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Abstract. As a system-level modelling language, SystemC possesses several novel features such as delayed
notifications, notification cancelling, notification overriding and delta-cycle. It is challenging to formalise Sys-
temC. In this paper, we study the denotational semantics for SystemC using Unifying Theories of Program-
ming (abbreviated as UTP) [HH98]. Two trace variables are introduced, one to record the state behaviours
and another to record the event behaviours. The timed model is formalised in a three-dimensional structure.
A set of algebraic laws is explored, which can be proved via the presented denotational semantics.

In this paper, we also consider the inverse work; i.e., generating the denotational semantics from algebraic
semantics for SystemC. A complete set of parallel expansion laws is explored, where the location status of
an instantaneous action is studied. We introduce the concept of head normal form for each program and
every program is expressed in the form of guarded choice with location status. Based on this, the derivation
strategy for deriving denotational semantics from algebraic semantics is provided.

1. Introduction

SystemC is a system-level modelling language which can be used to model a system at different abstract levels.
Modelling and simulation in SystemC gives the designers early insights about the potential design problems
that could arise. Compared with traditional hardware description languages, SystemC possesses several new
and interesting features, including delayed notifications, notification cancelling, notification overriding and
delta-cycle.

In SystemC, processes can trigger events actively while in Verilog [IEE01] events are generated based
on changes of states. In SystemC, events represent some general conditions during the execution of the
program. An event can be notified on many separate occasions. There are three kinds of event notifications:
immediate event notifications, delta-cycle delayed notifications and timed notifications. Delayed notifications
can be cancelled via cancel statements before they are triggered. Delayed notifications on the same event
override each other and only one delayed notification survives.

Correspondence and offprint requests to: Huibiao Zhu, E-mail: hbzhu@sei.ecnu.edu.cn
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2 H. Zhu, J. He, S. Qin and P. J. Brooke

Although SystemC comes with a user manual ([Ope01, Ope03]), a formal semantics of SystemC is needed
for various applications in simulation, synthesis, and formal verification. This paper considers the denotation-
al semantics of SystemC, where our approach is based on Unifying Theories of Programming (abbreviated
as UTP) [HH98]. UTP was developed by Hoare and He in 1998 [HH98] and has been successfully applied in
studying the semantics of programming languages and their algebraic laws, as well as the refinement calculus
of different level programs. The new features of SystemC make it worthwhile to formalise its denotational
semantics via UTP approach. In order to deal with the event notification and event driven feature, and the
shared-variable feature, two trace variables are introduced, one is to record the state behaviours and another
is to record the event behaviours. Our timed model is formalised in a three-dimensional structure.

As described in Hoare and He’s Unifying Theories of Programming [HH98], three different mathematical
models are often used to represent a theory of programming, namely, the operational, the denotational, and
the algebraic approaches [Plo81, Sto77, HHH+87]. Each of these representations has distinctive advantages
for theories of programming. These three semantics should provide the same understanding of the language
from different viewpoints. Therefore, the linking of these three semantics is a challenging task. The traditional
way to link denotational and algebraic semantics is that algebraic semantics can be explored based on the
achieved denotational semantics.

To link denotational and algebraic semantics for SystemC, this paper considers the inverse work; i.e.,
generating the denotational semantics from algebraic semantics for SystemC. With the introduction of the
concept of guarded choice, a complete set of parallel expansion laws is studied. In order to index an instan-
taneous action to which exact component of a parallel process, the concept of location status (i.e., locality)
is introduced. To support the generating of denotational semantics, we introduce the concept of head nor-
mal form for each program. We provide the definition for deriving denotational semantics from algebraic
semantics. The derived denotational semantics gives us a way to reason about program properties easily.

The rest of this paper is organized as follows. In section 2 we select a kernel subset of SystemC and present
an introduction to the language. We provide the denotational semantic model in this section. The timed model
of SystemC is considered in a three-dimensional structure. A set of healthiness conditions is explored in order
to achieve the denotational semantics. Section 3 is devoted to the denotational semantics using the UTP
approach. Two traces are applied for the formalization, one is to record the state behaviour and another
is to record the event behaviour. Section 3 also studies the algebraic laws for sequential constructs, which
can be proved via the achieved denotational semantics. Section 4 investigates the derivation of denotational
semantics from algebraic semantics for SystemC. We give the concept of guarded choice with locality and
investigate a complete set of parallel expansion laws in this section. The definition of head normal form for
each statement is provided. Based on this, we provide a strategy for deriving denotational semantics from
algebraic semantics in this section. Finally section 5 concludes the paper and presents some possible future
work.

2. The Semantic Model of SystemC

2.1. The Syntax of SystemC

In this paper we select a kernel subset of SystemC for exploring its semantics. Although it is a subset of
SystemC, it still covers the interesting and major features, such as delay notifications, notification cancelling,
notification overriding, channels, concurrent processes and delta-cycle. In this section, we present the syntax
of the selected subset and give a brief introduction to its interesting features.

For simplicity, we omit the syntactic elements for representing the architecture of a SystemC program.
The subset language adopts a C-like syntax:

PP ::= P | PP ∥ PP

P ::= Skip |v := exp | chan stmt | event stmt | wait stmt

| P ;P | if b then P else P | while b do P

chan stmt ::= ch??v | ch!!exp

event stmt ::= notify(e∆0) | notify(e∆1) | notify(e♯T ) | cancel(e)
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wait stmt ::= wait(∆1) | wait(♯T ) | wait(e list)

e list ::= single e |ori∈I{single ei}

single e ::= e | pe(ch) | ne(ch)

The meanings of statements such as Skip, assignment (v := exp), sequential composition (P ;Q), con-
ditional (if b then P else Q) and iteration (while b do P ) are similar to the conventional programming
language.

The channel output statement ch!!exp is executed in the evaluation phase, which generates a request to
update the channel. These update requests will be carried out in the following update phase. The channel
input statement ch??v assigns the current value of channel ch to variable v.

An event is notified by statement notify. An event can be notified immediately (i.e., notify(e∆0)) or
after a period of time (i.e., notify(e∆1)) or notify(e♯T )). notify(e∆1)) generates event e and this event e
will be active after one delta-cycle (i.e., one micro time unit). notify(e♯T )) generates event e and this event
e will be active after a period of specified simulation time T (i.e., T macro time units). Statement cancel(e)
cancels the delayed notifications on event e.

A process may wait for the arrival or firing of an event. These events can be classified into two types; i.e.,
single events or complex events. Single events can have three forms; i.e., e, pe(ch) and ne(ch), where event
e can be generated by event notifications. wait(pe(ch)) is fired only when the current value of channel ch
is greater than its previous value, whereas wait(ne(ch)) stands for the opposite firing case. Complex events
can be of the form ori∈I{single ei}. For the waiting of complex events, if anyone is fired or becomes active,
the whole waiting behaviour becomes fired or active.

Different from traditional hardware description languages, time delay has two types, micro time advance
and macro time advance. wait(∆1) stands for one unit micro time (i.e, one delta-cycle) advancing, whereas
wait(#T ) stands for T units macro time advancing.

P ∥ Q means P runs in parallel with Q. Their communication is through channels and variables. Further,
their synchronization is based on events.

If any branch processes of a parallel process are ready to run, one branch will be selected to be executed.
The selection is nondeterministic. Channels will be updated when a waiting command is encountered during
the current execution. If all branch processes are still waiting, then time will be advanced. Micro time (delta-
cycle) will be advanced first. If that does not activate any processes, then macro time will be advanced. The
execution is proceeded by the following steps.

(1) Evaluation Phase. Select a ready process to execute. The order of selection is nondeterministic. The
selected process executes until a waiting command is encountered. This sequence of instantaneous com-
mands forms an atomic action, which is uninterrupted.
The execution of a process may cause immediate event notifications to occur. It may also generate pending
requests to update channels in the following update phase.

(2) Update Phase. Carry out all pending channel update requests generated in the previous evaluation phase,
which may generate some events pe(ch) or ne(ch). Then go to step (1).

(3) Micro Time (Delta-cycle) Advancing Phase. If there are no processes ready to run and no pending channel
update requests, but there exist pending delta-cycle notifications or delta-cycle timeouts, advance the
delta-cycle. Then determine which processes are ready to run and go to step (1).

(4) Macro Time Advancing Phase. If there are no processes ready to run, no pending channel update requests,
no pending delta-cycle notifications and no delta-cycle timeouts, advance the current macro time by one
time unit. And determine which processes become ready to run due to events or timeouts that are
triggered at the current time. If any processes are ready to run, then go to step (1), otherwise advance
the current macro time by one time unit again.

2.2. The Denotational Semantics Model

SystemC possesses the feature of shared-variable concurrency. To deal with this, we introduce a sequence
type variable tr1 for recording the state change of a program. Moreover, SystemC not only has the feature
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Fig. 1.

of traditional time delay, it also contains the feature of ∆ time delay (i.e., micro time delay). Therefore, the
structure of tr1 can be depicted as Figure 1.

At the relative macro time “i” point, time may also advance in ∆ time step, standing for the micro-time
advancing. Therefore, a sequence of behaviours may be recorded at each ∆ time point. These behaviours
can be classified into two types; i.e., contributed by the process itself or its environment. In Figure 1, the
symbols “⊕” and “◦” stand for the contribution by the process itself and its environment respectively.

In order to record these behaviours, the concept of snapshot is introduced, expressed as (σ, f ), where σ
stands for the contribution of the behaviour and f stands for the flag. “f = 1” indicates that the behaviour is
contributed by the process itself and “f = 0” indicates that the behaviour is contributed by its environment.
Below is the formal structure of trace tr1.

Element1 = {(σ, f)|σ ∈ State ∧ f ∈ {0, 1}},
tr1 ∈ seq(seq(seq(Element1)))

Here, seq(T ) stands for a sequence type, where each sequence is composed of elements from type T .
We select the components of a snapshot using projections.

π1((σ, f)) =df σ and π2((σ, f)) =df f

In SystemC, waiting guards can be triggered by events, which can be generated by the process itself
or its environment. We use the trace variable tr2 to record all the events generated by the process or its
environment. tr2 has the same time structure, as shown in the above Figure 1. It can be defined as below.

Element2 = {(e, f)|e ∈ Event ∧ f ∈ {0, 1}}
tr2 ∈ seq(seq(seq(Element2)))

For any tr1 (or tr2) type trace s, len(s) stands for the length of sequence s; i.e., it stands for the length
of macro-time advancing. s[0] and s[len(s) − 1] stand for traces of the start point and end point of the
current macro-time observation interval. Furthermore, s[i][j] stands for the trace behaviour at the point of
macro-time i and micro-time j.

Example 2.1 Let Pi = notify(ei∆0) ; notify(fi∆0) ; ui := ui + 1 ; vi := vi + 2 (i = 1, 2). Assume
that the initial states for the above four shared variables are 0. Consider the traces tr1, tr2 for process P1,
P2 and P1 ∥ P2.

As the four statements in P1 and P2 form an atomic action respectively. Either notify(e1∆0) or notify(e2∆0)
can be scheduled first. For all these considered traces, their lengths are 0, and their lengths at the current
macro time point are also 0.

If notify(e1∆0) is scheduled first, below are the three tr1 traces at the point of macro time 0 and micro time
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0 for P1, P2 and P1 ∥ P2 respectively.

⟨(σ1, 1)⟩̂⟨(σ2, 0)⟩, ⟨(σ1, 0)⟩̂⟨(σ2, 1)⟩, ⟨(σ1, 1)⟩̂⟨(σ2, 1)⟩
where, σ1 = {u1 (→ 1, v1 (→ 2, u2 (→ 0, v2 (→ 0},

σ2 = {u1 (→ 1, v1 (→ 2, u2 (→ 1, v2 (→ 2}
Here, σ1 stands for the contribution of “u1 := u1+1 ; v1 := v1+2”, whereas σ2 stands for the contribution

of the execution of “u2 := u2+1 ; v2 := v2+2”. The sequence ⟨(σ1, 1)⟩̂⟨(σ2, 0)⟩ indicates that P1 performs
the execution of “u1 := u1 + 1 ; v1 := v1 + 2” first, and it then also needs to record its environment’s
(i.e., P2) execution of “u2 := u2 + 1 ; v2 := v2 + 2”. Similarly, the sequence ⟨(σ1, 0)⟩̂⟨(σ2, 1)⟩ indicates
that, before P2 performs “u2 := u2 + 1 ; v2 := v2 + 2”, it also needs to record its environment’s (i.e., P1)
execution of “u1 := u1 + 1 ; v1 := v1 + 2”. Therefore, the whole system (i.e., P1 ∥ P2) needs to execute
“u1 := u1 + 1 ; v1 := v1 + 2” first, after that it also needs to execute “u2 := u2 + 1 ; v2 := v2 + 2”.

In this case, three tr2 traces at the point of macro time 0 and micro time 0 for P1, P2 and P1 ∥ P2 are shown
below respectively.

⟨(e1, 1)⟩̂⟨(f1, 1)⟩̂⟨(e2, 0)⟩̂⟨(f2, 0)⟩, ⟨(e1, 0)⟩̂⟨(f1, 0)⟩̂⟨(e2, 1)⟩̂⟨(f2, 1)⟩
⟨(e1, 1)⟩̂⟨(f1, 1)⟩̂⟨(e2, 1)⟩̂⟨(f2, 1)⟩

On the other hand, if notify(e2∆0) is scheduled first, the analysis is similar. ✷

As tr1 and tr2 have a three-dimensional structure, we introduce the prefix definition between two tr1
(or tr2) type traces, denoted as ≼1.

Definition 2.2

s ≼1 t =df ∃m,n •

⎛

⎜⎜⎜⎜⎜⎜⎝

m = len(s) ∧ n = len(t) ∧m ≤ n ∧
∀i ∈ {0..m− 2} • s[i] = t[i] ∧

∃k •

⎛

⎜⎝
k = len(s[m− 1]) ∧
∀l ∈ {0..k − 2} • s[m− 1][l] = t[m− 1][l] ∧

s[m− 1][k − 1] ≼ t[m− 1][k − 1]

⎞

⎟⎠

⎞

⎟⎟⎟⎟⎟⎟⎠

✷

For s ≼1 t (i.e., the prefix of three-dimensional time structure), the length of s is smaller than or equal to
the length of t. This means that the final macro time point of s is smaller than or equal to that of t. Further,
for every macro time point i less than the final macro time point of s, s[i] and t[i] are of two-dimensional
time structure and they should be equal. For the final macro time point m − 1 of s and its corresponding
final micro time point k − 1, for l ∈ {0..k − 2}, s[m− 1][l] and t[m− 1][l] can be different, and they should
satisfy the traditional prefix condition s[m− 1][l] ≼ t[m− 1][l], reflected in the last line of the definition.

For traditional sequences s and t, t − s stands for the sequence that subtracts sequence s from t with
respect to the traditional prefix structure ≼. On the other hand, if s and t are sequences of tr1 (or tr2) type
structure, t− s has a similar meaning with respect to the new ≼1 prefix structure.

The execution of an atomic action is represented by a single snapshot. To describe the behaviour of an
individual shared variable assignment, we introduce a variable ttr to model the accumulated changes made
by the statements of the atomic action. An assignment is simply formulated as storing the result in variable
ttr. Meanwhile, the current value of channel ch is also stored in variable ttr. On the completion of an atomic
action, the corresponding snapshot is attached to the end of the trace to record its behaviour.

The event generated by the channel receiving will not be immediately attached to the end of the trace
variable tr2. After all the behaviours in an atomic action complete, the process enters into the update phase.
Hence we use a trace variable RQ to record new channel states due to the channel receiving.

Example 2.3 Let P =df x := x+1 ; y := y = 1 ; ch!!(x+ y). Assume that shared-variables x and y are 0
and 1 respectively when P is activated. Also assume that the value recorded in channel is initially 0.

The execution of x := x+1 produces ttr = {x (→ 1, y (→ 0}, whereas the execution of y := y+1 produces
ttr = {x (→ 1, y (→ 2}.

Further, the execution of “ch!!(x + y)” produces RQ = ⟨(ch, 2)⟩, where value 2 stands for the current
value of expression “x+ y”.
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When the event guard wait(e) is encountered, it will attach snapshot (ttr, 1) to the end of trace tr1.
Meanwhile, an event pe(ch) is attached to the end of trace tr2 in the form of (pe(ch), 1), due to the execution
of ch!!(x+ y) and the encountering of wait(e). ✷

Three kinds of event notifications are introduced in SystemC for generating events. notify(e∆0) is used
to generate event e, which will be active immediately. For notify(e∆1), it can generate event e that will be
active in one micro time unit. Moreover, notify(e#T ) also generates event e. However, it can only be active
in T macro time units. For recording the events contributed by the above last two notification commands,
we introduce two set type variables, EN2 and EN3. Here, EN2 records the generated events, which will be
active in one micro time unit. EN3 contains the pairs (e, T ), which indicates that event e will be active in
T macro time units.

Example 2.4 Let P = notify(e1∆0) ; notify(e2∆1) ; notify(e3#2) ; notify(f1#4). Assume that EN2 =
{e1} and EN3 = {(e3, 1), (f1, 5)}. Here e1, e2, e3 and f1 are all events. Now we consider new EN2 and
EN3 after the execution of all these notifications.

The first immediate notification will record event e1 in the trace variable tr2, which may fire the environ-
ment’s waiting command immediately. Moreover, event e1 should also be removed from EN2, while EN3
remains unchanged. The execution of the second notification command will add event e2 to EN2 and also
keep EN3 unchanged.

As (e3, 1) already belongs to EN3, the execution of the third command will not add anything to EN3.
Furthermore, the fourth command will remove (f1, 5) from EN3 and add (f1, 4) to EN3 because the time
stamp in (f1, 4) is smaller than the time stamp in (f1, 5). Therefore, the final values of EN2 and EN3 are:

EN2 = {e2} and EN3 = {(e3, 1), (f1, 4)} ✷

The execution of a SystemC process can never undo an atomic action that has already been performed.
A formula P which identifies a program must therefore imply this fact; i.e., it has to meet the following
healthiness condition:

(H1) P = P ∧ Inv(tr1, tr2), where Inv(tr1, tr2) =df (tr1 ≼1 tr1′) ∧ (tr2 ≼1 tr2′)1

Here Inv(tr1, tr2) indicates tr1 and tr2 are the prefix of tr1′ and tr2′ respectively, which indicates that trace
can only get longer. As in relational calculus, for any denotational variable u, we use u and u′ to stand for
the initial value and final value for the current execution respectively.

A SystemC process may perform an infinite computation and enter a divergent state. To distinguish its
chaotic behaviour from the stable ones we introduce the variables ok, ok′ : Bool into the semantical model,
where ok = true indicates that the process has been started, and ok′ = true states that the process is stable
currently. ok = false means that the program has never started and even the initial values are unobservable.

Definition 2.4 Let Q and R be formulae not containing ok and ok′. Define

Q ⊢ R =df ¬ok ∧ Inv(tr1, tr2) ∨ ¬Q ∨ (ok′ ∧R)

A design is a formula that is expressed in this form. ✷

A time-controlled statement cannot start its execution before its guard is triggered. To distinguish its
waiting behaviour from terminating one, we introduce another pair of variables wait, wait′ : Bool. When
wait is true the program is started in an intermediate state, and when wait′ is true the program is idle.
Therefore, for sequential composition “R ; P”, all the intermediate observations of R are also the intermediate
observations of “R ; P”. Control can pass from R to P only when R is in its terminating state, distinguished
by the fact that wait′ is false. If program P is asked to start in a waiting state of R, it leaves the state
unchanged.

(H2) P = II ✁ wait✄ P ,

where, II =df true ⊢ (
∧

s∈{tr1,tr2,ttr,X,RQ,EN2,EN3,wait} s
′ = s)

and P ✁ b✄Q =df (P ∧ b) ∨ (¬b ∧Q)

1 In this paper we use X and X′ to stand for the initial value and final value for variable X respectively.
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Here, X stands for the vector containing all the local variables for the current program. X ′ = X indicates
that all the local variables remain unchanged.

Definition 2.5 Formula P is healthy iff there exists a design D = (Q ⊢ (W ✁ wait′ ✄ T )) such that
P = H(D), where

H(Y ) =df (II ✁ wait✄ (Y ∧ Inv(tr1, tr2)) ✷

Theorem 2.6 H(Y ) satisfies healthiness condition (H1) and (H2). ✷

Now we give the definition for sequential composition.

Definition 2.7 Let P1 and P2 be formulae. Define

P1 ; P2 =df ∃S • (P1[S/V ′] ∧ P2[S/V ])

where, V stands for the list of all denotational variables in our model; i.e., ok, tr1, tr2, ttr,X, RQ, EN2,EN3,
wait. ✷

For the healthy formula H(Q ⊢ W ✁wait′✄T ), ¬Q, W and T represent the divergent behaviour, waiting
behaviour and terminating behaviour respectively. Now we provide a simple refinement calculus for healthy
formulae and show that they are closed under sequential composition, conditional choice, disjunction and
conjunction.

Theorem 2.8

If ¬Qi = ¬Qi ∧ Inv(tr1, tr2), Wi = Wi ∧ Inv(tr1, tr2), Ti = Ti ∧ Inv(tr1, tr2) for i = 1, 2, then

(1) H(Q1 ⊢ W1 ✁ wait′ ✄ T1) ; H(Q2 ⊢ W2 ✁ wait′ ✄ T2)

= H(¬(¬Q1 ; Inv(tr1, tr2)) ∧ ¬(T1 ; ¬Q2) ⊢ (W1 ∨ (T1 ; W2))✁ wait′ ✄ (T1 ; T2))

(2) H(Q1 ⊢ W1 ✁ wait′ ✄ T1)✁ b✄H(Q2 ⊢ W2 ✁ wait′ ✄ T2)

= H((Q1 ✁ b✄Q2) ⊢ (W1 ✁ b✄W2)✁ wait′ ✄ (T1 ✁ b✄ T2))

(3) H(Q1 ⊢ W1 ✁ wait′ ✄ T1) ∨ H(Q2 ⊢ W2 ✁ wait′ ✄ T2)

= H((Q1 ∧ Q2) ⊢ (W1 ∨ W2)✁ wait′ ✄ (T1 ∨ T2))

(4) H(Q1 ⊢ W1 ✁ wait′ ✄ T1) ∧ H(Q2 ⊢ W2 ✁ wait′ ✄ T2)

= H((Q1 ∨ Q2) ⊢ ((Q1 ⇒ W1) ∧ (Q2 ⇒ W2))✁ wait′ ✄ ((Q1 ⇒ T1) ∧ (Q2 ⇒ T2))) ✷

The first law stands for the calculation of the sequential composition of two processes. The divergent
behavior for the whole system can be divided into two cases. The first one is simply the divergent behavior
of the first process (expressed as “¬Q1; Inv(tr1, tr2)”), whereas the second case is the terminating behavior
of the first process followed by the divergent behavior of the second process (expressed as “T1 ; ¬Q2”).
Moreover, for the waiting behavior of the whole system, it can also be divided into two cases. The first case
is the waiting behavior of the first process and the second case is the terminating behavior of the first process
followed by the the waiting behavior of the second process. For the terminating behavior of the whole system,
it can be described as the sequential composition of the terminating behaviors of the first process and the
second process.

The other three laws stand for the calculation of the behavior of disjunction, conjunction and conditional
choice of two processes, respectively. Their analysis is similar.

The laws for disjunction and conjunction can be generalised to the union and intersection of arbitrary
sets. This indicates that healthy formulae form a complete lattice under the implication order. We use HF
to denote the set of all healthy formulae. The weakest fixed point of a monotonic function Φ on HF can be
defined by

µHFX • Φ(X) =df ⊓{F | F ⇒ Φ(F ) and F ∈ HF}

In the subsequent sections we will formalize a SystemC process P as a healthy formula of the form
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H(¬div(P ) ⊢ wait(P )✁ wait′ ✄ ter(P ))

where div(P ), wait(P ) and ter(P ) stand for the divergent behaviour, waiting behaviour and termination
behaviour of P respectively.

3. The Denotational Semantics for SystemC

3.1. Sequential Constructs

Program variable assignment can be classified into two types: shared variable assignment and local variable
assignment.

Let

Env(s) =df ∀i, j • ( (0 ≤ i ≤ len(s)) ∧ (0 ≤ j ≤ len(s[i])) ) ⇒ π2(s[i][j]) ∈ 0∗

Instenv(s) =df len(s) = 0 ∧ len(s[0]) = 0 ∧ Env(s)

Env(s) is used to describe the phenomena that the new states (or new events) are generated by the environ-
ment. Here π2(s[i][j]) ∈ 0∗ stands for the action sequence at the macro time point i and micro time point j
are contributed by the environment. Meanwhile, Instenv(s) behaves like Env(s), and the macro time and
micro time do not advance.

InstEnv =df H

⎛

⎜⎝true ⊢

⎛

⎜⎝
¬wait′ ∧

∧
t∈{tr1,tr2} Instenv(t

′ − t)

∧ ttr′ = π1(last(last(last(tr1′))))

∧ same({X,RQ,EN2, EN3})

⎞

⎟⎠

⎞

⎟⎠

where same(A) =df
∧

x∈A (x′ = x). Here last(s) stands for the last element of sequence s.

Formula InstEnv indicates that the trace behaviours of tr1 and tr2 should all satisfy a condition ex-
pressed in the function Instenv and the state of the last snapshot of trace tr1 is assigned to variable ttr. All
other variables remain unchanged.

Now we consider the behaviour of Skip. If it is the first statement of an atomic action, its behaviour can
be formalised using formula InstEnv. Otherwise, it behaves like II.

Skip =df InstEnv ✁ ttr = null ✄ II

Next we consider the definition of shared variable assignment. Let

sassign(v, e) =df H

(
true ⊢

( ¬wait′ ∧ ttr′ = ttr[e/v]∧
same({tr1, tr2, X,RQ,EN2, EN3})

))

Formula sassign(v, e) indicates that the value of expression e is assigned to v via the state variable ttr.
Based on this, we can define shared-variable assignment v := e.

v := e =df Skip ; sassign(v, e)

For the definition of local variable assignment, we introduce the function lassign(x, f).

lassign(x, f) =df H

(
true ⊢

( ¬wait′ ∧ x′ = f ∧
same({tr1, tr2, ttr,X\{x}, RQ,EN2, EN3})

))

The definition of local variable assignment x := f can be described as:

x := f =df Skip ; lassign(x, f)

Sequential composition (P ; Q) behaves like P before P terminates, and then behaves like Q afterwards.

(P ; Q) =df (P ) ; (Q)
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The definition of conditional can be based on Skip.

if b then P else Q =df Skip ; (P ✁ b✄Q)

The iteration construct is defined in the same way as its counterpart in conventional programming lan-
guages.

while b do P =df µHFX • if b then (P ;X) else Skip

where µHFX • F (X) denotes the weakest fixed point of the monotonic function F over the set of healthy
formulae.

3.2. Channel Communication

Firstly, we consider the message output via a channel. We define it as

ch!!exp =df Skip ; RqUpdate(ch, exp)

The execution of channel output command can be classified into two cases. One is that the channel is in
the first statement of an atomic action, while another stands for the opposite. This can be classified using
formula Skip. The recording of channel output is expressed using formula RqUpdate(ch, exp), i.e., mainly
recording the value of expression exp in channel ch.

RqUpdate(ch, exp) =df H

(
true ⊢

( ¬wait′ ∧ same({tr1, tr2, ttr,X,EN2, EN3})
∧RQ′ = RQ\(ch,−)̂⟨(ch, exp(y))⟩

))

where:

(1) y in the above two formulae stands for expression π1(last(last(last(tr1)))).

(2) ̂ stands for the concatenation of two traditional sequences.

(3) “\” is used to remove the pairs from the update sequence. It can be defined as below:

⟨⟩\(ch,m) =df ⟨⟩
(⟨(ch,−)⟩̂t)\(ch,m) =df t\(ch,m)

(⟨(ch1, n)⟩̂t)\(ch,m) =df ⟨(ch1, n)⟩̂(t\(ch,m))

Here, ch1 ̸= ch and “−” matches to any elements.
The last line (i.e., RQ′ = RQ\(ch,−)̂⟨(ch, exp(y))) in formula RqUpdate(ch, exp) indicates that before

appending the value and its associate channel ch to the trace variable, the snapshots concerned with the
corresponding channel ch need to be removed before recording the new value of the channel.

Next we can consider message input via a specific channel ch??w, which can be considered as assigning
the value on the channel.
If w is a shared variable, then

ch??w =df Skip ; sassign(w, ch)

If w is a local variable, then

ch??w =df Skip ; lassign(w, ch)

3.3. Event Notification

Now we consider the immediate event notification notify(e∆0). First, we give the definition for formula
InstEApp(e).
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InstEApp(e) =df H

⎛

⎜⎜⎜⎝
true ⊢

⎛

⎜⎜⎜⎝

¬wait′ ∧ len(tr2′ − tr2) = 0∧
len((tr2′ − tr2)[0]) = 0∧

(tr2′ − tr2)[0][0] = ⟨(e, 1)⟩ ∧
same(tr1, ttr,X,RQ,EN2, EN3)

⎞

⎟⎟⎟⎠

⎞

⎟⎟⎟⎠

Formula InstEApp(e) indicates that event e is attached to the end of trace variable tr2 without macro
or micro time advancing. The two formulae “len(tr2′ − tr2) = 0” and “len((tr2′ − tr2)[0]) = 0” indicate
that neither macro time nor micro time will advance. The attaching behaviour is expressed using formula
“(tr2′ − tr2)[0][0] = ⟨(e, 1)⟩”.

Next we give the definition for formula EveUpd0(e).

EveUpd0(e) =df H

⎛

⎜⎝true ⊢

⎛

⎜⎝

¬wait′ ∧ same(tr1, tr2, ttr,X,RQ)

∧EN2′ = f1(EN2, e)

∧EN3′ = g1(EN3, e)

⎞

⎟⎠

⎞

⎟⎠

where f1(A, e) =df {x | x ∈ A ∧ x ̸= e}
g1(A, e) =df {(x, T ) | (x, T ) ∈ A ∧ x ̸= e}

We describe EveUpd0(e)’s purpose: For immediate event notification notify(e∆0), after event e is attached
to the end of the trace variable, two set type variables EN2 and EN3 need to be modified due to the
attachment of event e to trace variable tr2. This modification is reflected by the two functions f1(A, e) and
g1(A, e). Event e needs to be removed from EN2, whereas the pairs concerning event e also need to be
removed from EN3.

notify(e∆0) can then be defined

notify(e∆0) =df Skip ; InstEApp(e) ; EveUpd0(e)

Now we consider the definition of notify(e∆1). It generates event e and this event e will be active after
one micro time unit. Firstly we can give the definition for function EveUpd∆(e). It models the behaviour
that event e needs to be added to EN2, while removing the event e related pairs from EN3. This is reflected
by the functions f2 and g2.

EveUpd∆(e) =df H

⎛

⎜⎝true ⊢

⎛

⎜⎝
¬wait′ ∧ same(tr1, tr2, ttr,X,RQ)

∧EN2′ = f2(EN2, e)

∧EN3′ = g2(EN3, e)

⎞

⎟⎠

⎞

⎟⎠

where f2(A, e) =df A ∪ {e}
g2(A, e) =df {(x, T ) | (x, T ) ∈ A ∧ x ̸= e}

Different from notify(e∆0), the execution of notify(e∆1) only makes the changes for variable EN2 and EN3,
while leaving other variables unchanged. The update of EN2 and EN3 is reflected by the two functions f2
and g2. Then notify(e∆1) can be defined

notify(e∆1) =df Skip ; EveUpd∆(e)

For the definition of notify(e#T ), we first give the definition for formula EveUpd#((e, T )) below.

EveUpd#((e, T )) =df H

⎛

⎜⎝true ⊢

⎛

⎜⎝
¬wait′ ∧ same(tr1, tr2, ttr,X,RQ)

∧EN2′ = f3(EN2, e, T )

∧EN3′ = g3(EN2, EN3, e, T )

⎞

⎟⎠

⎞

⎟⎠

where
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f3(A, e, T ) =df A

g3(A,B, e, T )

=df

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B ∪ {(e, T )} if e /∈ A ∧ ∀T1 ∈ N • (e, T1) /∈ B

B if e ∈ A or ∃T1 ∈ N • T1 ≤ T ∧ (e, T1) ∈ B

B\{(e, T3) | ∃T3 ∈ N• if ∃T2 ∈ N • T2 > T ∧ (e, T2) ∈ B

(e, T3) ∈ B} ∪ {(e, T )}

The behaviour of macro time event notification notify(e#T ) is mainly represented by the two functions f3
and g3 via formula EveUpd#((e, T )). Macro time event notification does not affect EN2. However, it affects
EN3, which can be dealt with in several cases shown above.

The behaviour of function g3(EN2, EN3, e, T ) can be classified into three cases. The first expresses the
case that EN2 does not contain event e and EN3 does not contain event e related pairs. Then the result of
this macro time event notification simply adds the pair (e, T ) to EN3. The second expresses the case that
either e is already in EN2 or there exists event e related pairs whose macro time stamp is not greater than
T in EN3. For this case, EN3 remains unchanged. Furthermore, if there exist event e related pairs whose
macro time stamp is greater than T , then EN3 needs to be modified. For this case, event e related pairs
need to be removed from EN3, and the pair (e, T ) needs to be added.

Then notify(e#T ) can be defined as below:

notify(e#T ) =df Skip ; EveUpd#((e, T ))

Finally we consider the event cancel statement cancel(e). The cancellation is mainly represented by
formula EveUpd0(e).

cancel(e) =df Skip ; EveUpd0(e)

3.4. Event Waiting

This section considers the semantics of the event waiting statement. Firstly, we give some preliminary
definitions.

attach =df H

⎛

⎜⎜⎜⎜⎜⎜⎝
true ⊢

⎛

⎜⎜⎜⎜⎜⎜⎝

¬wait′ ∧ ttr = null∧
same(tr2, X,RQ,EN2, EN3)∧

tr1′ = tr1✁ ttr = null ∨ last(y) = ttr ✄

⎛

⎜⎝
y′ = ŷ⟨(ttr, 1)⟩ ∧

len(tr1′ − tr1) = 0∧
len((tr1′ − tr1)[0]) = 0

⎞

⎟⎠

⎞

⎟⎟⎟⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎟⎟⎠

where y = last(last(tr1)) and y′ = last(last(tr1′)) in the above formula. The trace variable tr1 is in the
form of three dimensional structure. Here y stands for the one dimensional trace for variable tr1 at the last
macro time and micro time point. Formula y′ = ŷ⟨(ttr, 1)⟩ indicates that snapshot ⟨(ttr, 1)⟩ is attached to
the end of y. The purpose of the behaviour of attach is to append the contribution stored in ttr to the end
of trace variable tr1.

Next we define update(RQ), which is used to generate events from sequence RQ. The generated events
will be appended to the end of trace variable tr2. update(s) can be defined as

if s = ⟨⟩, then update(s) =df II

otherwise,

update(s) =df H

⎛

⎜⎝true ⊢

⎛

⎜⎝
¬wait′ ∧ s′ = tail(s)∧

(
∨

i∈{1,2,3} CompAtt(s, i) )∧
same(tr1, ttr,X,EN2, EN3)

⎞

⎟⎠

⎞

⎟⎠ ; update(s)
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where tail(s) stands for the sequence s but the first element.

Here, CompAtt(s, op) can be defined as:

(1) if op = 1, then

CompAtt(s, op)

=df ttr(π1(head(s))) < π2(head(s)) ∧ y′ = ŷ⟨(pe(π1(head(s))), 1)⟩ ∧
ttr′ = ttr[π2(head(s))/π1(head(s))]

(2) if op = 2, then

CompAtt(s, op)

=df ttr(π1(head(s))) > π2(head(s)) ∧ y′ = ŷ⟨(ne(π1(head(s))), 1)⟩ ∧
ttr′ = ttr[π2(head(s))/π1(head(s))]

(3) if op = 3, then

CompAtt(s, op)

=df ttr(π1(head(s))) = π2(head(s)) ∧ (tr2′ = tr2) ∧ (ttr′ = ttr)

where, y′ = last(last(tr2′)) and y = last(last(tr2)) in the above definition. Here head(s) stands for the first
element of sequence s.

The behaviour of CompAtt(s, op) is to generate the exact event based on the two values recorded in ttr and
the first element of trace s for the corresponding channel. If the first value is less than the second, a positive
edge event on the channel will be generated. Inversely a negative edge event will be generated. Further, if
the two values are the same, no event will be generated.

For update(RQ), the consideration for the update needs to go through all the pairs in sequence RQ. For
each pair, the update might generate events which will be added to the end of the trace variable tr2.

Now we consider the semantics for the triggering of a single event wait(et). There are two event triggering
cases. The first case is the self-triggering case; i.e., the event is triggered by the process itself, which indicates
that the event is generated by the most recently completed atomic action. We use formula selftrig(et) to
represent this case. In this case, the update based on sequence RQ needs to be executed, as well as attaching
the result of the recent completed atomic action. It should also need to be judged whether the current
situation belongs to the self-triggering case, which is described by formula selfjudge.

selftrig(et) =df Skip2 ; update(RQ) ; (ttr ̸= null) ∧ attach ; selfjudge(et)

where:

Skip2 =df InstEnv2✁ ttr = null ✄ II

and

InstEnv2 =df H

(
true ⊢

( ¬wait′ ∧ ttr′ = π1(last(last(last(tr1))))

∧ same({tr1, tr2, X,RQ,EN2, EN3})

))

and

selfjudge(et) =df H

(
true ⊢

( ¬wait′ ∧ last(last(last(tr2))) = (et, 1)

∧ same(tr1, ttr,X,RQ,EN2, EN3)

))

The second case is the environment triggering case; i.e., an event is generated by the environment and this
event triggers the waiting behaviour. For this case, the update based on sequence RQ and the attachment
for the recent atomic action need to be executed. Then the process waits for the environment to generate
the event which can trigger the current waiting command. The whole behaviour can be partitioned into two
phases. The first one is the waiting period described by formula await(et), during which the environment can
generate events and these events can not trigger our waiting command. The second phase is the triggering
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behaviour, described by formula trig(et).

await(et)

=df Skip2 ; update(RQ) ;

(ttr = null ∨ last(last(last(tr2))) ̸= (et, 1)) ∧ attach ; aawait(et)

and

aawait(et) =df H

⎛

⎜⎝true ⊢

⎛

⎜⎝
∀i, j • et /∈ π1((tr2′ − tr2)[i][j])∧
∧

x∈{tr1,tr2} Env(x′ − x)∧
same(RQ,X, ttr, EN2, EN3)

⎞

⎟⎠

⎞

⎟⎠

trig(et) =df H

⎛

⎜⎝true ⊢

⎛

⎜⎝
Instenv(tr2′ − tr2)∧

last(last(last(tr2′ − tr2))) = ⟨(et, 0)⟩ ∧
same(tr1, ttr, RQ,EN2, EN3)

⎞

⎟⎠

⎞

⎟⎠

We can define

wait(et) =df selftrig(et) ∨ (await(et) ; trig(et))

Next we consider the semantics of compound event “or”. Let

selfjudge(ori∈I{eti}) =df H

(
true ⊢

(
¬wait′ ∧ same(tr1, X, ttr, EN2, EN3)

∧ (
∨

i∈I last(last(last(tr2))) = (eti, 1) )

))

aawait(ori∈I{eti}) =df H

⎛

⎜⎝true ⊢

⎛

⎜⎝
∀i, j, k • eti /∈ π1((tr2′ − tr2)[j][k])∧

∧
x∈{tr1,tr2} Env(x′ − x)∧

same(RQ,X, ttr, EN2, EN3)

⎞

⎟⎠

⎞

⎟⎠

trig(ori∈I{eti}) =df H

⎛

⎜⎝true ⊢

⎛

⎜⎝
Instenv(tr2′ − tr2)∧

∨
i∈I( last(last(last(tr2

′ − tr2))) = ⟨(eti, 0)⟩ )∧
same(tr1, ttr, RQ,EN2, EN3)

⎞

⎟⎠

⎞

⎟⎠

We can define

wait(ori∈I{eti})

=df selftrig(ori∈I{eti}) ∨ ( await(ori∈I{eti}) ; trig(ori∈I{eti}) )

For time delay statements, we first consider the ∆ delay (micro time delay).

hold∆(0) =df H

(
true ⊢

( ¬wait′ ∧
∧

x∈{tr1,tr2} Instenv(x
′ − x)∧

same(ttr,X,RQ,EN2, EN3)

))

phase∆ =df H

⎛

⎜⎜⎜⎜⎜⎜⎝
true ⊢

⎛

⎜⎜⎜⎜⎜⎜⎝

same(ttr,X,RQ,EN2, EN3)∧
∧

x∈{tr1,tr2} len(x
′ − x) = 0∧

⎛

⎜⎝
(tr1′ = tr1 ∧ tr2′ = tr2) ✁ wait′ ✄
( ∧

x∈{tr1,tr2} (len((x
′ − x)[0]) = 1∧

len((x′ − x)[0][0]) = 0 ∧ len((x′ − x)[0][1]) = 0)

)
⎞

⎟⎠

⎞

⎟⎟⎟⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎟⎟⎠

hold∆(0) stands for the environment behaviours at the current micro time point, i.e., the environment can

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



14 H. Zhu, J. He, S. Qin and P. J. Brooke

generate new states and new events at the current micro time point. phase∆ purely represents the one
unit micro time advancing, ie., there are no new generated states and events during the pure micro time
advancing.

Next we introduce formula Wupd∆. Wupd∆ indicates that a sequence of events will be attached to the
end of trace tr2 at the current time point. These sequences are the permutations of all the events recorded
in EN2, expressed using formula “permu(EN2)”.

Wupd∆ =df H

⎛

⎜⎜⎜⎜⎜⎝
true

⎛

⎜⎜⎜⎜⎜⎝

¬wait′ ∧ len(tr2′ − tr2) = 0∧
len((tr2′ − tr2)[0]) = 0∧

π1((tr2′ − tr2)[0][0]) ∈ permu(EN2)∧
π2((tr2′ − tr2)[0][0]) ∈ 1∗ ∧

same(ttr, tr1, X,RQ,EN3) ∧ EN2′ = ∅

⎞

⎟⎟⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎟⎠

where permu(A) stands for the set containing all permutations of set A.

Based on the above formalizations for UpdAtt, hold∆(1) and Wupd∆, we can give the definition for
wait(∆1).

wait(∆1) =df UpdAtt ; hold∆(0) ; phase∆ ; Wupd∆

where UpdAtt =df Skip2 ; update(RQ) ; attach.

Next we consider the semantics of macro-time delay. Firstly, we introduce formula hold#(n). It models
the behaviour that macro time can advance n time units. If time has not advanced n units, the process is still
at the waiting state. Otherwise, the process is at the terminating state. During the time advancing period,
only the environment can generate new states or new events.

hold#(n) =df H

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

true ⊢

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

wait′ ∧ len(tr1′ − tr1) < n ∧ Env(tr1′ − tr1)∧
len(tr2′ − tr2) < n ∧ Env(tr2′ − tr2)∧
same(ttr,X,RQ,EN2, EN3)

∨
¬wait′ ∧ len(tr1′ − tr1) = n ∧ Env(tr1′ − tr1)∧
len(tr2′ − tr2) = n ∧ Env(tr2′ − tr2)∧
same(ttr,X,RQ,EN2, EN3)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The formula phase# purely represents the one unit macro time advancing, ie., there are no new generated
states and events during the pure macro time advancing.

phase# =df H

⎛

⎜⎜⎜⎜⎜⎜⎝
true ⊢

⎛

⎜⎜⎜⎜⎜⎜⎝

same(ttr,X,RQ,EN2, EN3)∧
⎛

⎜⎜⎜⎝

(tr1′ = tr1 ∧ tr2′ = tr2) ✁ wait′ ✄
⎛

⎜⎝

∧
x∈{tr1,tr2} (len(x

′ − x) = 1∧
len((x′ − x)[0]) = 0 ∧ len((x′ − x)[0][0]) = 0∧
len((x′ − x)[1]) = 0 ∧ len((x′ − x)[1][0]) = 0)

⎞

⎟⎠

⎞

⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎟⎟⎠

After n macro time units elapse, new events need to be attached to the end of trace tr2 at the current
micro time point. These events are taken from the pairs in EN3 whose time stamp is n. We use Wupd#(n)
to model these behaviours.
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Wupd#(n) =df H

⎛

⎜⎜⎜⎝
true ⊢

⎛

⎜⎜⎜⎝

len(tr2′ − tr2) = 0 ∧ len((tr2′ − tr2)[0]) = 0∧
π1((tr2′ − tr2)[0][0]) ∈ permu({e | (e, n) ∈ EN3})∧
π2((tr2′ − tr2)[0][0]) ∈ 1∗ ∧ same(tr1, ttr,X,RQ,EN2)∧
EN3′ = {(e, T ) | (e, n+ T ) ∈ EN3}

⎞

⎟⎟⎟⎠

⎞

⎟⎟⎟⎠

Based on the above definitions, we can define macro-time delay.

wait(n) =df UpdAtt ; hold#(n− 1) ; phase# ; Wupd#(n)

3.5. Parallel Composition

For defining parallel composition, we first provide several merge functions.

pmerge(s, t, u) =df

⎛

⎜⎜⎜⎜⎜⎜⎝

π1(s[0..len(t)− 1]) = π1(t[0..len(t)− 1])∧
π1(s[0..len(t)− 1]) = π1(u[0..len(t)− 1])∧
( π2(u[0..len(t)− 1]) = π2(s[0..len(t)− 1])+

π2(t[0..len(t)− 1]) )∧
2 /∈ π2(u[0..len(t)− 1]) ∧ len(u) = len(s)

⎞

⎟⎟⎟⎟⎟⎟⎠

where ⟨i1, ... , in⟩ + ⟨j1, ... , jn⟩ =df ⟨(i1 + j1), ... , (in + jn)⟩

A snapshot is expressed as a pair (σ, f). The first two lines indicate that the sequence of the states (or
events) for a parallel process is the same as the sequence of states (or events) for its two components. The
third and fourth lines inform that any state contributed by a parallel process is actually the contribution by
one of its components. These two lines also indicate that any state (or event) contributed by the environment
of a parallel process cannot be the contribution of either of its components. The fifth line means that any
state contributed by a parallel process cannot be contributed by both of its components.

pmerge(s, t, u) is to merge two sequences s and t, the result is stored in sequence u. Here, s and t are one-
dimensional sequences; i.e., the sequence of type tr1 (or tr2) at some micro time points. For pmerge(s, t, u),
the length of sequence s is greater than or equal to the length of sequence t.

Next we introduce merge(s, t, u), which merges two sequences s and t into one single sequence. Its
definition is based on the above pmerge function. For merge(s, t, u), there are no length restrictions on
sequences s and t. If len(s) > len(t), function pmerge(s, t, u) is called. The rest elements of s will be directly
added to the current sequence u. If len(s) = len(t), only function pmerge(s, t, u) is called. On the other
hand, if len(t) > len(s), function pmerge(t, s, u) is called. The rest elements of t will be directly added to
the current sequence u.

merge(s, t, u) =df

⎛

⎜⎜⎜⎜⎜⎜⎝

len(s) > len(t) ⇒
(

pmerge(s, t, u)∧
u[len(t)..len(s)− 1] = s[len(t)..len(s)− 1]

)
∧

len(s) = len(t) ⇒ pmerge(s, t, u) ∧

len(s) < len(t) ⇒
(

pmerge(t, s, u)∧
u[len(s)..len(t)− 1] = t[len(s)..len(t)− 1]

)

⎞

⎟⎟⎟⎟⎟⎟⎠

Now we introduce additional merge behaviour. Pmerge(s, t, u) merges two sequences s and t into one
single sequence u, where the types of these sequences are of tr1 and tr2. Similarly, the length of s is also
greater than or equal to the length of t.

Pmerge(s, t, u)

=df ∀i • 0 ≤ i ≤ len(t)− 1 ⇒

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



16 H. Zhu, J. He, S. Qin and P. J. Brooke

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

len(s[i]) > len(t[i]) ⇒

⎛

⎜⎜⎜⎝

∀j • 0 ≤ j ≤ len(t[i])− 1 ⇒
merge(s[i][j], t[i][j], u[i][j]) ∧

u[i][len(t[i])..len(s[i])− 1] =

s[i][len(t[i])..len(s[i])− 1]

⎞

⎟⎟⎟⎠
∧

len(s[i]) = len(t[i]) ⇒
( ∀j • 0 ≤ j ≤ len(t[i])− 1 ⇒

merge(s[i][j], t[i][j], u[i][j])

)
∧

len(s[i]) < len(t[i]) ⇒

⎛

⎜⎜⎜⎝

∀j • 0 ≤ j ≤ len(s[i])− 1 ⇒
merge(t[i][j], s[i][j], u[i][j]) ∧

u[i][len(s[i])..len(t[i])− 1] =

t[i][len(s[i])..len(t[i])− 1]

⎞

⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Based on Pmerge()”, we introduce Merge(s, t, u). It has similar behaviours as function merge(s, t, u).
The difference is that the types of sequence s and t here are of tr1 and tr2.

Merge(s, t, u) =df

⎛

⎜⎜⎜⎜⎜⎝

len(s) > len(t) ⇒
(

Pmerge(s, t, u)∧
u[len(t)..len(s)− 1] = s[len(t)..len(s)− 1]

)
∧

len(s) = len(t) ⇒ Pmerge(s, t, u) ∧

len(s) < len(t) ⇒
(

Pmerge(t, s, u)∧
u[len(s)..len(t)− 1] = t[len(s)..len(t)− 1]

)

⎞

⎟⎟⎟⎟⎟⎠

Finally we introduce the merge operator ⊗ for two behaviours P and Q. Its definition is based on the
above Merge function. Function Merge(tr1P , tr1Q, tr1) merges the two traces tr1 of both P and Q and the
resulted trace is the tr1 trace of the whole system. The behaviour of Merge(tr2P , tr2Q, tr2) is to generate
the tr2 trace of the whole system from its two components.

P ⊗Q

=df ∃ tr1P , tr2P , tr1Q, tr2Q, ttrP , ttrQ, EN2P , EN3P , EN2Q, EN3Q, RQP , RQQ •
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P [tr1P , tr2P , ttrP , RQP , EN2P , EN3P /

tr1, tr2, ttr, RQ,EN2, EN3] ∧
Q[tr1Q, tr2Q, ttrQ, RQQ, EN2Q, EN3Q/

tr1, tr2, ttr, RQ,EN2, EN3] ∧
Merge(tr1P , tr1Q, tr1) ∧
Merge(tr2P , tr2Q, tr2) ∧
RQ′ = ⟨⟩ ∧ EN2′ = ∅ ∧
EN3′ = EN3P ∪ EN3Q

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We are now ready to define the denotational semantics for P ∥ Q by considering the divergent, waiting
and terminating behaviours of P ∥ Q.

• It stays at a waiting state if either component does so.

wait(P ∥ Q)) =df ( wait(P ) ⊗ wait(Q) ∨ wait(P ) ⊗ ter(Q) ∨
ter(P ) ⊗ wait(Q) )

• It terminates when both components complete their execution.

ter(P ∥ Q) =df ( ter(P ) ⊗ ter(Q) )

• It behaves chaotically when either component is divergent.
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div(P ∥ Q)

=df ( div(P ) ⊗ div(Q) ∨ div(P ) ⊗ wait(Q) ∨ div(P ) ⊗ ter(Q) ∨
div(Q) ⊗ wait(P ) ∨ div(Q) ⊗ ter(P ) )

3.6. Algebraic Laws for Sequential Programs

Algebra is well-suited for direct use by engineers in symbolic calculation of parameters and the structure of
an optimal design [HHH+87, HH98]. This section aims to explore a set of algebraic laws for SystemC. These
laws can be verified with respect to the semantics given in the above subsections.

For assignment, conditional, iteration, nondeterministic choice and sequential composition, our language
enjoys similar algebraic properties as those reported in [He94, HH98]. In the follows, we shall only focus
on novel algebraic properties for sequential programs of SystemC. We leave the investigation for parallel
expansion laws in the next section by introducing an extra operator named “guarded choice” with location
status.

3.6.1. Channel Statements

The behaviour of the channel input statement ch??v is to assign the current value of ch to variable v, which
has no effect on channel ch. So the algebraic laws associated with channel input statements are similar to
those associated with assignments.

The channel output statement is executed during the evaluation phase of a delta-cycle. The new value
will not be available to be read until the next delta-cycle.

L1 ch!!exp ; S = S ; ch!!exp

where S ∈ {Skip, x := exp, ch??x, notify(e∆0), notify(e∆1), notify(e♯T ), cancel(e) }

If multiple channel output statements occur to the same channel, the last statement executed determines
the new value of the channel.

L2 ch!!exp ; ch1!!exp1 ; ch!!exp′ = ch1!!exp1 ; ch!!exp′, where ch ̸= ch1.

From L1 and L2, we can have:

• For each channel, at most one output statement takes effect in an atomic action.

3.6.2. Event Statements

Events are used to synchronize concurrent processes. Therefore, the execution order between statements
dealing with events and statements dealing with variables and channels can be swapped in an atomic action.

L1 S1;S2 = S2;S1, where

S1 ∈ {notify(e∆0), notify(e∆1), notify(e♯T ), cancel(e)},

S2 ∈ {Skip, x := exp, ch??x, ch!!exp}

The effect of delayed notifications does not occur immediately, so the order of delayed notifications on
different events can be changed in an atomic action.

L2 notify(eDT1) ; notify(fDT2) = notify(fDT2);notify(eDT1)

where DT1 ∈ {∆0,∆1, ♯T}, DT2 ∈ {∆1, ♯T}

An immediate notification can override the pending notification on the same event.

L3 notify(eDT );notify(e∆0) = notify(e∆0), where DT ∈ {∆1, ♯T}

Only pending notifications can be cancelled. At any moment, at most one pending notification can exist for
one event.
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Fig. 2.

L4 (1) notify(e∆0); cancel(e) = notify(e∆0)

(2) notify(eDT ); cancel(e) = cancel(e)

(3) cancel(e); cancel(e) = cancel(e)

where DT ∈ {∆1, ♯T}

More than one delayed notification on the same event override each other and the one scheduled to occur
earlier overrides that scheduled to occur later. Delta-cycle delayed notifications are scheduled to occur earlier
than timed notifications.

L5 (1) notify(eDT1);notify(eDT2) (2) notify(e♯T1);notify(e♯T2)

= notify(eDT2); notify(eDT1) = notify(e♯T2); notify(e♯T1)

= notify(e∆1) = notify(e♯T1)

where T1 ≤ T2, DT1, DT2 ∈ {∆1, ♯T} and (DT1 = ∆1) ∨DT2 = {∆1}.

From the above laws, we can have:

• For each event, at most one delta-cycle delayed notification takes effect during one delta-cycle.

• For each event, at most one timed delayed notification takes effect during one simulation time unit.

4. Algebraic Derivation of Denotational Semantics

4.1. Location Status and Types of Guarded Choice

Example 4.1
Let P = I ∥ J , I = A1 ∥ A2 and J = A3 ∥ A4, where Ai = notify(ei∆0) ; notify(fi∆0) ; ui :=
ui + 1 ; vi := vi + 2 (i = 1, 2, 3, 4). Figure 2 is the graph that illustrates the structure of P . The behaviour
of Ai forms an atomic action. If notify(ei∆0) in A1 is scheduled, Ai (i = 2, 3, 4) cannot be scheduled until
the completion of the execution of the statements in A1. In order to support the parallel expansion laws, we
introduce the concept of locality (i.e., location status). For example, if notify(ei∆0) is scheduled, we want
the expansion laws to correctly indicate the next behaviour should be notify(f1∆0), i.e., all notify(ei∆0)
(i = 2, 3, 4) cannot be scheduled at this moment.

In order to solve this, now we assign a label for each edge. If it is the left edge, the label is 1, otherwise
the label is 2. For every point, its thread sequence is the label sequence from the root of the tree to the
considered point. This sequence can index the exact component an instantaneous is due to. For example, if
the instantaneous action is due to process A1, the thread sequence is ⟨1⟩̂⟨1⟩. Further, if the instantaneous
action is due to process A2, the thread sequence is ⟨1⟩̂⟨2⟩. ✷

Now we introduce the concept of location status for a program, which is one of the following two forms:
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(1) index, which can be ⟨⟩ or a non-empty thread sequence.

(2) null, which indicates a process is at the state, where the atomic action completes its execution. Further,
the environment can get the chance to perform its instantaneous action.

For the aim of linking the various semantics of SystemC, we introduce the concept of guarded choice.
A guarded choice is composed of a set of guarded components. The introduction of guarded choice is to
support the parallel expansion laws. Guarded choice can be formalized with location status (i.e., tag), which
is defined as below.

Definition 4.2

(1) h (P, tag) is a guarded component if it can be one of the forms below. Here, b is a Boolean condition
and index can be ⟨⟩ or a non-empty thread sequence.

V (P, index), wait(e) (P, null), #1 (P, null), ∆1 (P, null)

where V can be one of the following forms:
b&(x := e), ch!!exp, ch??v,

notify(e∆0), notify(e∆1), notify(e∆−1), notify(e#T )

(2) []{h1 (P1, tag1), . . . , hn (Pn, tagn)} is a guarded choice if every element hi (Pi, tagi) is a guarded
component. ✷

In the above definition, the guarded component V (P, index) indicates that the instantaneous action
V will be executed. After the execution, the subsequent program P will be at the location status index.
For the event waiting component (i.e., wait(e) (P, null)) and delay guarded component (i.e., #1 (P, null)
and ∆1 (P, null)), after the firing of event guard or time elapsing, the subsequent behaviour should be the
location status null.

Guarded choice can be divided into five types. The first type of guarded choice is composed of some
instantaneous actions including assignment, channel output, channel input, and event notifications. Which
one is selected to execute is nondeterministic. Its following behavior is described at the location status index.

(type-1) []i∈I{bi&(xi := ei) (Pi, indexi)}[][]j∈J{chj !! expj (Qj , indexj)}
[][]k∈K{chk ?? vk (Rk, indexk)}[][]l∈L{notify(elx) (Tl, indexl)}

The second type of guarded choice is only composed of a set of event guard components. Assume that
all the guard events are different from each other. Any can be fired when the corresponding event happens.
After the event guard is fired, its subsequent behavior is at the location status null.

(type-2) []i∈I{wait(ei) (Pi, null)}

The third type of guarded choice has one delta-cycle time delay (i.e., one micro time delay) or one macro
time delay component. After the elapsing of the corresponding one time unit, the following behavior will be
described as P at the location status null.

(type-3) (1) []{∆1 (P, null)}
(2) []{#1 (P, null)}

The fourth type of guarded choice is composed of a set of instantaneous action components and a set of
event guard components. The whole process waits for any of the event guards to be triggered and any of the
instantaneous actions can also have chances to be scheduled.

(type-4) []i∈I{bi&(xi := ei) (Pi, indexi)}[][]j∈J{chj !! expj (Qj , indexj)}
[][]k∈K{chk ?? vk (Rk, indexk)}[][]l∈L{notify(elx) (Tl, indexl)}
[][]m∈M{wait(em)(Sm, null)}

The fifth type of guarded choice is composed of a set of event guard components and a time delay
component. The process waits for any of the event guards to be fired at the current time point. Time will
elapse one delta-cycle time unit or one macro time unit when there are no more event guards to be triggered.

(type-5) (1) []i∈I{wait(ei) (Pi, null)}[][]{∆1 (Q,null)}
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(2) []i∈I{wait(ei) (Pi, null)}[][]{#1 (Q,null)}

4.2. Algebraic Semantics for Parallel Construct

In this section we explore the algebraic laws for SystemC. We mainly focus on the laws for parallel composi-
tion. Parallel composition is symmetric and associative. As our parallel model is an interleaving model, the
laws below indicate how a parallel process can be sequentialized. Our algebraic laws below are expressed in
the form (P, tag) = (Q, tag), indicating that programs P and Q behave the same at the location status tag.
For simplicity, (P, tag) = (Q, tag) is also written as P =tag Q.

Firstly we define two functions par(P,Q) and par1(P,Q, i, index), which can reduce the number of
parallel expansion laws by covering several cases at the same time. We use ε to stand for the empty process.

par(P,Q) =df

{
(ε, null) if P = ε and Q = ε
(P ∥ Q, null) otherwise

par1(P,Q, i, index) =df

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(ε, null) if P = ε and Q = ε (1)
(ε ∥ Q, null) if P = ε and Q ̸= ε and i = 1 (2)
(P ∥ ε, null) if P ̸= ε and Q = ε and i = 2 (3)
(P ∥ Q, ⟨1⟩̂index) if P ̸= ε and i = 1 (4)
(P ∥ Q, ⟨2⟩̂index) if Q ̸= ε and i = 2 (5)

For par1(P,Q, i, index), it stands for the parallel composition of P ∥ Q at the corresponding location
status. Here, i is used to indicate which thread is active, where “1” (or “2”) indicate that the left component
(or the right component) is active, and index stands for the location status of the active component. The
main purpose is to calculate the exact location status of P ∥ Q at different cases. If P and Q are both empty
processes, P ∥ Q is also empty and its location status is null. The first line represents this case. For P ∥ Q,
if the left (or right) hand side completes a sequence of instantaneous actions and becomes empty, the whole
process should still be written in the form of parallel composition and the location status is null. The second
line and third line represent this case. Furthermore, if one component of P ∥ Q is executing instantaneous
actions and has not reached to the empty state, the location status of P ∥ Q is expressed as ⟨i⟩̂index. The
fourth line and fifth line represent this case.

In the following algebraic laws, Ui and Vj stand for the instantaneous actions and t can be ∆1 or #1.
The notation (par-i-j) stands for the parallel expansion laws whose two parallel components are of type i
and type j. The first five laws stand for the case that the first component of a parallel process is of type one.

If the second component of a parallel process is a guarded choice of a set of instantaneous actions, the
behavior of the parallel process can be described as the guarded choice of a set of instantaneous components.
The behavior after the selected instantaneous action is the parallel composition of the subsequent process
with the other parallel branch. This case is expressed in law (par-1-1).

(par-1-1) Let P =null []i∈I{Ui (Pi, indexi)} and Q =null []j∈J{Vj (Qi, indexj)}
Then P ∥ Q

=null []i∈I{Ui par1(Pi, Q, 1, indexi)} [] []j∈J{Vj par1(P,Qj , 2, indexj)}

If the second component of a parallel process is an event-guarded choice, the behavior of the parallel
process can be described as the guarded choice of a set of instantaneous actions and a set of event guard
components. This case is expressed in law (par-1-2).

(par-1-2) Let P =null []i∈I{Ui (Pi, indexi)} and Q =null []j∈J{wait(ej) (Qj , null)}
Then P ∥ Q
=null []i∈I{Ui par1(Pi, Q, 1, indexi)}[][]j∈J{wait(ej) par(P,Qj)}

If the second component of a parallel process is the time delay guarded choice, only the instantaneous
actions can have a chance to be scheduled. This is expressed in law (par-1-3).

(par-1-3) Let P =null []i∈I{Ui (Pi, indexi)} and Q =null []{t (R,null)}
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Then P ∥ Q =null []i∈I{Ui par1(Pi, Q, 1, indexi)}

If the second component is a guarded choice comprised of a set of instantaneous actions and a set of
event-guarded components, instantaneous actions from both parts can have chances to be scheduled. The
event guards can also have chances to be fired. This is expressed in law (par-1-4).

(par-1-4) Let P =null []i∈I{Ui (Pi, indexi)} and
Q =null []j∈J{Vj (Qj , indexj)}[][]k∈K{wait(ek) (Rk, null)}

Then P ∥ Q
=null []i∈I{Ui par1(Pi, Q, 1, indexi)}[][]j∈J{Vj par1(P,Qj , 2, indexj)}

[][]k∈K{wait(ek) par(P,Rk)}

If the second component is a guarded choice comprised of a set of event-guarded components and the time
delay component, the instantaneous actions from the first parallel component can be scheduled. Meanwhile,
event guards from the second parallel component can also have chances to be fired. However, as the first
component has instantaneous behaviors initially, the whole system cannot make time advance initially.

(par-1-5) Let P =null []i∈I{Ui (Pi, indexi)} and
Q =null []j∈J{wait(ej) (Qj , null)}[][]{t (R, null)}

Then P ∥ Q
=null []i∈I{Ui par1(Pi, Q, 1, indexi)}[][]j∈J{wait(ej) par(P,Qj)}

The next four laws stand for the case that the first component of a parallel process is of type two. If
the second parallel component is also a guarded choice of a set of event guard components, the scheduling
rule is arranged in the form of three types of guarded choice. The first and the second are composed of
a set of event guard components of one parallel branch, where events are different from those in another
parallel branch respectively. The behavior after the triggered event guard is the parallel composition of the
subsequent process with another parallel part. The third type of guarded choice describes the common guard
event of the two parallel parts and the subsequent behavior is defined by the parallel composition of the
corresponding following processes. This case is illustrated in law (par-2-2).

(par-2-2) Let P =null []i∈I{wait(ei) (Pi, null)} and Q =null []j∈J{wait(fj) (Qj , null)}
Let E = {ei|i ∈ I}, F = {fj |j ∈ J}, I ′ = {i | ei ∈ E ∧ ei ̸∈ F},

J ′ = {j | fj ∈ F ∧ fj ̸∈ E}, IJ = {(i, j) | i ∈ I ∧ j ∈ J ∧ ei ∈ E ∧ fj ∈ F ∧ ei = fj}
Then P ∥ Q
=null []i∈I′{wait(ei) par(Pi, Q)}[][]j∈J ′{wait(fj) par(P,Qj)}

[][](i,j)∈IJ{wait(ei) par(Pi, Qj)}

If the second parallel part is in the form of the third, fourth or fifth type of guarded choice, the whole
system can be expressed in the expansion laws shown in the following three cases.

(par-2-3) Let P =null []i∈I{wait(ei) (Pi, null)} and Q =null []{t (R, null)}
Then P ∥ Q =null []i∈I{wait(ei) par(Pi, Q)}[][]{t par(P,R)}

(par-2-4) Let P =null []i∈I{wait(ei) (Pi, null)} and
Q =null []j∈J{Vj (Qj , indexj)}[][]k∈K{wait(fk) (Rk, null)}

Then P ∥ Q
=null []j∈J{Vj par1(P,Qj , 2, indexj)}[][]i∈I′{wait(ei) par(Pi, Q)}

[][]k∈K′{wait(fk) par(P,Rk)}[][](i,k)∈IK{wait(ei) par(Pi, Rk)}

(par-2-5) Let P =null []i∈I{wait(ei) (Pi, null)} and
Q =null []j∈J{wait(fj) (Qj , null)}[][]{t (R, null)}

Then P ∥ Q
=null []i∈I′{wait(ei) par(Pi, Q)}[][]j∈J′{wait(fj) par(P,Qj)}

[][](i,j)∈IJ{wait(ei) par(Pi, Qj)}[][]{t par(P,R)}
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Now we consider the parallel expansion laws for the case that the first component of a parallel process
is of the third type of guarded choice (i.e., time delay component). This can be illustrated in the next three
laws shown in (par-3-3), (par-3-4) and (para-3-5). If the second component of a parallel process is also time
delay, law (par-3-3) can be expressed in the following three laws representing the parallel composition of
various time forms.

(par-3-3-1) Let P =null []{∆1 (R,null)} and Q =null []{∆1 (S, null)}
Then P ∥ Q =null []{∆1 par(R,S)}

(par-3-3-2) Let P =null []{∆1 (R,null)} and Q =null []{#1 (S, null)}
Then P ∥ Q =null []{∆1 par(R,Q)}

(par-3-3-3) Let P =null []{#1 (R,null)} and Q =null []{#1 (S, null)}
Then P ∥ Q =null []{#1 par(R,S)}

If the second component is comprised of a set of instantaneous actions and a set of event-guarded
components, for the whole system, instantaneous actions can be scheduled. The event guards can also have
chances to be fired. Time cannot advance initially. This is expressed in law (para-3-4).

(par-3-4) Let P =null []{t (R,null)} and

Q =null []i∈I{Vi (Qi, indexi)}[][]j∈J{wait(ej) (Rj , null)}
Then P ∥ Q
=null []i∈I{Vi par1 (P,Qi, 2, indexi)}[]{[]j∈J{wait(ej) par (P,Rj)}

If the second component is comprised of a set of event-guarded components and the time delay component,
all the event guards can have chances to be fired. Furthermore, time can also advance initially. As the time
delays in the first and second component of a parallel process can each have two types, the time delay type
of the parallel process can be expressed by using the defined function par2. Law (par-3-5) can illustrate this
case.

(par-3-5) Let P =null []{t (R,null)} and

Q =null []j∈J{wait(ej) (Qj , null)}[][]{tS (S, null)}
Then P ∥ Q =null []j∈J{wait(ej) par (P,Qj)}[]par2(P,Q2)

In the above law, Q2 stand for the second guarded choice of Q. Function par2(P2, Q2) can be defined
as below.

Let P2 =null []{t1 (P ′, null)} and Q2 =null []{t2 (Q′, null)}
Then

par2(P2, Q2) =df

⎧
⎪⎨

⎪⎩

[]{t1 par(P ′, Q′)} if t1 = t2 = ∆1 ∨ t1 = t2 = #1

[]{t1 par(P ′, Q)} if t1 = ∆1 ∧ t2 = #1

[]{t2 par(P,Q′)} if t1 = #1 ∧ t2 = ∆1

The next two laws stand for the case that one component of a parallel process belongs to the form of the
fourth type of guarded choice. If the second component of a parallel process also belongs to the fourth type
of guarded choice, the instantaneous actions from both components can be scheduled. On the other hand,
the event guards from both components can also have chances to be fired and the firing can have three cases.
This can be illustrated in law (para-4-4).

(par-4-4) Let P =null []i∈I{Ui (Pi, indexi)}[][]j∈J{wait(ej) (Rj , null)}
Q =null []k∈K{Vk (Qk, indexk)}[][]l∈L{wait(fl) (Rl, null)}

Then P ∥ Q
=null []i∈I{Ui par1 (Pi, Q, 1, indexi)}[][]j∈J ′{wait(ej) par (Rj , Q)}

[][]k∈K{Vj par1 (R,Qk, 2, indexk)}[][]l∈L′{wait(el) par (P,Rl)}
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[][](j,l)∈JL{wait(ej) par (Pj , Rl)}

If the second component of a parallel process belongs to the fifth type of guarded choice, the analysis is
similar. As the first component of the parallel process has instantaneous actions initially, the whole system
cannot make time advance initially. This is illustrated in law (par-4-5).

(par-4-5) Let P =null []i∈I{Ui (Pi, indexi)}[][]j∈J{wait(ej) (Rj , null)}
Q =null []k∈K{wait(fk) (Qk, null)}[][]{t (S, null)}

Then P ∥ Q
=null []i∈I{Ui par1 (Pi, Q, 1, indexi)}[][]k∈K′{wait(fk) par (P,Qk)}

[][]j∈J′{wait(ej) par (Rj , Q)}[][](j,k)∈JK{wait(ej) par (Rj , Qk)}

The law below stands for the case that both of the two components of a parallel process belong to the
form of the fifth type of guarded choice. Events from both of the two parallel components can have chances
to be fired. The firing can be classified into three cases. Meanwhile, time can also advance initially, which is
specified by function par2.

(par-5-5) Let P =null []i∈I{wait(ei) (Pi, null)}[][]{tR (R,null)}
Q =null []j∈J{wait(fj) (Qj , null)}[][]{tS (S, null)}

Then P ∥ Q
=null []i∈I{wait(ei) par (Pi, Q)}[][]j∈J{wait(ej) par (P,Qj)}

[][](i,j)∈IJ{wait(ei) par (Pi, Qj)}[]par2(P2, Q2)

Further, if one parallel part is at the state of the execution of an instantaneous action and another parallel
part is of any form. Then the whole process continues the execute of the instantaneous action. The case is
expressed in law (par-II).

(par-II) Let P =index []{U (P ′, index)}
Then P ∥ Q =(1)̂ index []{U par1(P ′, Q, 1, index)}

Q ∥ P =(2)̂ index []{U par1(Q,P ′, 2, index)}

The following five laws stand for the case that one component of a process is empty. Another component
can be of any forms.

(par-III-1) Let P =null []i∈I{Ui (Pi, indexi)}
Then P ∥ ε =null []i∈I{Ui par1(Pi, ε, 1, indexi)}
ε ∥ P =null []i∈I{Ui par1(ε, Pi, 2, indexi)}

(par-III-2) Let P =null []i∈I{wait(ei) (Pi, null)}
Then P ∥ ε =null []i∈I{wait(ei) par(Pi, ε)}

ε ∥ P =null []i∈I{wait(ei) par(ε, Pi)}

(par-III-3) Let P =null []{t (P ′, null)}
Then P ∥ ε =null []{t par(P ′, ε)}

ε ∥ P =null []{t par(ε, P ′)}

(par-III-4) Let P =null []i∈I{Ui (Pi, indexi)}[][]j∈J{wait(ei) (Qj , null)}
Then P ∥ ε =null []i∈I{Ui par1(Pi, ε, 1, indexi)}

[][]j∈J{wait(ej) par(Qj , ε)}

ε ∥ P =null []i∈I{Ui par1(ε, Pi, 2, indexi)}
[][]j∈J{wait(ej) par(ε, Qj)}

(par-III-5) Let P =null []i∈I{wait(ei) (Pi, null)} [] {t (Q, null)}
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Then P ∥ ε =null []i∈I{wait(ei) par(Pi, ε)} [] {t par(Q, ε)}
ε ∥ P =null []i∈I{wait(ei) par(ε, Pi)} [] {t par(ε, Q)}

4.3. Head Normal Form

Now we assign every program P a head normal form at location status tag, expressed in the formHF ((P, tag)).
Our consideration for deriving denotational semantics from algebraic semantics is based on the concept of
head normal form. The head normal form HF ((P, tag)) is to make one step forward expansion for program
P at the location status tag.

For an instantaneous action, its location status is null or ⟨⟩. The location status for the remaining process
(the empty process) after the first step expansion is an empty sequence.

(1) HF ((v := e, tag)) =df ( []{true&(v := e) (ε, ⟨⟩)}, tag )

HF ((Skip, tag)) =df ( []{true&(x := x) (ε, ⟨⟩)} , tag )

where tag = null or ⟨⟩.

(2) HF ((X, tag)) =df ( []{X (ε, ⟨⟩)} , tag )

where tag = null or ⟨⟩.
X can be ch??v, ch!!exp, notify(e∆0), notify(e∆1, notify(e#T ).

HF ((cancel(e), tag)) =df ( []{notify(e∆−1) (ε, ⟨⟩)}, tag )

For conditional statement, the selection for the satisfactory and unsatisfactory cases can be modeled as
the Skip behavior. Similar analysis can also be applied to iteration.

(3) HF ((P ✁ b✄Q, tag)) =df ( []{b&x := x (P, ⟨⟩), ¬b&x := x (Q, ⟨⟩)}, tag )

HF ((b ∗ P, tag)) =df ( []{b&x := x (P ; b ∗ P, ⟨⟩)}, ¬b&x := x (ε, ⟨⟩)}, tag )

The head normal form of P ; Q mainly depends on the head normal form of P .

(4) Assume HF ((P, tag)) = ( []i∈I{Xi (Pi, tagi)}, tag )

Then HF ((P ;Q, tag)) =df ( []i∈I{Xi (seq(Pi, Q), tagi)}, tag )

where, seq(X,Y ) =df

{
Y if X = ε

X;Y otherwise

Below is the definition for the head normal form of time delay and event guard.

(5) HF ((∆1, tag)) =df ( []{∆1 (ε, null)}, tag )

HF ((#1, tag)) =df ( []{#1 (ε, null)}, tag )

HF ((#T, tag)) =df ( []{#1 (#(T − 1), null)}, tag ), where T > 1.

HF ((wait(e), tag)) =df ( []{wait(e) (ε, null)}, tag )

For a parallel process, it can be at the location status null or index. The definition of the head normal
form for a parallel process is based on its location status.

(6) HF ((P ∥ Q,null)) =df (T, null)
where, T is the result by applying the above parallel expansion laws of HF ((P, null)) and HF ((Q,null))
at the location status null.

HF ((P ∥ Q, index)) =df (T, index)
where T is the result by applying the above parallel expansion laws at the location status index.

The above head normal forms can be used in deriving the operational semantics from algebraic semantics
for SystemC.
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Example 4.3 Let P1 = v1 := 1 ; ;notify(e2∆1);notify(e3#3),

P2 = v2 := 2 ; notify(f2∆1);notify(f3#3),

Q1 = wait(e2);wait(e3), Q2 = wait(f2);wait(f3)

Consider the head normal form for program P , where (P1 ∥ P2) ∥ (Q1 ∥ Q2).

For program P , its head normal form can be described as:

HF ((P, null))

= ( []{ v1 := 1 ((P11 ∥ P2) ∥ (Q1 ∥ Q2), ⟨1⟩̂⟨1⟩),
v2 := 2 ((P1 ∥ P21) ∥ (Q1 ∥ Q2), ⟨1⟩̂⟨2⟩),
wait(e2) ((P1 ∥ P2) ∥ (wait(e3) ∥ Q2), null),

wait(f2) ((P1 ∥ P2) ∥ (Q1 ∥ wait(f3)), null) }
, null )

where P11 = notify(e2∆1);notify(e3#3), P21 = notify(f2∆1);notify(f3#3)

Further,

HF (((P11 ∥ P2) ∥ (Q1 ∥ Q2), ⟨1⟩̂⟨1⟩))
= ( []{notify(e2∆1) ((notify(e3#3) ∥ P2) ∥ (Q1 ∥ Q2), ⟨1⟩̂⟨1⟩)}

, ⟨1⟩̂⟨1⟩ )

HF (((notify(e3#3) ∥ P2) ∥ (Q1 ∥ Q2), ⟨1⟩̂⟨1⟩))
= ( []{notify(e3#3), ((ε ∥ P2) ∥ (Q1 ∥ Q2), ⟨1⟩̂⟨1⟩)}

, ⟨1⟩̂⟨1⟩ )

The analysis of the head normal forms for other programs above is similar. ✷

4.4. Deriving Denotational Semantics from Algebraic Semantics

In section 3, we defined the denotational semantics for each statement of SystemC. In this section we explore
the derivation of denotational semantics from algebraic semantics for SystemC. The derivation strategy is
explored. Our approach is based on the head normal form of each process, i.e., we have five types of guarded
choices.

Let

C(tag) =df

{
ttr = null if tag = null
ttr ̸= null if tag = index

We use the notation A((P, tag)) to represent the derived denotational semantics from algebraic semantics
for program P at the location status tag. Further, the notation A(P ) stands for the the derived denotational
semantics from algebraic semantics for program P . In section 3, we defined the denotational semantics for
SystemC. We use the notation D(P ) to represent the defined denotational semantics for program P .

If the head normal form of a process belongs to the first type, its denotational semantics can be described
as the semantics of the instantaneous action followed by the denotational semantics of the corresponding
subsequent process at the new location state. The notation D(b&xi := e) stands for the defined denotational
semantics of x := e at Boolean condition b.

(1) If HF ((P, tag)) = ( []i∈I{bi&(xi := ei) (Pi, indexi)}
[][]j∈J{chj !! expj (Qj , indexj)}
[][]k∈K{chk ?? vk (Rk, indexk)}
[][]l∈L{notify(elx) (Tl, indexl)}

, tag )
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then

A((P, tag)) =df C(tag) ∧

⎛

⎜⎜⎜⎝

∨
i∈I( D(bi&xi := ei) ; A((Pi, indexi)) )

∨
∨

j∈J( D(chj !!expj) ; A((Qj , indexj)) )

∨
∨

k∈K( D(chk??vk) ; A((Rk, indexk)) )

∨
∨

l∈L( D(notify(elx)) ; A((Tl, indexl)) )

⎞

⎟⎟⎟⎠

If the head normal form of a process belongs to the second type, its behaviour can be divided into two
cases. The first case indicates that one of the events can be self-fired. The second case indicates that none of
the events can be self-fired. Then the process will wait for any of the events to be fired. During the waiting
period, none of the events can be fired. After that, one of the events will get fired. For the above two cases,
if one event is fired, the subsequent behaviour will be the corresponding process at the location status null.

(2) If HF ((P, tag)) = ( []i∈I{wait(ei) (Pi, null)}, tag )

then

A((P, tag)) =df C(tag) ∧

⎛

⎜⎝

∨
i∈I(selftrig(ei) ; A((P, null)))

∨
(await(e) ;

∨
i∈I(trig(ei) ; A((Pi, null)) ) )

⎞

⎟⎠

where e =df ori∈I{ei}

Now we consider the case that the head normal form of a process belongs to the third type. The time
delay can be divided into two cases; i.e., micro-time and macro-time. The process first behaves the same
as the corresponding one unit time delay. After that, the behaviour can be expressed as the subsequent
behaviour of the process at the location status null.

(3) If HF ((P, tag)) = []{∆1 (P, null)},

then A((P, tag)) =df C(tag) ∧ (D(∆1) ; A((P, null)))

If HF ((P, tag)) =df []{#1 (P, null)}

then HF ((P, tag)) =df C(tag) ∧ (D(#1) ; A((P, null)))

If the head normal form of a process belongs to the fourth type. The analysis can be divided into two
cases. The first case indicates that one of the events can be fired. The second case indicates that none of the
elements can be self-fired. The process waits for any events to be fired and one of the events will be fired
during the waiting period. The waiting period will not let macro and micro time advance. Finally, either any
instantaneous action will be scheduled or one event will be fired.

(4) If HF ((P, tag)) = ( []i∈I{Ui (Pi, indexi)}
[][]j∈J{wait(ej)(Qj , null)}

, tag )

then

A((P, tag))

=df C(tag) ∧

⎛

⎜⎜⎜⎜⎝

∨
j∈J(selftrig(ej) ; A((Qj , null))

∨

await(e) ∧ hold∆(0) ;

( ∨
i∈I(D(Ui) ; A((Pi, indexi))) ∨

∨
j∈J(trig(ei) ; A((Qj , null)))

)

⎞

⎟⎟⎟⎟⎠

where e =df orj∈J{ej}
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If the head normal form of a process belongs to the fifth type, the analysis can be proceeded according
to the time delay type. If the time delay is micro time, the analysis can be divided into three cases. The
first case indicates that one of the events gets self-fired. The second and third case indicates that none of the
events are self-fired. The process will wait for any event to be fired. During the waiting period none of these
events will be fired and the waiting period is one micro time unit long. The second case indicates that one
event will be fired without micro time advancing. For the third case, time will advance one micro time unit.

(5) If HF ((P, tag)) = ( []i∈I{wait(ei) (Pi, null)}[][]{∆1 (Q,null)}
, tag )

then

A((P, tag)) =df C(tag) ∧

⎛

⎜⎜⎜⎜⎜⎜⎝

∨
i∈I(selftrig(ei) ; A((P, null)))

∨
(await(e) ∧ hold∆(0) ;

∨
i∈I(trig(ei) ; A((Pi, null))))

∨
(await(e) ∧ hold∆(0) ; phase∆ ; A((Q,null)))

⎞

⎟⎟⎟⎟⎟⎟⎠

where, e =df ori∈I{ei}

Further, for the fifth type of guarded choice, we explore the case where the time delay is macro. This
analysis can also be divided into three cases, which are similar to micro time. For the second and third cases,
the holding behaviour will change from hold∆(0) into hold#(0). For the third type, time advancing will
change from micro time into macro time.

If HF ((P, tag)) = ( []i∈I{wait(ei) (Pi, null)}[][]{#1 (Q,null)}
, tag )

then

A((P, tag)) =df C(tag) ∧

⎛

⎜⎜⎜⎜⎜⎜⎝

∨
i∈I(selftrig(ei) ; A((Pi, null)))

∨
(await(e)hold#(0) ;

∨
i∈I(trig(ei) ; A((Pi, null))))

∨
(await(e) ∧ hold#(0) ; phase# ; A((Q,null)))

⎞

⎟⎟⎟⎟⎟⎟⎠

where e =df ori∈I{ei}

Based on the above definitions, we now have a way to calculate the denotational semantics from algebraic
semantics for SystemC.

Definition 4.4 (Calculating Denotational Semantics from Algebraic Semantics)

A(P ) =df

{
A((P, null)) if P is parallel process

A((P, null)) ∨ A((P, ⟨ ⟩)) otherwise
✷

We know that parallel composition can only appear as the outermost construct. Therefore, the calculation
of denotational semantics from algebraic semantics can be divided into two cases, i.e., parallel process and
sequence process. For a parallel process, the calculation of denotational semantics can only be at the location
status null. For a sequential process, the calculation of denotational semantics can be at the location status
null and ⟨ ⟩.

For the definition of A(P ), we know that it is based on the head normal form. As the calculation of head
normal form is in the form of one step expansion. Hence, our methodology for calculating the denotational
semantics from algebraic semantics is limited to finite programs.
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5. Related Work

This paper has applied Unifying Theories of Programming (abbreviated as UTP) in formalising the denota-
tional semantics for SystemC. UTP was developed by Hoare and He in 1998 [HH98]. UTP covers wide areas
of fundamental theories of programs in a formalised style and acts as a consistent basis for the principles of
programming languages. The UTP approach has been successfully applied in studying the semantics and al-
gebraic laws of programming languages, including probabilistic programming, object-oriented programming,
real-time systems, etc.

Probabilistic systems have been investigated using denotational [MM04] and operational [DGJP04] ap-
proaches. The probability guarded command language (PGCL) is an extension of the guarded command
language with probabilistic choice. Its denotational semantics was formalised by He [HSM97] using the UT-
P approach. A set of algebraic laws was achieved based on denotational semantics. Further, Bresciani and
Butterfield explored a theory of designs [BB13] based on distributions over the state space and studied the de-
notational semantics for PGCL. Healthiness conditions have been explored for probabilistic programs based
on the concept of distributions over the state space. The UTP approach has been applied in object-oriented
designs by He and his colleagues [HLL06]. A denotational semantics has been defined for an object-oriented
language. A refinement calculus has also been explored. These refinement laws indicate the essential princi-
ples of object-oriented design. Cavalcanti et al. proposed the safety-critical Java memory model [CWW13],
where safe and predictable dynamic memory management was explored. The semantics was formalised in
the UTP framework. Circus is a specification language which can define data and behavioural aspects of
systems [WC01, WC02]. Oliveira et al. provided a new denotational semantics for Circus and mechanized
the semantics in a theorem prover ProofPower-Z [OCW09, OCW13], which supports automatic proof of
refinement laws. Sherif et al. introduced Circus Time, a timed extension of Circus [SCHS10]. Its semantics
was also explored by using UTP approach. A framework for validation of timed properties was provided,
which was based on FDR, the CSP model checker.

This paper explored the denotational semantics for SystemC. Compared with the above UTP applications,
as a system-level modelling language, SystemC not only has real-time and shared-variable features, but
also possesses novel features such as delayed notifications, notification cancelling, notification overriding and
delta-cycle. Therefore, the UTP approach for studying the denotational semantics for SystemC is challenging.

Several efforts have been made to define the formal semantics of SystemC. Müller et al. presented a
simulation semantics [RHG+01] in the form of Abstract State Machines [BS03]. That semantics covers
method, thread, and clocked thread behavior as well as their interactions with the simulation kernel process.
Gawanmeh et al. [GHT04] extended the work in [RHG+01] to deal with more complex components of
SystemC, including primitive and hierarchical channels, SystemC design rules and a SystemC simulator. A
denotational semantics for a synchronous subset of SystemC was proposed by Salem in [Sal03], where the
update and the evaluate phases were formalized using two function domains. Habibi and Tahar presented a
semantics of the main part of SystemC in terms of fixpoint [HT05]. The soundness and correctness of the
semantics of basis class SC Module has been proved w.r.t. to a trace semantics of a whole SystemC program.
We have also provided an operational semantics for SystemC [PZHJ06]. Based on the operational semantics,
bisimulation has been studied for the language by introducing some aspects of reasonable abstractions.

For the study of the linking theory of semantics, Hoare and He have studied the derivation of operational
semantics from the algebraic semantics [HH93, HH98]. An operational semantics of CSP [Hoa85] was derived,
based on CSP’s algebraic laws according to a derivation strategy (called the action transition relation). An
operational semantics of Dijkstra’s Guarded Command Language (GCL) was also derived based on GCL’s
algebra according to the derivation strategy (called the step relation). The total correctness of the derived
GCL’s operational semantics was also discussed in [HJS97]. Recently, Hoare proposed a challenging research
topic of the semantic linking between algebra, denotations, transitions and deductions [Hoa11, HvS12].
Various familiar operational calculi have been derived from the algebraic semantics [vSH13]. Compared
with the above explorations, this paper studied the linking theory between the denotational semantics and
algebraic semantics for SystemC. Our approach is to derive denotational semantics from algebraic semantics.
We introduced the concept of guarded choice and provided a full set of parallel expansion laws.
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6. Conclusion

Compared with traditional programming languages, SystemC possesses several novel features, including
delayed notifications, notification cancelling, notification overriding and delta-cycle. In this paper we studied
its denotational semantics via the concept of Unifying Theories of Programming [HH98]. The timed model
was formalised in a three dimensional structure. A refinement calculus was designed for this three dimensional
denotational model. A set of algebraic laws has been studied, especially those which can represent the novel
features of SystemC. These laws can be verified via our denotational model.

Meanwhile we also studied the calculation (i.e., derivation) of denotational semantics from algebraic
semantics for SystemC. We introduced the concept of guarded components and guarded choice. We system-
atically explored a full set of parallel expansion laws for SystemC. Our derivation approach is based on the
introduction of head normal form. Based on the concept of head normal form, we provided the strategy
for deriving denotational semantics from algebraic semantics. Program equivalence can also be explored by
using the derived denotational semantics.

For the future, we are continuing to work on the unifying theories [HH98, Zhu05] for SystemC. We plan
to embed the achievements of the denotational semantics in the framework of PVS [OSRSC99] to support
the mechanical proof of the algebraic laws. The embedding of the derived denotational semantics from alge-
braic semantics in PVS is also challenging and we aim to support automatic verification based on the UTP
approach.
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