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Abstract Automated verification of operating system

kernels is a challenging problem, partly due to the use

of shared mutable data structures. In this paper, we

show how we can automatically verify memory safety

and functional correctness properties of the task sched-

uler component of the FreeRTOS kernel using the ver-

ification system Hip/Sleek. We show how some of

Hip/Sleek features like user-defined predicates and

lemmas make the specifications highly expressive and

the verification process viable. To the best of our knowl-

edge, this is the first code-level verification of mem-

ory safety and functional correctness properties of the

FreeRTOS scheduler. The outcome of our experiment

confirms that Hip/Sleek can indeed be used to ver-

ify code that is used in production. Moreover, since the

properties that we verify are quite general, we envis-
age that the same approach can be adopted to verify

components of other operating systems.

Keywords FreeRTOS · separation logic · automated

verification · operating systems · embedded systems ·
task scheduler · HIP/SLEEK

This work was supported in part by the EPSRC project
EP/G042322 and NNSFC project 61373033.

João F. Ferreira
School of Computing, Teesside University
HASLab / INESC TEC, Universidade do Minho
E-mail: joao@joaoff.com

Christian Gherghina
Singapore University of Technology and Design

Guanhua He
School of Computing, Teesside University

Shengchao Qin
School of Computing, Teesside University

Wei-Ngan Chin
National University of Singapore

1 Introduction

In recent years, the number of embedded devices in the

marketplace has increased substantially due to signifi-

cant reductions in size and costs of microprocessors. As

a result, the safety of the real-time operating systems

(RTOSs) that are traditionally used by embedded de-

vices is becoming increasingly important. The industry

has already recognised the importance of providing safe

and reliable RTOSs [2] and the academic community is

actively working on tools and methods that can improve

the current standards of software quality. In particular,

the advances in theory and tool support have inspired

industrial and academic researchers to join up in an in-

ternational Grand Challenge (GC) in Verified Software

[13,15]. In the context of this international challenge,

Jim Woodcock proposed the verification of FreeRTOS

[1], a real-time, multitasking, preemptive operating sys-

tem for embedded devices [33]. However, as Woodcock

points out, FreeRTOS involves lots of pointers and the

automatic verification of heap-manipulating programs

is challenging [30]. For that reason, Woodcock suggests

the use of separation logic [29], which supports reason-

ing about shared mutable data structures.

In this paper, we take the FreeRTOS kernel as a case

study and show how we can automatically verify the

memory safety and functional correctness of its main

component: the task scheduler. We use the verification

system Hip/Sleek, which allows the combination of

both separation (i.e. shape) and numerical (e.g. size)

information. Hip/Sleek also allows user-specified in-

ductive predicates to appear in program specifications,

making the specifications highly expressive. We only

consider partial correctness: we prove, for example, that

the next task chosen by the scheduler is the task that

should be executed, but we do not guarantee that the
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task will eventually be chosen (i.e., temporal properties

and other properties like thread safety on shared mu-

table data structures are not considered). To the best

of our knowledge, we provide the first code-level ver-

ification of memory safety and functional correctness

properties of the FreeRTOS scheduler.

We start in Section 2 by describing how FreeRTOS

is structured and by explaining what are the main data

structures involved in scheduling. In Section 3 we give

an overview of the Hip/Sleek verification system, and

in Section 4, we give an overview of the specification

and verification process, focusing in particular on, how

the main data structures used in the FreeRTOS sched-

uler are modelled and how relevant properties of func-

tional correctness and memory safety are specified. In

Section 5, we discuss related work. We finish in Section

6 with a discussion on what was achieved, on what we

have learnt from this experience, and on what we have

planned for the next steps. We also discuss briefly the

main challenges that we foresee.

2 FreeRTOS

FreeRTOS [1] is a real-time, multitasking, preemptive

operating system for embedded devices. The most im-

portant concept in FreeRTOS is the concept of task.

Each executing program is a task under the control of

the operating system (some operating systems use the

term process). In the presence of multiple tasks, the op-

erating system has to decide which task to execute at

any particular time. The part of the kernel responsi-

ble for switching tasks is the scheduler. FreeRTOS uses

a fixed-priority scheduling policy, ensuring that at any
given time, the processor executes the highest priority

task of all those tasks that are currently ready to exe-

cute1. Among other properties, the scheduler also has

to guarantee that only tasks that are ready to execute

are actually executed.

FreeRTOS2 is written mostly in the C programming

language, with a few assembler functions that take care

of architecture-specific details. There are four main C

files that represent the kernel of FreeRTOS. FreeRTOS

source code is distributed under a free software license

and is structured as shown in Figure 1. Most of the

architecture-independent code is in the Source direc-

tory. The file tasks.c implements most of the sched-

1 Note that FreeRTOS does not guarantee any deadlines
for the execution of tasks. The only guarantee is that the
highest priority task that is ready to execute will run as soon
as possible.
2 The work described in this paper is based on version 6.1.1

of FreeRTOS. Have in mind that the data structures and the
algorithms involved may have changed since that version.

Fig. 1 Structure of FreeRTOS Source Code

uler functionalities, making use of the structures and

functions defined in the file list.c. The file queue.c im-

plements thread-safe queues that are used for inter-

task communication and synchronisation. The file crou-

tine.c implements coroutines, which are very simple and

lightweight tasks that make a very limited use of stack.

In this paper, we focus on the methods defined in the

files tasks.c and list.c. FreeRTOS supports many dif-

ferent architectures; the architecture-dependent code is

in the directory portable. Although memory allocation

and deallocation are specifically defined for some of the

architectures, the directory MemMang contains several

C implementations that are portable for most of the

architectures.

2.1 Data structures

Lists FreeRTOS provides a list API that is designed

for the scheduler needs, but that can also be used by

application code. Lists are a key part of the scheduler,

because they are used to organise tasks; for example,

the scheduler maintains a list of tasks ready to execute

and a list of tasks that are blocked. The data struc-

ture representing lists is called xList and is defined as

follows:

typedef struct xLIST {
volat i le unsigned portBASE TYPE

uxNumberOfItems ;
volat i le xList I tem ∗ pxIndex ;
volat i le xMiniListItem xListEnd ;
} xL i s t ;

A list consists of a structure with three fields: the num-

ber of items in the list (uxNumberOfItems), a pointer

to a list item (pxIndex ), and a (mini) list item that con-

tains the maximum possible item value, which is used
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as a marker (xListEnd). The type portBASE TYPE is

architecture dependent; in the context of this paper, it

can be viewed as an unsigned integer. Note that lists

only store pointers to structures of the type xListItem,

whose definition is:

struct xLIST ITEM {
portTickType xItemValue ;
volat i le struct xLIST ITEM ∗ pxNext ;
volat i le struct xLIST ITEM ∗ pxPrevious ;
void ∗ pvOwner ;
void ∗ pvContainer ;
} ;
typedef struct xLIST ITEM xList I tem ;

Each list item holds a value (xItemValue), a pointer

to the object (normally a task) that contains the list

item (pvOwner), a pointer to the list in which the list

item is placed (pvContainer), a pointer to the previous

list item (pxPrevious), and a pointer to the next list

item (pxNext). The existence of the pointers pxPrevious

and pxNext suggests that lists are doubly-linked. As we

will see later (Section 4), lists are indeed cyclic doubly-

linked lists. Note that the end marker, xListEnd, is a

structure of the type xMiniListItem; the only difference

between this structure and the structure xListItem is

the omission of the fields pvOwner and pvContainer.

The List API provides the following five public func-

tions:

void v L i s t I n i t i a l i s e ( xL i s t ∗ pxList ) ;
void v L i s t I n i t i a l i s e I t e m ( xList I tem ∗pxItem ) ;
void v L i s t I n s e r t ( xL i s t ∗pxList ,

xList I tem ∗pxNewListItem ) ;
void vLi s t Inse r tEnd ( xL i s t ∗pxList ,

xList I tem ∗pxNewListItem ) ;
void vListRemove ( xList I tem ∗pxItemToRemove ) ;

The function vListInitialise initialises all the mem-

bers of an xList structure. This function must be called

before a list is used. After initialisation, the pointer

pxIndex points to the field xListEnd, which is the only

element of the list. Regarding the field xListEnd, its

field xItemValue is set to the maximum possible value

(portMAX DELAY ) and its pointers pxNext and px-

Previous are set to point to itself. As a result, the list

can be seen as a doubly-linked list of size 1 (note, how-

ever, that the first field, uxNumberOfItems, contains the

value 0, which is the number of elements different from

the end marker). Figure 2 illustrates the state of a list

immediately after initialisation. The three xList fields

are laid out horizontally; the first holds the value of the

variable uxNumberOfItems, which is zero; the second

holds the pointer pxIndex ; the third holds a structure

of type xMiniListItem.

Fig. 2 xList structure after initialisation

The function vListInitialiseItem sets the container

of the given item to NULL, guaranteeing that the item

is not recorded as being on a list. The function vListIn-

sert inserts an item into a list in ascending item value

order. Figure 3 illustrates how the list shown in Figure

2 would like if an xListItem A was inserted into it (we

omit the pointer pxList for simplicity).

If an xListItem B with an item value greater than

A’s item value was to be inserted into the list shown in

Figure 3, then it would be placed after A, as illustrated

in Figure 4. Note how insertion guarantees that the

doubly-linked list is cyclic.

The function vListInsertEnd inserts an item into a

list at the position following the item pointed by pxIn-

dex. Its definition is shown in Figure 5.

Note how pxIndex is changed to point to the item that

was just inserted. The relevance of vListInsertEnd will

become apparent later, when we explain how the sched-

uler determines which task to run next. Suppose that

we have the list shown in Figure 3 and we insert an

xListItem B with an item value greater than A’s item

value using the function vListInsertEnd. Figure 6 illus-

trates the resulting list. Note how the pointer pxIndex

is updated. The relevance of this function will become

apparent later, when we explain how the scheduler de-

termines which task to run.

Fig. 3 xList structure after insertion of the xListItem A

Fig. 4 xList structure after insertion of the xListItem B
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void vLi s t Inse r tEnd ( xL i s t pxList ,
xList I tem pxNewListItem )

{
xList I tem pxIndex ;

/∗ I n s e r t a new l i s t item i n t o pxLis t , but
r a t h e r than s o r t the l i s t , makes the new
l i s t item the l a s t item to be removed by a
c a l l to pvListGetOwnerOfNextEntry . This
means i t has to be the item pointed to by
the pxIndex member .
∗/
pxIndex = pxList . pxIndex ;

pxNewListItem . pxNext = pxIndex . pxNext ;
pxNewListItem . pxPrevious = pxList . pxIndex ;
( pxIndex . pxNext ) . pxPrevious = pxNewListItem ;
pxIndex . pxNext = pxNewListItem ;
pxList . pxIndex = pxNewListItem ;

/∗ Remember which l i s t the item i s in . ∗/
pxNewListItem . pvContainer = pxList ;

( pxList . uxNumberOfItems)++;
}

Fig. 5 Definition of the function vListInsertEnd

Fig. 6 xList structure after insertion of the xListItem B (us-
ing vListInsertEnd)

Finally, the function vListRemove removes an item

from a list, updating the pointer pxIndex if necessary.

For example, if we remove the item B from the list

shown in Figure 6, we get the list shown in Figure 3

(pxIndex is set to point to the previous item in the

list).

Tasks In FreeRTOS, a task is represented by a task

control block (TCB). TCBs are defined as shown in Fig-

ure 73.

The first two fields of a TCB are related with the task’s

stack: pxTopOfStack points to the location of the last

item placed on the task’s stack, and pxStack points to

the start of the stack.

Each TCB maintains two fields of the type xLis-

tItem: xGenericListItem is used to place the TCB in

3 To simplify the presentation, we do not include fields spe-
cific to architectures that have a Memory Protection Unit
(MPU), nor fields related with debugging. Also, the order of
the fields has been rearranged.

typedef struct tskTaskControlBlock
{
volat i le portSTACK TYPE ∗pxTopOfStack ;
portSTACK TYPE ∗pxStack ;

xList I tem xGener icLi s t I tem ;
xList I tem xEventListItem ;

unsigned portBASE TYPE uxPr i o r i t y ;
} tskTCB ;

typedef void ∗ xTaskHandle ;

Fig. 7 Definition of task control blocks

Fig. 8 Valid task state transitions (for more details, see [1])

ready and blocked lists, and xEventListItem is used to

place the TCB in event lists. Finally, the field uxPri-

ority represents the priority of the task, where 0 is the

lowest priority.

FreeRTOS creates a special task —the idle task —

when the scheduler starts (i.e., when the function named

vTaskStartScheduler is called). The idle task only exe-

cutes when there are no other tasks able to do so, and
it is responsible for freeing memory for tasks that have

been deleted.

Tasks can be in one of four states:

Running the task is currently using the processor;

Ready the task is ready to execute, but not currently

running because a different task of equal or higher

priority is running;

Blocked the task is waiting for an event. Blocked

tasks are not available for scheduling;

Suspended the task is not available for scheduling.

Tasks will only enter or exit the suspended state

when explicitly commanded to do so.

For completeness, we show in Figure 8 the valid task

state transitions.

Rather than associating with each task a flag ex-

pressing representing its state (e.g., a “Running” flag),

the scheduler maintains several global lists that agglom-

erate tasks that are in the same state.
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2.2 Scheduling

The scheduler starts when the function vTaskStartSched-

uler is called. The kernel can suspend and later resume

a task many times during the task’s lifetime. Because

tasks are unaware of when they are suspended or re-

sumed by the kernel, the scheduler has to guarantee

that upon resumption a task has a context identical to

that immediately prior to its suspension. The process

of saving the context of a task being suspended and

restoring the context of a task being resumed is called

context switching. The context of a task is saved in its

own stack.

The scheduler maintains several global variables that

assist in the scheduling process. For example, the sched-

uler keeps track of the highest priority of which there

are tasks ready to execute (uxTopReadyPriority). It

also uses a pointer to the TCB that is currently run-

ning (pxCurrentTCB) and it maintains an array of lists,

called pxReadyTasksLists, that contains lists of tasks

ready to execute. Each list is associated to a different

priority and the array is sorted in ascending order of pri-

ority; in other words, pxReadyTasksLists[k] is the list of

tasks with priority k that are ready to run. To deter-

mine what is the next task to execute, the scheduler

selects the highest k such that pxReadyTasksLists[k]

is non-empty4, and then uses a round-robin strategy.

The next code listing shows how these pxCurrentTCB

and pxReadyTasksLists are defined. The variable config-

MAX PRIORITIES represents the maximum number

of priorities that can be used.

stat ic volat i le unsigned portBASE TYPE
uxTopReadyPriority ;

tskTCB ∗ volat i le pxCurrentTCB = NULL;
stat ic xL i s t pxReadyTasksLists [

configMAX PRIORITIES ] ;

We now explain the dynamics of the FreeRTOS sched-

uler using a simple example. To simplify the presenta-

tion, we assume that we only have one list of tasks that

are ready to execute (of priority tskIDLE PRIORITY );

also, we assume that the list has been initialized and is

in the state shown in Figure 2.

Adding new tasks Suppose that two tasks, A and B,

are created. The function that creates the tasks also

adds them to the list of tasks ready to execute, us-

ing a function called prvAddTaskToReadyQueue. This

4 Here we use the term non-empty to qualify a list that has
at least one TCB; that is, we do not consider xListEnd as a
list item.

function uses vListInsertEnd to add the tasks and, if

necessary, it updates the variable uxTopReadyPriority.

Hence, the state shown in Figure 2 is changed to the

state shown in Figure 9. Because task B is the last

task to be inserted, pxIndex points to task B’s TCB.

Note how the two TCBs are part of a doubly-linked list

through the field xGenericListItem. Tasks are added to

the list of tasks ready to execute when they are newly

created or when they become unblocked.

Fig. 9 pxReadyTasksLists[tskIDLE PRIORITY] after the
creation of tasks A and B

Picking the next task Each time a clock tick is gen-

erated, FreeRTOS saves the context of the task that is

currently running and executes the function vTaskSwitch-

Context. This function selects the highest priority list

that contains at least one task ready to execute. Once

the list is identified, the task that follows the pointer

pxIndex is chosen to run. The function responsible for

that is listGET OWNER OF NEXT ENTRY 5, which

is shown in Figure 10.

Before, we mentioned that the function vListInsertEnd

was relevant to the way in which the scheduler deter-

mines which task to run at a particular time. Indeed,

given that the scheduler uses the macro named list-

GET OWNER OF NEXT ENTRY to determine which

task to execute next, an invariant of the scheduling pro-

cess is:

For each list of ready tasks with the same priority,

the TCB pointed by pxIndex will be the last one to ex-

ecute.

5 In fact, listGET OWNER OF NEXT ENTRY is defined
as a C macro, but we define it here as a function. Also, we use
Hip’s notation so that the reader can see an example of a Hip
program. Note that we use a dot for accessing fields, rather
than C’s arrow notation ->. We also use the keyword ref to
express that the value of pxTCB is returned by reference.
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void listGET OWNER OF NEXT ENTRY
( r e f tskTCB pxTCB, xL i s t pxList )

{
xL i s t pxConstList = pxList ;

/∗ Increment the index to the next item and
return the item , ensuring we don ’ t
re turn the marker used at the end o f
the l i s t .

∗/

pxConstList . pxIndex =
( pxConstList . pxIndex ) . pxNext ;

i f ( pxConstList . pxIndex==
pxConstList . xListEnd )

{
pxConstList . pxIndex =

( pxConstList . pxIndex ) . pxNext ;
}
pxTCB = ( pxConstList . pxIndex ) . pvOwner ;
}

Fig. 10 listGET OWNER OF NEXT ENTRY is used to
switch executing tasks

(This is a consequence of using a cyclic-doubly linked

list.) Since the function vListInsertEnd sets pxIndex to

point to the newly inserted TCB, this will be the last

one to execute.

Going back to the example illustrated in Figure 9,

we can see that the scheduler would choose task A to

run, since it follows the task pointed by pxIndex. More-

over, the macro listGET OWNER OF NEXT ENTRY

would change pxIndex to point to task A. So, if no tasks

are added nor removed from the list before the next ex-

ecution of listGET OWNER OF NEXT ENTRY, the

next task to run will be task B.

Removing tasks In case a task blocks or is destroyed,

function vListRemove is used to remove the task from

the list of tasks that are ready to execute.

3 The Hip/Sleek Verification System

The Hip/Sleek verification system developed by Chin

et al. [8,23] is aimed at automatic verification of mem-

ory safety and functional correctness of heap-manipulating

programs. The front-end of the system is the Hoare-

style forward verifier Hip, which takes user-defined pred-

icates, program code, and program specifications (loop

invariants, method pre/post) as input, and invokes a

set of forward reasoning rules to symbolically execute

the program (starting from the initial abstract state

specified by the precondition). The backend entailment

prover Sleek is used to automatically prove formulae

entailment (proof obligations generated by Hip during

Pre/Post
Program 

Code

Shape 
Predicates Lemmas

User Supplied Items

HIP: Hoare-style 
Forward Verifier

SLEEK: Entailment
Prover

The HIP/SLEEK Verification System

Fig. 11 Overview of Hip/Sleek

its forward verification). Key scenarios where Sleek is

invoked include (1) systematically check that the pre-

condition is satisfied at each call site, and (2) the post-

condition is successfully verified for each method defi-

nition against the given precondition. Proof obligations

related with the numeric domain are discharged to ex-

ternal automatic provers (e.g. MONA [16]).

The overall structure of Hip/Sleek is shown in Fig-

ure 11. In what follows, we shall illustrate user-defined

shape predicates via examples, and briefly introduce

the Hip verifier and the Sleek prover. The advanced

feature about lemmas is delayed to a later section.

3.1 User-defined predicates

For better flexibility and expressivity, Hip/Sleek al-

lows users to define inductive shape predicates to lever-

age both shape and pure properties and to capture their

desired level of program correctness (to be verified). For

example, with a singly-linked list structure defined as

data node { int val; node next; }

a user interested in pointer-safety may define a list

shape predicate (as in [7,11]):

list(root)≡ (root=null)∨
(∃i, q · root7→node(i, q)∗list(q))

Note that in the inductive case, the separation conjunc-

tion ∗ (for more information about separation logic, see

[29]) ensures that two heap portions (the head node

and the tail list) are domain-disjoint. The parameter

root for the predicate is the root pointer referring to

the data structure.

Hip/Sleek allows the use of numerical information

in shape predicates. This means that if the user is in-

terested in tracking also the length of a list to anal-

yse quantitative measures, the following shape predi-

cate can be defined

ll(root, n)≡ (root=null∧n=0)∨
(root7→node( , q)∗ll(q, m)∧n=m+1)



Automated Verification of the FreeRTOS Scheduler in Hip/Sleek 7

Note that unbound variables, such as q and m, are im-

plicitly existentially quantified, and is used to denote

an existentially quantified anonymous variable. This

predicate may be changed to capture information about

the content of lists, to support a higher level of correct-

ness with a multi-set (bag) property:

llB(root, S)≡ (root=null∧S=∅)∨
(root7→node(v, q)∗llB(q, S1)∧S={v}tS1)

The length of the list is implicitly captured by the cardi-

nality |S|. The operator t denotes bag union. A further

strengthening can capture also the sortedness property:

sllB(root, S)≡ (root=null∧S=∅)∨
(root 7→node(v, q)∗sllB(q, S1)∧
S={v}tS1∧(∀x∈S1·v≤x))

Therefore, users can provide predicate definitions

with respect to various correctness levels and program

properties, which can be as simple as normal lists or as

complicated as AVL trees, depending on their require-

ments. These predicates are non-trivial to be defined

but can be reused multiple times for specifications of

different methods. Hence, efforts involved in such pred-

icate design are often significantly amortised.

User-defined shape predicates can be used to spec-

ify program specifications such as loop invariants and

method specifications. For instance, in Figure 12, the

predicates llB and sllB are used to specify the meth-

ods insert sort and insert (Line 3, 4, 12, 13):

1 data node { int val; node next; }

2 node insert_sort(node x)

3 requires llB(x, S) ∧ |S|≥1
4 ensures sllB(res, T) ∧ T=S

5 { if (x.next == null) return x;

6 else { node s = x.next;

7 node r = insert_sort(s);

8 return insert(r, x);

9 }

10 }

11 node insert(node r, node x) {

12 requires sllB(r, S)∗x7→node(v, )
13 ensures sllB(res, T) ∧ T=St{v}
14 if (r == null) {

15 x.next = null; return x;

16 } else if (x.val <= r.val) {

17 x.next = r; return x;

18 } else {

19 r.next = insert(r.next, x);

20 return r;

21 }

22 }

Fig. 12 The insertion sort program for lists.

spred ::= c〈v∗〉 ≡ Φ inv π
mspec ::= requires Φpr ; ensures Φpo

Φ ::=
∨

(∃v∗·κ∧π)∗

π ::= γ∧φ
γ ::= v1=v2 | v=null | v1 6=v2 | v 6=null | γ1∧γ2
κ ::= emp | v::c〈v∗〉 | κ1 ∗ κ2

∆ ::= Φ | ∆1∨∆2 | ∆∧π | ∆1∗∆2 | ∃v·∆
φ ::= ϕ | b | a | φ1∧φ2 | φ1∨φ2 | ¬φ | ∃v · φ | ∀v · φ
a ::=s1=s2 | s1≤s2
b ::=true | false | v | b1 =b2
s ::= kint | v | kint×s | s1+s2 | −s | max(s1,s2)

| min(s1,s2) | |B|
ϕ ::= v∈B | B1=B2 | B1@B2 | ∀v∈B·φ | ∃v∈B·φ
B ::= B1tB2 | B1uB2 | B1−B2 | {} | {v}

Fig. 13 The specification language

For completeness, we include the grammar that de-

fines the syntax of inductive shape predicates (spred)

in Figure 13.

3.2 The Hip System

Hip is a separation logic based automated verification

system for a C-like imperative language, able to mod-

ularly verify heap-manipulating programs. The system

can handle programs with complex data structures. It

accepts abstract descriptions for such structures in the

form of inductive predicates shown in the previous sub-

section.

The grammar of the C-like imperative language sup-

ported by Hip is shown in Figure 14. A program com-

prises a list of type declarations (tdecl∗) and a list of

method declarations (meth∗). We use the superscript
∗ to denote a list of items; for example v∗ denotes a

list of variables, v1, .., vn. With regard to the termi-

nal symbols, c denotes the name of a user-defined data

type, v, v1, v2 stand for variable names, mn represents

a method name, k is a numeric constant, and f denotes

a field name. The language supports data type dec-

laration via datat, and shape predicate definition via

spred.

Given annotations for each method/loop with one

or more pre/post conditions, the Hip verifier constructs

a set of obligations in the form of implication checks

(entailments) between pairs of formulae which are then

sent to the backend Sleek prover to be discharged.

Note that method specifications are denoted as mspec

in Figure 13. The formulae Φpr and Φpo in the method

specification “requires Φpr; ensures Φpo” denote the

precondition and postcondition of the method, respec-

tively. The specification language allows rich specifi-

cations that contain both heap constraints expressed

as separation logic formulae and several different logic
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P ::= tdecl∗ meth∗

tdecl ::= datat | spred
datat ::= data c { field∗ }
field ::= type v
type ::= c | τ
τ ::= int | bool | float | void
meth ::= type mn ((ref type v)∗, (type v)∗) where mspec {e}
e ::= null | kτ | v | v.f | v:=e | v1.f :=v2 | new c(v∗)

| e1; e2 | type v; e | mn(v∗) | if (v) e1 else e2

Fig. 14 The core imperative language supported by Hip

fragments like Presburger arithmetic, bags, and lists for

the pure constraints. By making use of set/bag solvers,

the user can also encode reachability conditions as a

set/bag of values that can be collected from some given

data structure. Such conditions are then automatically

discharged by Hip.

The forward verification process conducted by Hip

is essentially a symbolic execution process. Given a Hoare-

style triple {∆1}e{∆2}, the Hip verifier starts from the

abstract pre-state ∆1, symbolically executes the pro-

gram code e to generate an abstract post-state ∆′ and

invokes Sleek to automatically prove that ∆′ entails ∆2.

During the symbolic execution, the Sleek prover may

be invoked many times to discharge generated proof

obligations. The Hip verifier conducts verification in a

modular way, i.e. it verifies each method once against

its specifications. Methods in a program are verified in

a (bottom-up) order according to the program’s call-

dependency graph, starting from the methods in the

leaves of the graph. For each method, the verification

starts from its precondition, computes a post-state by

symbolically executing the method body, and then proves
the generated state entails the expected postcondition.

Once a method is verified against its specifications, when

the method is invoked, the verifier only needs to check

that the abstract state at the call site establishes the

precondition. If it does, it can assume the postcondition

at the end of the method call. A more detailed intro-

duction to the verification process via Hip can be found

at Chin et. al [8].

3.3 The Sleek Prover

The Hip verifier relies on the Sleek prover in order

to discharge verification conditions. Sleek is a fully

automatic prover for separation logic with frame infer-

ring capability. It takes two heap states as input (say

∆A and ∆C) represented by separation formulae, and

checks if one formula ∆A (the antecedent) entails the

other ∆C (the consequent): ∆A ` ∆C∗∆R . The antecedent

may cover more heap states than the consequent, so

a residual heap state (∆R) which represents the frame

condition can be returned by the prover. This resid-

ual heap state will include the pure state of the an-

tecedent. Sleek also supports instantiation of logical

variables that appear during the entailment as existen-

tial variables in the consequent. As part of the implica-

tion check, Sleek discharges the heap obligations (the

obligations pertaining to the shape of data structures)

and translates the remaining pure obligations to pure

constraints that can be discharged by other off-the-shelf

theorem provers. The list of possible pure provers in-

cludes Omega , MONA , CVC Lite, Z3, and Isabelle.

Apart from handling disjunctions and existential quan-

tifiers and dealing with the case when the consequent

formula has an empty heap part, there are three key

steps that may take place in a Sleek proof, namely,

(1) matching up heap nodes/predicates from the an-

tecedent and the consequent, (2) unfolding a shape pred-

icate in the antecedent, and (3) folding against a shape

predicate in the consequent.

As an example, the matching step takes place in the

following entailment proof:

ll(x, n) ∧ n>1 ` ∃m · ll(x, m) ∧ m>0

leading to the pure entailment

n>1 ` n>0

The matching step also takes place in the following

slightly different entailment proof:

ll(x, n) ∧ n>1 ` ll(x, m) ∧ m>0

leading to the pure entailment

n= m ∧ n>1 ` n>0

Note that the underlined part denotes an implicit in-

stantiation of the free variable m.

As an example of the unfolding step, let us look at

the following entailment check:

ll(x, n) ∧ n>1 ` ∃r, m · x 7→node( , r)∗ll(r, m) ∧ m>0

An unfolding to the ll predicate in the antecedent leads

to

∃q · x7→node( , q)∗ll(q, n−1) ∧ n>1
` ∃r, m · x 7→node(,r)∗ll(r, m) ∧ m>0

This can then be handled by two matching steps.

The folding process is more involved and can take

place in two different scenarios: (1) the base case and

(2) the recursive case. An example for the base case is

as follows:

y=null ` ll(y, m) ∧ m=0
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The folding process will try to prove a (different) recur-

sive entailment:

y=null ` y=null ∧ m=0

∨ y 7→node( , r)∗ll(r, m−1)

where in this new entailment, the consequent is the

definition of ll(y, m). Once the new entailment is dis-

charged, the result is returned and the original entail-

ment becomes

y=null ∧ m=0 ` m=0

Note that the underlined part denotes the result re-

turned from the folding process.

An example for the recursive folding process is as

follows:

x7→node( , r) ∧ r=null ` ll(x, n) ∧ n>0

The folding process invokes the following recursive en-

tailment:

x 7→node( , r) ∧ r=null `
x=null ∧ n=0

∨ ∃q, k · x7→node( , q)∗ll(q, k) ∧ k=n−1

where the consequent of this new entailment is the

definition of ll(x, n). This recursive entailment is dis-

charged by a matching process followed by a base case

folding. When it returns, the original entailment be-

comes

r=null ∧ n−1=0 ` n>0

Same as the above, the underlined part denotes the

result obtained from the folding process.
Formal details about the Sleek entailment prov-

ing process can be found at [8]. In the next section,

we present our experience of applying Hip/Sleek to

specify and verify the FreeRTOS scheduler.

4 Specification and Verification

The verification of a scheduler involves many different

types of properties. In this paper, we focus on mem-

ory safety and functional correctness properties. More

specifically, some important properties that we verify

are:

– When tasks become ready to execute (newly cre-

ated tasks, or recently unblocked tasks), the sched-

uler adds the tasks into the correct position of the

“ready-tasks list”;

– When switching context, the scheduler picks the

right task to execute, i.e., the highest priority task

that is ready to execute;

– When tasks are blocked or removed, the scheduler

does not pick them to run;

– Memory safety: when the scheduler manipulates the

data structures involved in scheduling, their shapes

are maintained and there are no dereferencing of

null pointers6.

One of the main goals of this work is to investi-

gate how we can automatically verify memory safety

and functional correctness properties of a scheduler in

a combined separation and numerical domain. We also

want to test the suitability of the prototype Hip/Sleek

to verify code that is used in production. As a result, our

main challenge is to model the data structures involved

in the scheduling process and annotate FreeRTOS code

with expressive specifications.

4.1 On user-defined predicates

As mentioned in the previous section, one advantage of

Hip/Sleek is the ability to define the shapes of data

structures by separation logic combined with numerical

(e.g. size) and bag (e.g. multi-set of values) information.

Therefore, the specification language is expressive and

powerful to capture not only memory safety properties,

but also functional correctness properties.

For example, the shape of the lists used by the

FreeRTOS scheduler can be captured by the shape pred-

icate XLIST shown below.

XLIST(p) ≡ p7→xList( , i, i) ∗ DLS(i, q, i, q)
∨ p7→xList( , i, e) ∗ DLS(e, e1, i, f1)

∗ DLS(i, f1, e, e1)

Capitalised words refer to shape predicates and xList

is a data node. So, XLIST(p) means that p is a pointer

to a structure of the shape XLIST and a data node of

the shape xList( , i, e) represents an element of the

datatype xList shown in Section 2. The first field cor-

responds to the variable uxNumberOfItems and is left

anonymously defined ( ), since its value is not needed to

define the shape of the structure. The other two fields,

i and e, correspond to the fields pxIndex and xLis-

tEnd, respectively. It is important to note that we are

treating the end marker as a normal xListItem, so that

we can avoid explicit casts (these are not supported

by Hip/Sleek)7. The predicate XLIST is divided in

6 It is important to note that in this work we do not verify
if TCBs’ stack and code pointers are valid. Invalid TCBs can
affect context switching, but here we focus on ensuring that
the scheduler makes the right choices.
7 By treating the field xListEnd as a normal xListItem, our

model adds two extra fields to the end marker: pvContainer
and pvOwner. However, since these fields are never accessed
for the end marker, this simplification is safe.
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two cases and depends on the predicate DLS, which

captures the shape of doubly-linked list segments. The

first disjunct captures the case where pxIndex and xLis-

tEnd point to the same entry (which is a doubly-linked

list segment identified by i); the second disjunct cap-

tures the case where they point to different segments.

Recall that the star (∗) operator represents separat-

ing conjunction and ensures that its arguments reside

in disjoint heaps (for more information about separa-

tion logic, see [29]). In both cases, the arguments that

are passed to the DLS predicate ensure that the items

are indeed in cyclic doubly-linked lists. To help under-

stand how the cyclic structure is formed, we refer the

reader to Figure 15, where a graphical representation of

these cyclic doubly-linked list segments is shown. Fig-

ure 15(a) refers to the first conjunct in the definition

of the predicate XLIST, where only one segment is used

(we name it s in the figure). Figure 15(b) refers to the

second conjunct in the definition of the predicate XLIST,

where two segments, named s1 and s2, are used: one

referenced by pxIndex (variable i) and the other one

referenced by xListEnd (variable e). The dashed lines

indicate how the circular structures are achieved.

(a) First disjunct: s is a doubly-linked circu-
lar segment

(b) Second disjunct: s1 and s2 are two con-
nected doubly-linked circular segments

Fig. 15 Graphical representation of doubly-linked list seg-
ments used in the definition of XLIST

The definition of the shape predicate DLS is:

DLS(p, pv, ob, ib)≡
p7→xListItem( , pv, ob, , ) ∧ ib=p

∨ p7→xListItem( , pv, t, , ) ∗ DLS(t, p, ob, ib)

In the definition of DLS, p is a pointer to the first el-

ement of the segment, pv is a pointer to the element

preceding the segment, ob is a pointer to the element

following the segment, and ib is a pointer to the last

element of the segment. So, to express a cyclic doubly-

linked list, we have to set p=ob and pv=ib. Using the

same graphic notation as in Figure 15, we would repre-

sent a circular doubly-linked list segment as shown in

Figure 16.

Fig. 16 Graphical representation of DLS(p, pv, ob, ib).

These predicates can be directly used in Hip/Sleek

specifications to express, for example, that the result

of a given function is a list of the shape XLIST, thus

guaranteeing that the items are arranged as a cyclic

doubly-linked list. However, since Hip/Sleek supports

the combination of shape information with numerical

information, we can be more expressive. We can, for

example, extend the shape predicates shown above with

a natural number n representing the length of the list

and with a bag B containing all the references to items

in the list that are different from the end marker.

XLIST(p, n, B)≡
p7→xList(n, i, i) ∗ DLS(i, q, i, q, n+1, B1)

∧ B = diff(B1, {i})
∨ p7→xList(n, i, e) ∗ DLS(e, e1, i, f1, m1, B1)

∗ DLS(i, f1, e, e1, m2, B2) ∧ n=m1+m2−1
∧ B = diff(union(B1, B2), {e})

DLS(p, pv, ob, ib, n, B)≡
p7→xListItem( , pv, ob, , ) ∧ ib=p ∧ n=1∧B={p}

∨ p7→xListItem( , pv, t, , ) ∗ DLS(t, p, ob, ib, n−1, B1)

∧ B = union(B1, {p})

The highlighted parts show the new numerical informa-

tion. Note how in the definition of XLIST, the bag B is

defined to exclude the end marker.

When FreeRTOS is compiled, the user has to define

statically how many priorities the scheduler will sup-

port (by defining the variable configMAX PRIORITIES ).

To simplify the verification process, we assume that we

have exactly two different priorities. Also, because the

version of Hip/Sleek that we have used only has ex-

perimental support for arrays, we encapsulate the lists

of tasks that are ready to execute in a user-defined data

node:

data readyTskLists { xList l0; xList l1;}
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The data node readyTskLists can be seen as an

array with two lists, l0 and l1. We also provide a func-

tion pxReadyTasksLists that given a priority, returns

the corresponding list of tasks ready to execute. In sum-

mary, we model the array pxReadyTasksLists as a par-

tial function and we assume the existence of only two

priorities.

4.2 On lemmas

User-defined predicates allow expressive descriptions of

data structures with complex invariants. However, we

may want to use properties of the data structures that

are not directly obtained from the user-defined predi-

cates. For example, from the definition of DLS, the ver-

ification system cannot conclude immediately that two

consecutive doubly-linked list segments can be merged

into one doubly-linked list segment. To overcome this

limitation, Hip/Sleek allows the definition of lemmas

that can be used to relate predicates beyond their orig-

inal definitions. We can express lemmas using the re-

served word coercion:

coercion appenddls
DLS(self, pre1, ob2, ib2, n1 + n2, B3)∧B3=union(B1, B2)
←
DLS(self, pre1, ob1, ib1, n1, B1) ∗
DLS(ob1, ib1, ob2, ib2, n2, B2);

This lemma, called appenddls, states that two consec-

utive segments (note how ob1 and ib1 match) can be

merged together. This lemma is necessary to verify the
function vListInsertEnd. A graphical representation of

the lemma is shown in Figure 17.

Fig. 17 Graphical representation of the lemma appenddls

Another important lemma states that a doubly-linked

list segment of size n can be decomposed into a doubly-

linked list segment of size n−1 followed by a list item

(for n≥2). We call this lemma taildls and define it as:

coercion taildls
DLS(self, prev, ob, ib, n, B) ∧ n≥2
→
DLS(self, prev, ib, nib, n−1, B1) ∗
ib7→xListItem( , nib, ob, c, o) ∧
B = union(B1, {ib});

This lemma is necessary to verify the vListRemove func-

tion, because the function links the element preceding

the item to be removed with the element following it.

Since the item to remove can be preceded by a DLS (as

in the second case of vListRemove’s precondition shown

below), we need a lemma that exposes the last element

of the DLS. A graphical representation of the lemma is

shown in Figure 18.

Fig. 18 Graphical representation of the lemma taildls

4.3 Some examples of verified properties

We now show how some of the desired properties are

verified, by discussing specifications that were success-

fully verified by Hip/Sleek.

Manipulating lists The scheduler relies on the list

API, so, in order to verify properties of the scheduler,

it is required that we verify first the methods used for

manipulating lists. In this section, we only show the

functions relevant for the scheduler, together with their

specifications. The first of these functions is vListIni-

tialise, which is used to initialise lists. Using the predi-

cates defined above, its formal specification can be writ-

ten as follows:

void vListInitialise(xList pxList)
requires pxList7→xList( , , )
ensures XLIST(pxList, 0, {})
{ · · · }

The keyword requires refers to the precondition and

the keyword ensures refers to the postcondition. The
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specification expresses that, provided that the argu-

ment pxList is a pointer to an xList structure, the

function guarantees that on termination pxList is of

the shape XLIST(pxList, 0, {}). This simple example is

included to illustrate how one aspect of memory safety

is guaranteed: the function guarantees that the list is

properly initialised with no items other than the end

marker (as illustrated in Figure 2).

Not all functions need to use shape predicates. For

example, the function vListInitialiseItem, which sets

the container of the given list item to NULL, can be

specified as:

void vListInitialiseItem(xListItem pxItem)
requires pxItem7→xListItem(v, p, q, , o)
ensures pxItem7→xListItem(v, p, q, null, o)
{ · · · }

Note how the postcondition guarantees that all the fields

remain the same, apart from the container.

As explained in Section 2, function vListInsertEnd

is relevant to the way in which the scheduler determines

which task to run next. We can specify it as follows:

void vListInsertEnd(xList pxList,
xListItem pxNewListItem)

requires XLIST(pxList, n, B) ∗
pxNewListItem 7→xListItem( , , , , o) ∗
o7→tskTCB( , , pxNewListItem, , )

ensures XLIST(pxList, n + 1, B1) ∧
B1 = union({pxNewListItem}, B) ∧
pxList.pxIndex = pxNewListItem;

{ · · · }

The precondition states that the argument pxList has
to be an XLIST of size n with elements given by bag B.

The postcondition assures that, on termination, pxList

is an XLIST of size n+1 and the argument pxNewLis-

tItem is the new element. Moreover, it states that the

field pxList.pxIndex is updated as expected. Note that

by using separating conjunction, the precondition also

states that the new element cannot already be an el-

ement of the list. If we look at the definition of the

function shown in Section 2, we see that there are no

restrictions on the item being added to the list. As

a result, if the TCB pointed by the field pxIndex is

used as an argument, the shape of the list is destroyed!

Since the list API can be used by application code, this

can be seen as a potential serious problem. However, if

our annotation is included and checked against all the

calls, we can be sure that the problem will never arise.

Hip/Sleek is quite flexible, so if we want to be more

precise about the shape of the data structures involved,

we can specify vListInsertEnd alternatively as shown

in Figure 19, where the postcondition states explic-

void vListInsertEnd(xList pxList,
xListItem pxNewListItem)

requires XLIST(pxList, n, B) ∗
pxNewListItem7→xListItem( , , , , o) ∗
o7→tskTCB( , , pxNewListItem, , )

ensures pxList7→xList(n + 1, pxNewListItem, e) ∗
DLS(e, prev, pxNewListItem, ib, n1, B1) ∗
DLS(pxNewListItem, ib, e, prev, n2, B2) ∧
n = n1 + n2− 2 ∧
∃ Bi · Bi = B1∪B2 ∧ Bi = B∪{pxNewListItem}

{ · · · }

Fig. 19 Alternative specification of the function vListInser-
tEnd

itly that pxNewListItem can be seen as doubly-linked

list segment adjacent to the doubly-linked list segment

pxList. We could be even more specific and state in the

postcondition that the TCB pointed by o is unchanged.

Note that the preconditions above include a refer-

ence to a tskTCB named o that is never used in the

postconditions. We have to include it, because in the

last line of the function, the field pvContainer is derefer-

enced (see Section 2). This can be seen as another exam-

ple of memory safety: Hip/Sleek cannot verify func-

tions that try to insert a list item with a null pvOwner

field.

Finally, the function vListRemove can be specified

as follows:

void vListRemove(xListItem pxItemToRemove)
requires c 7→xList(n, pxItemToRemove, e) ∗

DLS(e, prev, pxItemToRemove, ib1, n1, B1) ∗
DLS(pxItemToRemove, ib1, e, prev, n2, B2) ∧
n = n1 + n2− 1

or c 7→xList(n, p, e) ∗ DLS(e, prev, p, ib1, n1, B1) ∗
DLS(p, ib1, pxItemToRemove, ib2, n2, B2) ∗
DLS(pxItemToRemove, ib2, e, prev, n3, B3) ∧
n = n1 + n2 + n3− 1

ensures XLIST(c, n− 1, ) ∗
pxItemToRemove7→xListItem( , , , , );

{ · · · }

The cases in the precondition arise because the item to

be removed can be the one pointed by the field pxIndex.

The postcondition guarantees that the size of the list

is decreased and that the list and the item to remove

reside in separate parts of memory.

In our experiments, we have tweaked this specifica-

tion to minimize the search space and leverage on proof

splitting. The specification that we used is semantically

the same, but it is divided into six different cases (each

case depends on whether the item to be removed is the

one pointed by pxIndex and whether pxIndex and the

end marker of the list are empty). We include more

details about performance tuning in Section 6.
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Picking the next task The function shown in Figure

10 is where the task that runs next is selected. It can

be specified as follows:

void list GET OWNER OF NEXT ENTRY(ref tskTCB pxTCB,
xList pxList)

requires XLIST(pxList, , B)
ensures XLIST(pxList, , B) ∗

pxTCB′ 7→tskTCB( , , gli, , ) ∧ gli ∈ B

{ · · · }

The primed variable pxTCB′ denotes the value of the

pointer pxTCB after execution of the function. The spec-

ification expresses that given an argument list pxList

with the tasks contained in the bag B, the return value

pxTCB′ is guaranteed to be a task that is in the bag B.

The field gli in the specification refers to the xListItem

field that is used to place a TCB in a list (as mentioned

before in section 2). This is another example of mem-

ory safety certification: the pointer to the task chosen

by the scheduler to execute next will certainly point to

a task in the list of tasks ready to execute and will never

point to the end marker.

Although list GET OWNER OF NEXT ENTRY is

the function responsible for the change of the running

TCB, it is called by the function vTaskSwitchContext,

which is executed after each clock tick. Assuming that

l0 and l1 are lists of tasks ready to execute with prior-

ities 0 and 1, respectively, we can specify vTaskSwitch-

Context as:

xList vTaskSwitchContext()
requires rtl7→readyTskLists(l0, l1) ∗

XLIST(l0, , ) ∗ XLIST(l1, , ) ∧
uxTopReadyPriority = 0

ensures res = l0

requires rtl7→readyTskLists(l0, l1) ∗
XLIST(l0, , ) ∗ XLIST(l1, , ) ∧
uxTopReadyPriority = 1

ensures res = l1

{ · · · }

The specification states that if the highest priority of

the tasks ready to execute is 0 (i.e., uxTopReadyPriority

is 0), then the list that is chosen is l0. Otherwise, l1 is

chosen. It has to be said that to simplify the verification,

we have changed the function to return the list that is

chosen; in the original code, the type of the function is

void.

Adding new tasks The function used to add new

tasks to the list of tasks ready to execute is prvAd-

dTaskToReadyQueue, which can be specified as follows:

void prvAddTaskToReadyQueue(ref tskTCB pxTCB)
requires pxTCB7→tskTCB( , , gli, , 0) ∗

gli7→xListItem( , , , , pxTCB) ∗
rtl7→readyTskLists(l0, l1) ∗
XLIST(l0, , ) ∗ XLIST(l1, , )

ensures DLS(gli, ib, e, prev, , ) ∗
l07→xList( , gli, e) ∗
DLS(e, prev, gli, ib, , ) ∧
uxTopReadyPriority′≥0

requires pxTCB7→tskTCB( , , gli, , 1) ∗
gli7→xListItem( , , , , pxTCB) ∗
rtl7→readyTskLists(l0, l1) ∗
XLIST(l0, , ) ∗ XLIST(l1, , )

ensures DLS(gli, ib, e, prev, , ) ∗
l17→xList( , gli, e) ∗
DLS(e, prev, gli, ib, , ) ∧
uxTopReadyPriority′≥1

{ · · · }

The specification states that the TCB is added to the

list associated with its priority and the global variable

uxTopReadyPriority is updated accordingly.

Removing tasks As explained before, the scheduler

uses vListRemove to remove a task from the list of tasks

ready to execute. This function is described above.

Functions that manipulate global variables Some

important functions related with scheduling are con-

trolled by manipulating global variables. Although these

functions do not pose any challenge to the verification

process, we include here two examples to show how they

can be verified. The two examples shown are the func-

tions vTaskSuspendAll and vTaskEndScheduler.

The function vTaskSuspendAll suspends all the tasks

and the only command it performs is to increment by 1

a global variable named uxSchedulerSuspended. Hence,

we can specify it as:

void vTaskSuspendAll()
requires uxSchedulerSuspended≥0
ensures uxSchedulerSuspended′ =

uxSchedulerSuspended + 1

{ · · · }

The precondition states that the value of uxScheduler-

Suspended has to be a natural number; the postcondi-

tion guarantees that its value is incremented by 1. (The

initial value of the variable is zero, so the precondition

is satisfied initially.)

The function vTaskEndScheduler terminates the sched-

uler by setting the global variable xSchedulerRunning

to false. We can specify it as:

void vTaskEndScheduler()
requires true

ensures !xSchedulerRunning′

{ · · · }
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The precondition is true, meaning that the function

can be called at any time without any restrictions. The

postcondition states that the new value of xScheduler-

Running’ is false.

4.4 Verification statistics

We finish by presenting some verification statistics as-

sociated with the functions discussed in this section.

In Table 1 we summarise the annotation overhead of

the functions discussed. The first column identifies the

function, the second column refers to the size of the

function (measures in lines of code), and the third col-

umn refers to the number of lines of annotations (we

also include the annotation overhead percentage). To

improve readability, we abbreviate the function name

list GET OWNER OF NEXT ENTRY to list GOONE.

Function Size Annotations
vListInitialise 5 2 (+40%)

vListInitialiseItem 1 2 (+200%)
vListInsertEnd 9 13 (+144%)
vListRemove 14 15 (+107%)
list GOONE 5 2 (+40%)

vTaskSwitchContext 32 4 (+13%)
prvAddTaskToReadyQueue 8 4 (+50%)

vTaskSuspendAll 1 2 (+200%)
vTaskEndScheduler 1 2 (+200%)

Totals 76 46 (+61%)

Table 1 Annotation overhead of the functions discussed.
The size of each function and the annotations column are
measured in lines of code.

Table 1 shows that as the size of functions grow,

the annotation overhead decreases. The overhead as-

sociated with one-liners will always be at least 200%,

because we need to provide a pre- and a post-condition

(and we write pre- and post-conditions in two separate

lines). Note that if we remove the three one-liners, the

overall overhead decreases from 61% to 55%.

The overhead associated with shape predicates and

data structures is smaller than the overhead associated

with functions. The data structures discussed in this

paper use 35 lines of code and the shape predicates are

written in 6 lines; this represents an overhead of 17%.

However, if we include the 4 lines used for lemmas, the

overhead is very similar to the one obtained for the

functions: 29%.

Although in general the overhead decreases as the

size of the functions grow, these results suggest that

for large code bases, manually writing the annotations

is not a scalable approach and can become difficult to

manage. In Section 6, we briefly discuss how this could

improve.

Table 2 presents the verification time for each of the

functions discussed. Our test platform is a GNU/Linux

server (Debian 3.2.46-1) with 8 cores Intel Core i7 CPU

(8MB Cache, 2.93GHz) and with 16GB of RAM. The

times are measured in seconds and were achieved using

the main branch of the prototype Hip/Sleek compiled

natively. We used MONA for proving properties involv-

ing bags and Omega for all other numerical properties

(we used Hip/Sleek’s option -tp om). The table dis-

plays the median value of five measurements. The times

associated with functions vListInsertEnd and vListRemove

are considerably higher than all the other times, due to

the big search space that arises from the use of the

shape predicates XLIST and DLS.

Function Verification time
vListInitialise 0.27s

vListInitialiseItem 0.10s
vListInsertEnd 130.20s
vListRemove 814.75s
list GOONE 0.60s

vTaskSwitchContext 0.19s
prvAddTaskToReadyQueue 0.34s

vTaskSuspendAll 0.10s
vTaskEndScheduler 0.11s

Table 2 Verification times of the functions discussed (in sec-
onds).

Overall, given that Hip/Sleek is a research tool,

we consider that the verification times are satisfactory.

However, when disjunctions are included in the spec-

ification, the verification time is less than satisfactory

(as can be observed with the function vListRemove).

These results suggest that for large code bases, where

disjunctive specifications are likely to be used, the ver-

ification times can easily become less than satisfactory.

Techniques like the one described in [9], where disjunc-

tive formulae are pruned when unfolding shape pred-

icates, can be used to achieve better results. Another

approach that can achieve better verification times is

to divide the search space in disjoint parts and run the

verification in parallel for each of them.

5 Related Work

Much work has been done on the verification of operat-

ing systems; see [17] for an overview on the topic. Here,

we focus on RTOSs, on separation logic, and on FreeR-

TOS. Verification of RTOSs has been identified as one

of the grand challenges in software verification [33]. A

number of tools have been developed to verify real sys-

tem tools. A notable project on verification of RTOSs

is Astrée [6], which proves no run-time error in the
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electric flight-control code for the A380. Astrée de-

tects numeric error and overflows, but with the restric-

tion that no dynamic memory allocation is in the pro-

gram code. Other tools, like Slam [3] and Blast [12],

have been used to ensure that device drivers satisfy

the requirement of system APIs. However, these tools

do not handle memory safety properties. Various other

RTOSs claim to be formally verified, such as OpenCom-

RTOS has been verified by Verhulst et al. [32]. Bau-

mann et al. [4] uses deductive techniques to verify the

correctness of the PikeOS system. However, these works

only focus on the functional correctness of the systems,

but not the memory safety properties. Finally, a com-

plete verification of the seL4 microkernel is described

in [18]. The verification uses the interactive prover Is-

abelle/HOL [24] and establishes the correspondence be-

tween an abstract specification and a low-level concrete

C representation of the system (that was modelled in

Isabelle/HOL and manually written by the authors).

The work on seL4 is claimed to be the first-ever general-

purpose OS kernel that has been verified and is indeed

much more general than the work presented here. An-

other major difference is that our goal was never to

write the C code for a verified OS kernel, but rather to

verify an existing one.

Separation logic has been adopted by a number of

tools to verify the memory safety of system code, such

as SmallFoot [5], SpaceInvader [34] and THOR [21].

However, most of these tools support only a limited

set of predicates, which limits the capability to verify

the full functional correctness of system code. Finally,

a closely related work in progress is reported in [22],

where the authors discuss different approaches that can

be used to verify FreeRTOS. Particularly relevant is

their use of Verifast [14], a verification system based on

separation logic. Although they do not present any de-

tails or annotations, it would be interesting, as future

work, to compare their annotations with ours.

6 Discussion and Conclusion

This paper shows how the combination of shape and

numerical information can be used to specify and ver-

ify key properties of the scheduler of FreeRTOS. The

results confirm that Hip/Sleek can indeed be used to

automatically verify important properties of production

code. To the best of our knowledge, this is the first code-

level verification of memory safety and functional cor-

rectness properties of the FreeRTOS scheduler. Since

the properties that we verify are quite general, we en-

visage that the same approach can be adopted to verify

the scheduler of other operating systems.

6.1 Lessons learned

Verification of real-world code used in production is

a very time-consuming process. The verification was

initiated by the first author as an exercise in auto-

mated verification of real-world code. Although he has

a background in formal methods, he was not familiar

with FreeRTOS and he had no previous experience with

Hip/Sleek. Therefore, he experienced a steep learning

curve and got stuck a few times dealing with some of

Hip/Sleek’s idiosyncrasies; the other authors provided

guidance whenever needed. The project took approx-

imately six man-months. The verification progressed

quite slowly for several reasons. First, understanding

how FreeRTOS works in enough detail to be able to

identify and verify relevant properties took approxi-

mately one man-month. Most of the time was spent

modelling the data structures involved (i.e., identifying

and refining shape predicates) and annotating the code.

A second reason is that we needed to convert the orig-

inal C code to Hip notation, and there are aspects we

need to take into account other than the specifications.

Some of the conversions were purely syntactic: for ex-

ample, all the field accesses of the form var→field had to

be rewritten as var.field and C macros had to be rewrit-

ten as functions. However, some conversions were not so

trivial: for example, Hip does not support type conver-

sions and casts, so we had to carefully rewrite the code

to avoid them (e.g., to avoid casts from xMiniListItem

to xListItem, we decided to model the field xListEnd as

a xListItem; this required a careful check to make sure

that in this context, the fields pvOwner and pvCon-

tainer were not accessed). Third, because Hip/Sleek

is under active development and has different branches

with disjoint features, we were unable to use simultane-

ously some of these features (for example, for the work

described in this paper, we initially used a stable ver-

sion which did not include support for lemmas).

A considerable amount of time was also spent on

performance tuning. In particular, i) tweaking the spec-

ifications to minimize the search space and leverage

on proof splitting; ii) constraining lemma applications

to precise points and forcing formula transformations

through no-op method calls; and iii) improving the ef-

ficiency of the pure provers by adding a customized

pointer constraint solving procedure.

First, during the specification process we observed

that for seemingly small variations in specification struc-

ture the verification timings vary wildly. As Sleek was

designed as a fully automatic entailment checker, it

is built with a comprehensive search strategy. As dis-

cussed earlier, in some cases, by explicitly forcing an

unfold or a fold operation within a method specifica-
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tion we were able to reduce the timings considerably

by reducing the inherent search space. As a further

performance adjustment, we introduced annotations on

the pure constraints that identify the distinct proper-

ties captured by the predicates, in this case, pointer

(dis-)equalities, list sizes and set of elements in order

to leverage on the tool’s ability to split the proofs in

distinct, independent sub-proofs which were inherently

faster.

Secondly, we leveraged on the method call mecha-

nism to force the verifier to transform the current state.

To this end, we inserted at key points, method calls

to functions with an empty body whose pre and post

conditions were syntactically different but semantically

equivalent. While operationally such a call is a no-op

statement, in the verification process it induced a state

transformation by forcing an entailment of specifica-

tions given for the stub method. The gain was two fold:

first, such transformations lead to a simpler expression

of the current state after the method call; second, by

constructing stub functions that encapsulate the lemma

effect we were able to remove the presence of lemmas

during the main verification effort which led to further

pruning of the search space. In order to maintain the

soundness of the verification we applied the verification

system to prove the correctness of the no-op functions,

in the presence of the required lemmas. We note that

such transformations are not equivalent to the mecha-

nisms they mimic as the general mechanisms are built

in the entailment checker and can be automatically ap-

plied in the proving process while the no-op functions

have a much more restricted scope: they are applied

only when explicitly called by the programmer in the

method body. Nevertheless, they can help with tuning

the verification performance.

Finally, in the process of verifying these specifica-

tions, we observed that in many cases the generated

proof obligations would accumulate a large number of

pointer equality and disequality constraints which would

be passed down to the pure provers leading to large

proving times. To alleviate the problem, we introduced

in the Sleek checker a specialized decision procedure

for these two types of constraints. Thus, by calling the

new checker whenever possible, instead of more power-

ful provers like Omega or Mona, we achieve a large drop

in the verification times, up to seven fold for particular

examples.

6.2 Future Work

We plan to verify other components of FreeRTOS, but

it is still unclear how certain fairness and timing prop-

erties can be verified. For example, at the moment, we

cannot use Hip/Sleek to prove that a task scheduled

to run at moment t will run at moment t+∆t (we plan

to use the work described in [10] as a starting point

to extend our prototype). Also, a challenging problem

is to verify that the queue accesses are indeed thread-

safe (this implies reasoning about interrupts, which is

known to be a difficult problem).

Another direction that we want to pursuit is related

with inference and scalability. Although the specifica-

tions written so far have been supplied by us, recent de-

velopments [25,26,28,27] in Hip/Sleek will allow the

automatic inference of properties, making our approach

more scalable.

We plan to use recent work done on Hip/Sleek

[31] to verify code based on overlaid structures [19,20],

which are structures that contain nodes for multiple

data structures and these links are intended to be used

at the same time. For example, in FreeRTOS, a task

can be simultaneously in two lists and when it is re-

moved from one of them, it also has to be removed

from the other (an example is the function xTaskRe-

moveFromEventList).

Finally, as we verify other components of FreeR-

TOS, we will certainly gain more in-depth knowledge

about the system. This means that specifications will

possibly be refined and improved. By tackling some of

these challenges, we hope to develop new theory results

and to extend Hip/Sleek.
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