyzed 
theoretically [19], which can be used to radiate up to 98% of the power into the fundamental Gaussian 
mode [20]. So, it will be a realistic experimental design to illuminate a collection of randomly oriented 
short metallic helices of the same handedness by collimated Gaussian beams radiated from a dielectric 
hybrid-mode horn. 

 

4. CONCLUSIONS  
By the use of the field expansions in terms of the CVWFs, an approach to compute the reflection and 
transmission of an incident Gaussian beam by a chiral slab is presented. Since there are two refractive 
indices corresponding to the RCP and LCP waves within the chiral slab, two distinct transmitted 
waves are observed in the transmitted beam. A lateral shift in the reflected beam is also demonstrated. 
As a result, this study provides an exact analytical model for interpretation of Gaussian beam 
propagation phenomena through a chiral slab, and the method can also be extended to other cases such 
as uniaxial chiral, biaxial and gyrotropic anisotropic slabs. We hope that this study may lend support 
to research on the EM properties of chiral media. 
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