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Abstract

Faced with the increasing need for correctly designed hybrid and cyber-physical systems today, the
problem of including provision for continuously varying behaviour as well as the usual discrete changes
of state is considered in the context of Event-B. An extension of Event-B called Hybrid Event-B is
presented, that accommodates continuous behaviours (called pliant events) in between familiar discrete
transitions (called mode events in this context). The continuous state change can be specif ed by a combi-
nation of indirect specif cation via ordinary differential equations, or direct specif cation via assignment
of variables to values that depend on time, or indirect specif cation by demanding that behaviour obeys
a time dependent predicate. The syntactic elements of the extension are discussed, and the semantics is
described in terms of the properties of time dependent valuations of variables. Ref nement is examined
in detail, with reference to the notion of ref nement inherited from discrete Event-B. A full suite of proof
obligations is presented, covering all aspects of the new framework. A selection of examples and case
studies is presented. A particular challenge —bearing in mind the desirability of conforming to exist-
ing intuitions about discrete Event-B, and the impact on tool support (as embodied in tools for discrete
Event-B like Rodin)— is to design the whole framework so as to disturb as little as possible the existing
structures for handling discrete Event-B.

1. Introduction

Today, we see an ever-increasing interaction between digital devices and the physical world. Once, it
was enough to see this in terms of predominantly isolated systems, in which a single digital device inter-
acted with a f xed suite of physical equipment, and to talk, therefore, of embedded systems. Nowadays
though, this picture is proving more and more inadequate. It is more and more the case that families of
such systems are coupled together using communication networks, and can thus inf uence each others’
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working. These days then, the talk is of Cyber-Physical Systems [45, 51, 52, 54, 49, 13, 18, 44, 1, 37],
which is the name that has been adopted for these interacting families of embedded systems.

These new systems throw up novel challenges in terms of design technique, as it is increasingly
diff cult to ignore the continuous characteristics in their behaviours. Unfortunately, the usual kinds of
approaches to the modeling, specif cation and development of conventional discrete systems, offer lit-
tle help for developing the continuous aspects, simply because the usual semantic foundations of such
approaches make almost no contact with what is needed for the continuous world.

That is not to say that discrete techniques have never impinged on the design of systems that are con-
tinuous as regards their physical characteristics — far from it. However, the usual way that purely discrete
technologies interact with the continuous aspects is to tiptoe round them— predominantly because of the
semantic inadequacy just mentioned. Often, the inconvenient continuous aspects are permitted to occur
in only very simplif ed form, and then their consequences can typically be reduced to a small number of
algebraic facts, which can be accommodated within the discrete world.

For very simple problems, this approach can almost be convincing, aside from the fact that the
collection of algebraic facts that are accumulated, usually fail to come with the necessary invariants that
bind them together — precisely because the required invariants emerge from the continuous world, which
is being studiously ignored. Obviously this undermines the integrity of such a technique and weakens
the dependability that it can deliver.

For more complex systems, the problem only gets worse. First, the design is approached from the
purely continuous side (since it is too complicated to ignore the continuous aspects altogether). Con-
ventional techniques from the continuous sphere are applied, until the design has reached a reasonable
state. Then, some engineering heuristics are applied that turn a continuous design into a discrete one,
after which, a kind of collective amnesia takes place. All thoughts of the continuous world are forgotten,
and the discrete design that emerged from the earlier activity —which is regarded now as the top level
spec— is treated as if it were the most obvious and natural way to abstractly specify the desired system.

Unfortunately, there is a major defect to this strategy. Specif cations, by their nature, are intended to
be as clear and perspicuous as the intrinsic nature of the problem will allow, so that they can be clearly
related to domain level requirements, and properly understood by all problem domain stakeholders as
easily as possible. An essential ingredient of this is simplicity of expression and of structure. The B
Method [2, 3] —which is our concern in this paper— more than most, stresses the importance of starting
out with a clear and simple view of the system-to-be, and of adding the complexity only gradually.
However, that which is clear and perspicuous in the continuous world is not the same as that which
is clear and perspicuous in the discrete world. The limiting processes that go into the construction of
continuous world quantities, sweep away vast (in fact unbounded) quantities of the discrete level detail
that goes into their bottom-up construction. This radically changes the nature of what is ‘simple’ in the
two worlds.

In this paper we extend the formalism of Event-B so that it can deal with continuous behaviour
as a f rst class citizen. This extends the reach of the B Method so that it is better able to capture the
kind of developments needed to realise the cyber-physical systems spoken of earlier. As a byproduct, in
enabling continuous behaviour to occur in native fashion at the most abstract levels of the development,
the complex, unintuitive detail manufactured by discretization processes, takes its rightful place at the
intermediate levels of a more broadly based development.

In cyber-physical systems design, the communication side of the communication / continuous inter-
play that has to be faced, can be handled by relatively conventional means. After all, communicating
systems have been studied in computer science for many years, and Event-B is no exception in providing
many examples of the modeling of communication (see e.g. [3]). This leaves the continuous side to be
faced, and our extension of Event-B enables it to encompass hybrid behaviour in a f rst class way. This
is the main objective of the present paper.
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Our extension of Event-B is designed to cause as little disruption as possible to the existing structure
of discrete Event-B. This point is important since considerable investment has already been made in tool
support for Event-B, through projects like RODIN [39], DEPLOY [21] and ADVANCE [4], resulting in
the current state of the Rodin tool [40]. This, we do not wish to spoil.

The remainder of the paper is as follows. In Section 2 we explore preexisting work in more detail
and contrast some of its common features with what we do in this paper. In Section 3 we brief y review
discrete Event-B. Section 4 is concerned with setting out the semantic foundations for incorporating
continuous behaviours into Event-B in our approach. In Section 5 we def ne the core syntax of our
Event-B extension, indicating how the issues discussed previously relate to it. In Section 7 we discuss
the formal semantics of our framework, relying on standard results from the literature to handle routine
matters. In Section 8 we discuss ref nement in the extended Event-B framework. Section 9 collects
together the proof obligations that keep all the issues discussed previously under control in a specif c
development. Section 10 describes a number of small case studies, starting with the bouncing ball,
continuing with a simple discretization of continuous behaviour, and culminating with a simple study of
the European Train Control System. Section 11 concludes.

2. Related Work and the Hybrid Event-B Approach

The framework for Hybrid Event-B that we will build below is similar in many respects to a num-
ber of formulations of hybrid systems in the literature. Hybrid systems themselves have been stud-
ied intensively for many years, and the literature is too large by now to cover everything in detail
here. Some of the earliest work includes [35, 5, 6, 28, 33]. Shortly after these papers appeared, other
works such as [34, 24, 25, 53] and [26, 43, 22, 8] were published. Slightly later formulations include
[33, 14, 29, 30, 17, 7, 16, 23]. Of particular note is the survey [15], which covers a large number of these
formulations, and especially, the tools that support them. A modern and unif ed theoretical overview of
many of these established approaches is to be found in [46], and there is [38] which is closest to our
approach. Moreover, a large body of work has appeared in the International Conference on Hybrid Sys-
tems: Computation and Control series of international meetings, and this, combined with the modern
trends noted above, has joined with other relevant events, creating the major annual CPS Week meeting
in recent years. We now comment on three characteristic that are frequently seen in this class of system.

The f rst characteristic of many extant systems for addressing hybrid behaviour, is that they are
conceived with the strategy of verifying that a given hybrid system satisf es some desirable property
— obviously this is a laudable aim in itself. Unfortunately, any language that is expressive enough to
encompass a signif cant portion of hybrid behaviour is highly undecidable. As a consequence, the desire
to make mechanisable inroads into the verif cation high level goal has led to many systems that curtail
quite severely the expressivity of the language used to describe the candidate hybrid system, in order
to lend some decidability to the problem. Even so, the needed decision procedures often have high
complexity, adding yet more diff culties.

The second characteristic comes from this severe curtailment of expressivity inherent in the strategy
just described, which chimes with a kind of bottom up approach. If one cannot express a problem
in the most transparent way, its description will most likely reduce to a complex set of lower level
subproblems (such as with discretization, discussed above). This only makes worse any challenge from
high complexity decision procedures.

The third characteristic is a typical further consequence of this kind of strategy, namely that the con-
nection between the formal description of the two sides of the framework can become weak. While the
discrete side is invariably captured quite precisely, the side of the formalism that deals with the contin-
uous side is either: precise but severely curtailed in expressivity; or is more encompassing regarding
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the admitted continuous behaviour but signif cantly less precise regarding its foundations — in extreme
cases delegating all aspects of continuous behaviour to, e.g., the semantics of a simulation tool.3

The extent to which any of these characteristics is present in any given formalism varies widely, of
course. Our own approach for Hybrid Event-B attempts to bypass some of these diff culties by advocating
a top down methodology. By starting with simple models, and designing the properties that they should
satisfy along with them (rather than trying to discover those post hoc), and enriching both along the
way to the f nal system, the aim is to keep the tractability of all aspects of design and verif cation much
higher than if one was confronted with the f nal system outright — without any clues as to its underlying
structure or design motivations.

A salient characteristic of the B-Method in general, of Event-B in particular, and of our hybrid
extension of it, is the extent to which the top down approach is integral to the formalism. This approach
has given Event-B considerable momentum worldwide [47], good reason to inspire our hybrid extension
of it here. The top down approach also has some consequences regarding the issues mentioned above,
which we comment on now.

Regarding verif cation, because we model at the highest level of abstraction possible, we avoid the
pitfalls of an inherently bottom up approach, that would be forced by a low degree of expressivity. This
has the advantage that we can attempt verif cation where it potentially has the least complexity; but it also
has the disadvantage that we can easily write down models for which no verif cation strategy is known.
We elaborate this point further shortly.

Regarding concerns about the formal description of the framework, our approach to the design of Hy-
brid Event-B is more readily distinguished from alternative approaches. First and foremost, we ground
the semantics of the Hybrid Event-B framework-to-be in established facts from the world of textbook
pure mathematics (facts concerning properties of suitable families of piecewise continuous real func-
tions). This standpoint separates soundness-in-principle of the formalism (established by appeal to facts
from mathematical analysis) from verif ability-in-practice (performed by executable algorithms running
with acceptable complexity on specif c classes of examples) — and leads to situations in which we know
(semantically) certain generic facts on which we can rely, even though, in specif c instances we cannot
calculate their consequences. Still, this approach gives our formulation an equally consistent level of
formal rigour for both the discrete and continuous parts of the theory, at least in principle.

In this paper we focus on the generic formal semantics. The preceding remarks imply that there is
a non-trivial road to be navigated from the generic semantic world to the world of verif able problem
instances. We do not embark on that road in this paper, postponing those details to other publications.

Verif ability in practice is the primary concern of tools, and along with the theoretical development
of this paper, there is an intention to enhance the Rodin tool [39] to incorporate the capability to verify
suitable classes of practical examples. Typically, this capability will be somewhat open-ended, in line
with the vast range of applied mathematics about which detailed consequences can be calculated, and
the capability of the extended tool at any point will depend on the effort invested in tool enhancement up
till then.4

What is needed for comprehensive verif cation goes beyond mere calculation of some continuous
behaviour. Looking forward to the needs of the formal semantics, we require the calculation of the times
of preemption of an episode of continuous behaviour by the next discrete transition, and the conf rmation
of invariants over a period of time; looking towards the needs of ref nement, we additionally require
conf rmation of joint invariants over time. All this requires signif cant capability in symbolic calculation

3In fact, the behaviour of many commercial simulation tools intended for the modelling of physical systems is highly
customer-driven, and makes no real contact with any foundational semantic concerns whatsoever [36].

4Thus, we envisage tool capability increasing over time. Despite this though, every version of such a tool will engage with
some subset of the semantic world described in this paper, simplifying the conceptual challenge for practitioners.
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for the tool, making the design of a suitable verif cation environment non-trivial, as stated.
Beyond these aspects, there are questions regarding the use of heuristic techniques, and of implemen-

tation. The reach of purely symbolic techniques will not cover all cases of interest, so more approximate
techniques will need to be incorporated into the methodology. And when modelling has reached a suf-
f ciently low level, code generation for appropriate parts of the system becomes relevant. Ideally, these
aspects would be controlled by suitably incisive invariants, but it is to be noted that reasoning about
approximate techniques is usually as diff cult as the issues that cause their use in the f rst place, so this
ideal may not be completely attainable.

Putting aside these questions of Hybrid Event-B internal strategy, the picture of system behaviour
that it offers is quite similar to that offered by many of the systems mentioned at the beginning of this
section. The majority of the works mentioned take an automata-theoretic view of hybrid systems, having
named states for the discrete control. Within each of these, continuous behaviour evolves until the next
preemption point, which is triggered by the truth of the guard condition of the next discrete state. We
achieve a similar effect via the mode and pliant events of Hybrid Event-B, described below.

This relatively small degree of difference between formulations is in fact reassuring since, in Hybrid
Event-B and in other approaches, among many things, we need to describe the physical world, and the
physical world is as it is. Obviously, to be effective, any description of it must conform to the single
existing reality. The combination of isolated discontinuous change of state, together with smoothly
continuous behaviour has proved to be a useful framework in a number of formulations at the level of
abstraction needed for applications.

3. Discrete Event-B

In this section we summarise discrete Event-B [3]. Event-B is characterised by proof obligations
(POs) that def ne what consistency means for constructs, and for relationships between constructs. In
keeping with a style we will follow throughout the paper, we do not quote the POs formally as we
discuss various issues in the body of the paper, instead we accumulate all the POs, in Section 9, using a
consistent notation, for better reference. The exception to this is when a PO of discrete Event-B needs to
be modif ed in some way for the continuous extension. Then we quote the original form here.

3.1. Event-B Machines
Event-B consists of MACHINEs, supported by CONTEXTs. Contexts def ne the static data envi-

ronment within which the dynamic behaviour of the machines takes place. Fig. 1 contains a context and
a machine that depends on it. Contexts typically def ne sets and constants, the latter being any static
mathematical objects needed by the machines that use them. Relationships between the objects intro-
duced can be asserted using AXIOMS. Further properties that follow from those that are asserted may be
declared in THEOREMS, which must be provable from the axioms. Furthermore, a context may extend
another via an EXTENDS clause, making the entities def ned there available.

An event has a STATUS f eld which indicates the role it plays in the development as a whole. An
event may have parameters, declared by ANY. In general these include inputs, local parameters and
outputs, indicated using notations i?, l,o! respectively. While inputs and outputs are connected with
the environment in the expected way, local parameters serve to resolve inherent nondeterminism in the
event’s actions. The WHERE clause gives the guards, which specify any constraints that the parameters
have to satisfy, and any other conditions that have to hold before the event is enabled. If there are no
parameters, then ANY . . . WHERE is abbreviated to WHEN. The THEN clause gives the actions which
specify the required updates to the values of the VARIABLES (i.e. specify the required change of state).
Actions that update a set of variables var may take the most general form var :| BApred(var,var′), where
BApred(var,var′) is a before-after predicate depending on the before-values var and the after-values
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MACHINE Nodes
SEES NCtx
VARIABLES nod
INVARIANTS
nod ∈ P(NSet)

EVENTS
INITIALISATION
STATUS ordinary
BEGIN
nod := ∅

END
. . . . . . . . . . . .

. . . . . . . . . . . .
AddNode
STATUS ordinary
ANY n
WHERE n ∈ NSet−nod
THEN nod := nod∪{n}
END

END

CONTEXT NCtx
SETS NSet
CONSTANTS aa,bb,cc,dd
AXIOMS NSet = {aa,bb,cc,dd}
END

Figure 1: A simple Event-B machine, together with its context.

var′, and specifying that var is to be updated to any after-values such that BApred is satisf ed. There are
simpler forms, e.g. var := E(var), to handle straightforward assignment to the value of an expression.
Among the events there is the INITIALISATION event, whose guard is posited to be true (indicated by
the guardless BEGIN ... END syntax).

The behaviour of a machine must respect the INVARIANTS. This has a number of consequences.
Firstly, the values established by the initialisation must satisfy the invariants. This is expressed formally
in POs (11) and (12).

Secondly, each variable update must also preserve the invariants. Variable updates are implemented
by event executions. If an event is to be executed, it must be enabled and be feasible. An event is enabled
in the current state, if the event’s guards are true in this state for an appropriate choice of values for
the parameters. An event is said to be feasible iff, whenever in a putative before-state the invariants are
true and the event’s guards are also true, then there is an after-state for which the event’s before-after-
predicate becomes true (when evaluated with the mentioned before-state). This is expressed formally in
PO (13). Furthermore, a feasible event is required to preserve the invariants. So if the invariants and the
event’s guards are true, and a chosen after-state makes the before-after-predicate true, then the after-state
must also make the invariants true. This is expressed formally in PO (15).

For non-terminating systems, after every event, some event must become enabled. Since this is one
point at which the conditions for discrete Event-B differ from those for our continuous extension, we
quote the discrete Event-B PO here:

I(u)⇒ (grdMoEv1(u, l) ∨ grdMoEv2(u, l) ∨ . . . ∨ grdMoEvN(u, l)) (1)

In (1), MoEv1 . . .MoEvN are the requisite events, with l as the parameter for each of them, and I(u) is
the invariant, where u is the state variable. For simplicity, we assumed that all parameter types were the
same. It is possible to be more specif c by separately quantifying each parameter occurrence.

3.2. Event-B Ref nement
In Event-B, development progresses towards implementation via ref nement. We give a small exam-

ple of Event-B ref nement in Fig. 2. It enhances the node set example above with a dynamically added
set of node pairs, yielding a dynamically generated directed graph structure. The requirement of having
directed edges between graph nodes is handled by adding a new variables, invariants and a new event
AddEdge. Since AddEdge does not ref ne any existing event, its occurrences at runtime are considered
to ref ne a ‘notional abstract skip’ event that is not present in the abstract model. Also, to prevent new
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MACHINE Nodes

SEES NCtx
VARIABLES nod
INVARIANTS
nod ∈ P(NSet)

EVENTS
INITIALISATION
STATUS ordinary

BEGIN
nod := ∅

END
AddNode
STATUS ordinary

ANY n
WHERE n ∈ NSet−nod
THEN nod := nod∪{n}
END

END

MACHINE Edges
REFINES Nodes
SEES NCtx
VARIABLES nod,edg
INVARIANTS
nod ∈ P(NSet)
edg ∈ P(NSet×NSet)
edg ⊆ nod×nod

EVENTS
INITIALISATION
STATUS ordinary
REFINES INITIALISATION
BEGIN
nod := ∅ || edg := ∅

END
AddNode
STATUS ordinary
REFINES AddNode
ANY n
WHERE n ∈ NSet−nod
THEN nod := nod∪{n}
END

AddEdge
STATUS convergent
ANY n,m
WHERE {n,m} ⊆ nod

n 7→ m ∈ NSet×NSet−edg
THEN edg := edg∪{n 7→ m}
END

VARIANT card(NSet×NSet−edg)
END

Figure 2: A ref nement of the earlier Event-B machine.

events from taking permanent control at runtime, they must be ‘convergent’, i.e. they must decrease the
N-valued VARIANT, ensuring relative deadlock freedom.

Ensuring the proper operation of this process is a collection of POs. These cover initialisation (20)
and (21), feasibility and ref nement of existing events (22)-(27), and ‘ref nement of skip’ behaviour and
convergence of ‘new’ events (28)-(29). Finally, a machine can also contain THEOREMS, which must be
provable from the facts available to the machine.

4. Continuous Behaviours

In this section, we discuss, at an appropriately informal level, a number of issues that inf uence the
way that our extension of discrete Event-B is designed.

4.0. Discrete Event-B behaviours. The states of an Event-B machine are given by valuations of the
tuple of the machine’s variables, i.e. functions from the tuple of variables that yield a tuple of values.
Runs of Event-B machines are given as sequences of such valuations, each valuation being generated
from its predecessor by some event. Of course, this does not correspond to the real world, where time is
not discrete. So when runs of an Event-B machine are intended to ref ect real world behaviour, each state
is deemed to persist for an appropriate interval of time, and is then superseded by its successor. So the
time dependence of the state is piecewise constant. In this paper, we extend this picture to also include
continuously varying behaviour, taking into account several points as follows.
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of the dynamics. Moreover, in idealised modelling situations, Zeno behaviour may be tolerable, even if
it is always unphysical in reality. Still, it would typically pose problems for mechanical calculation.7

4.6. Transitions. With the distinction between mode and pliant variables, there is a distinction between
mode transitions and pliant transitions. Mode transitions are just conventional Event-B transitions,
recording a discrete transition from before-values to after-values of some subset of (mode and pliant)
variables, specif ed syntactically by an Event-B mode event.

Pliant transitions record piecewise continuous behaviour of some pliant variables during an interval
[ti . . . ti+1). Since any such interval is only determined at runtime, values ti and ti+1 are unknown statically.
So we introduce two generic constants, tL and tR, to refer to the start and end of any such interval, both
in the concrete syntax of the system def nition, and in our discourse about its behaviour.

Pliant transitions are syntactically specif ed by pliant events. A pliant event can specify the initial
conditions that have to hold for the pliant variables. It can also specify other guard conditions needed for
the enabledness of the pliant transition (typically concerning mode variables). It also specif es the DE to
be obeyed (subject to the conditions in 4.4).

As an alternative to writing a differential equation, if the required continuous behaviour is directly
known, then it may be directly assigned to the pliant variable instead of writing a corresponding DE.
Obviously this is very convenient, but to avert the pathologies inherent in mere continuity,8 we insist that
such continuous behaviours should also be piecewise absolutely continuous solutions to well posed initial
value problems. One consequence of allowing direct assignments, is the possibility of discontinuities in
the pliant variable behaviour being def ned during [tL . . .tR), as noted in 4.4.

Additionally, any further constraints that need to hold while the pliant transition runs can be specif ed
within the pliant event. Parameters may be introduced in a pliant event. Their syntactic scope is the whole
of the pliant event, and at runtime, they refer to functions of time over the interior of the relevant time
interval, (tL . . .tR)). Inputs and local parameters should have the same properties as pliant variables. So
they should be piecewise absolutely continuous solutions to well posed initial value problems.

4.7. Syntactic aspects of time. The semantic aspects of time must be connected with the syntax of
events. Because of its special properties, i.e. as a read-only variable, the time variable must be declared
as such. It is necessary to declare the initial value of T , most conveniently done in the INITIALISATION.
We also admit clocks. A clock, by def nition, increases at the same rate as time during every pliant event
(i.e. its time derivative is 1), so this property need not be mentioned in the syntax. Clocks can be updated
in mode events. More exotic clocks can be implemented using normal pliant variables.

4.8. Interpretation of mode events. In discrete Event-B, an event describes how two successive valu-
ations in a run are related. In Hybrid Event-B, if the mode transition is regarded as taking place at time
tq, then the before-values are normally interpreted as the left limits of the valuations at tq, and the after-
values are the right limits (which equal their values at tq itself). Note that the parameters are regarded as
being def ned only at the time tq itself, so do not possess limits.

The exception to ‘normally’ occurs when a pliant variable undergoes a discontinuity (at time tq say)
arising from a direct assignment (as in 4.4 and 4.6), and the after-value of the discontinuity enables the
mode event (whether the before-value does so or not). Then, to aid f uency in modelling, particularly of
edge-triggered phenomena, the discontinuity after-value plays the role of mode event before-value, the

7Our approach contrasts with many other approaches to the Zeno problem, which demand that any f nite time interval
contains only a f nite number of transitions, or that the sequence of discrete transition times contains no accumulation points.
But this still permits the sequence of times specif ed by ti+1 − ti = 1/i, which, while satisfying the mentioned restrictions,
nevertheless allows the ti to get arbitrarily (and thus unphysically) close together.

8See standard texts on mathematical analysis, e.g. [42, 31, 27].
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in COMPLY clauses: skip and INVARIANTS. The former specif es constant behaviour, while the latter
allows arbitrary piecewise absolutely continuous behaviour, provided the machine’s invariants are re-
spected. Both constructs can be used to specify behaviour for pliant variables not otherwise constrained
in the event. To further simplify model description, when at least one of the COMPLY or SOLVE clauses
contains non-trivial content, COMPLY INVARIANTS is understood to apply to any pliant variables whose
behaviour is not specif ed in these clauses. So COMPLY INVARIANTS only needs to be written when
both the COMPLY and SOLVE clauses have no (other) content. However, we insist that COMPLY skip
must always be written when needed, since it def nes specif c behaviour.

In total then, the set of permitted behaviours for the pliant variables def ned by a pliant event, consists
of the intersection of those permitted by the COMPLY clause and those permitted by the SOLVE clause.

As already mentioned, in the absence of a SOLVE clause, the COMPLY clause can serve as an
implicit specif cation of the required behaviour. This makes it very useful for specifying behaviours that
have to obey global (though potentially time-dependent) constraints, without committing to any specif c
dynamics. We call such specif cations pliant envelopes.13

Overall machine consistency requires that we check various properties of a Hybrid Event-B machine.
Fortunately, a good portion of these are taken care of already in the purely discrete Event-B framework,
and we have commented on them in Section 3. What remains are POs relevant exclusively to pliant
events, and to the interaction between mode and pliant events.

Turning to the pliant event POs, pliant events f rstly have to be feasible. This means that at a presumed
starting time tL, given that the invariants hold and the iv and grd clauses of the pliant event also hold,
then for some duration of the pliant event def ned by tR > tL, for all times t ∈ (tL . . .tR), values for
the variables exist, that satisfy the specif cation of the pliant event, i.e. that the COMPLY and SOLVE
clauses are satisf ed. The formal PO is (14).

Pliant events have to preserve the invariants. Thus, if at tL we have the invariants, and in the interval
to tR a behaviour of the system satisf es the COMPLY and SOLVE clauses, then that behaviour must
also satisfy the invariants throughout this interval. The formal PO is (16).

Note that a subtlety arises concerning the failure of invariants and BDA predicates. If an invariant
ever fails during the construction of a system trace, then that trace is abandoned; failure of invariants
is not permitted. However, if a BDA predicate fails during the construction of a system trace, it simply
indicates that the pliant transition in question has become infeasible. Such infeasibility just indicates
f nite termination if no mode event became enabled during the course of the transition, c.f. (3).

Machine well-formedness is concerned with the expected alternation between mode and pliant tran-
sitions in a run. In going from a mode transition to a pliant transition, we demand that in any mode
transition after-state, no mode event guard is true for any choice of parameter, but that some pliant event
guard is true. The formal PO is (17). Conversely, in going from a pliant transition to a mode transition,
we demand that no mode event is ever enabled during the transition, but that either the values of the
variables at the endpoint tR, do enable some mode event for some parameter, or the left limits at tR
enable a mode event in case values at tR do not exist.14

We still have to be careful though. A f nal pliant transition runs forever or till it becomes infeasible.
If we require such a f nal pliant transition in the system, for the relevant proof obligation to be effective
(i.e. to not fail on f nal pliant transitions), we need to know statically which pliant events are supposed

13In [38] and in other works by Platzer, such specif cations are called differential invariants. In the context of Event-B, where
the word ‘invariant’ has strong connotations with literally time independent properties, we prefer an alternative terminology, to
avoid potential misunderstanding.

14Observe that this def nition handles the pliant/mode issue of Sections 4.8 and 4.9. If a pliant behaviour is continuous at tR
then both options are equivalent. If there is a discontinuity at tR, then presuming all discontinuities are right continuous (see
Section 4.0), the correct value is used for the mode event guard. Otherwise, the left limit must be used.
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to be f nal and which are not. For this purpose we introduce a new status tag for f nal pliant events,
‘STATUS: pliant f nal’. This declares the tagged event as a f nal one and prevents the relevant check
being demanded of it. See (18) for the formal PO.15

6. Further Technical Considerations

In this section we discuss some additional technical issues regarding Hybrid Event-B machines.

6.12. Mode event guard closure. Suppose expression x< 3 occurs in the guard of a mode event MoEv,
where x is a pliant variable. Suppose x behaves as x(t) = 4− t during a pliant transition, where t starts at 0.
Eventually,MoEvwill become enabled, but since there is no ‘earliest time immediately after t= 1’,MoEv
cannot execute at an identif able time unless we replace x< 3 in the guard by x≤ 3, which becomes true
exactly at t = 1 in our example. However, the negation of x ≤ 3 is x > 3, which resurrects the problem.
Our solution is to allow expressions like x< 3 in mode event guards, but to interpret them at runtime via
the topological closure of the regions they def ne when constructing system traces. This interpretation
ensures that mode transitions occur at specif c times, but also allows mode events with non-overlapping
guards (e.g. guards such as x≤ 3 together with x> 3, or more symmetrically, x< 3 together with x> 3)
to be easily def ned for more f uent modelling and reasoning purposes. In the semantics of Section 7,
we restrict to pliant variables whose values are in (subsets of) R. For such variables, we need merely to
replace strict inequalities by nonstrict ones in determining guard closure.

We accept that adding such boundary values into mode event guards may give rise to pathological
counterexamples in which the trajectory does not satisfy event def nitions, or invariants, as written. How-
ever, we claim that these will have little impact in practice, since for the kind of engineering applications
we envisage, the dynamics has to be locally stable in order to be useful. So, a small disturbance to
trajectory data must have a relatively small effect on the trajectory, at least within some time range (the
acceptable limits on such disturbances being highly application dependent). The chief thing is that rea-
soning about the system model allows the maintenance of the invariants to be proved, since these express
what is important about the system. Provided any pathological behaviour permitted by the operational
semantics arises from a disturbance set of measure zero, we can ignore it for practical purposes.

6.13. Event parameter availability. In early versions of discrete Event-B, any parameters needed by an
event were simply assumed available, a natural view when parameters merely resolved nondeterminism.
However, in more recent versions incorporating code generation, parameters can also be input parameters
(decorated with ?), or output parameters (decorated with !); local parameters are written undecorated, as
before. Considering that in discrete Event-B all connections with real time are neglected, the issue of
when any parameter might become available does not really arise.

However, in Hybrid Event-B the issue needs more thought, because of the presence of real time.
There are two design decisions to be made, one for mode transitions and the other for pliant transitions.

For mode transitions, we stipulate that input parameters become available at some time which is
strictly greater than the time at which the most recent preceding mode transition occurred. At that
moment, nondeterminism is resolved by choice of local parameters, and output parameters are calculated
using the event’s BApred. The strict inequality prevents runs contravening the condition in (2), that
forbids a mode transition from immediately enabling another mode transition, and avoids the need to
complicate mode event guards to achieve this effect. This mechanism also gives a convenient way of
modelling stimuli from the environment that arise spontaneously (from the model’s viewpoint).

15Restricting to statically knowable f nal pliant events theoretically constricts computational expressivity, but does so in way
that can only be regarded as benef cial from an engineering standpoint.
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In Hybrid Event-B ref nement we assume that time f ows at the same rate in both the abstract and
concrete systems. Consequently, the times at which abstract states and concrete states should be com-
pared, in relations like the joint invariant, should be the same. Thus, relations like the joint invariant, will
be required to hold at all individual times. On this basis, the coincidence of the times at which abstract
and corresponding concrete mode events are deemed to occur becomes derivable in Hybrid Event-B.

Thus, suppose a mode event MoEvA becomes enabled in A. Then, by relative deadlock freedom for
mode events, some concrete mode event MoEvC becomes enabled in C. Since the times at which the
abstract and concrete states being compared in the relative deadlock freedom PO are the same, the times
at which MoEvC and MoEvA become enabled are the same. Conversely, suppose a mode event MoEvC
becomes enabled in C. Then MoEvC is either an ‘old’ event or a ‘new’ event. If it is an old event, then
using guard strengthening for mode events, some abstract eventMoEvA simultaneously becomes enabled
in A. If it is a new event, a ‘notional skip’ is enabled. However, the concept of ‘notional skip’ acquires,
in Hybrid Event-B, additional connotations, not present in discrete Event-B.

In discrete Event-B, it makes no difference whether we view a ‘notional skip’ as actually running or
not. The point is that when an event executes (in general, changing the machine state), a choice point is
generated for the scheduler to select the next enabled event to run. However, if the event that ran was a
skip, the choices available remain the same as before, since the state has not changed. So running or not
running a skip event has no inf uence on the scheduler.

In Hybrid Event-B though, in between the mode transitions, pliant transitions run. Now, it makes a
difference whether we view a notional skip as actually executing or not. If it executes, then fresh choices
may become available to the scheduler, since the pliant transition preceding the skip will have changed
the state. This would be an unwelcome complication. Therefore, we determine that in Hybrid Event-B,
notional skips do not introduce scheduling choice points.

We illustrate the above in a schematic example. Fig.4 shows a fragment of the ref nement of an
abstract run. Time goes left to right. The narrowly spaced vertical bars represent mode events, taking
place instantaneously. The horizontal lines represent the pliant events that interleave them, having non-
zero durations. At the abstract level we have the events MoEvA1, PLiEvA1, MoEvA2, PliEvA2, MoEvA3.
The mode events are ref ned by concrete mode events MoEvC1, MoEvC2, MoEvC3. Between MoEvC1
andMoEvC2 there is pliant event PLiEvC1 which ref nes PLiEvA1. By the argument above,MoEvA1 and
MoEvC1 are simultaneous, as are MoEvA2 and MoEvC2, and noting that mode transitions both enable
and preempt pliant transitions, we conclude that the durations of PLiEvC1 and PLiEvA1 are the same.

In between MoEvC2 and MoEvC3, there are some ‘new’ concrete mode events, MoEvC2,1 and
MoEvC2,2, and interleaving these, are shorter pliant events PliEvC2,1, PliEvC2,2 and PliEvC2,3. The
sequence PliEvC2,1, MoEvC2,1, PliEvC2,2, MoEvC2,2, PliEvC2,3 ref nes PliEvA2 — if we take due ac-
count of the ‘notional skips’ that are needed to abstract MoEvC2,1 and MoEvC2,2, indicated by the heav-
ier strokes through the PliEvA2 timeline. Overall, the duration of the sequence PliEvC2,1, MoEvC2,1,
PliEvC2,2, MoEvC2,2, PliEvC2,3, equals that of PliEvA2 because MoEvA2 and MoEvA3 f x the endpoints
via their ref nements MoEvC2 and MoEvC3. In general, the time period during which an abstract pliant
transition runs must consist of one or more concrete pliant event durations, as Fig. 4 shows.

Hybrid Event-B needs proof obligations to guarantee the behaviour just described, while disturbing
discrete Event-B as little as possible. It turns out that we can deal with mode events essentially as
in discrete Event-B, for which the POs are standard. The only remaining point concerns variants and
convergence, to which we return below.

Regarding pliant transitions, an abstract pliant transition starts at the same moment as a ref ning con-
crete pliant transition. This requires pliant guard strengthening, which works like mode guard strength-
ening. Thus, if the abstract and concrete invariants hold, and the concrete pliant INIT and WHERE
guards hold, then so too must the abstract pliant INIT and WHERE guards. The formal PO is (31).

After guard strengthening comes invariant preservation. Since we demand that invariants are true at
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MoEvA1 MoEvA2 MoEvA3

MoEvC1 MoEvC2 MoEvC3

MoEvC2.1 MoEvC2.2

PliEvA1

PliEvA2

PliEvC1

PliEvC2.1

PliEvC2.2

PliEvC2.3

Figure 4: Typical phenomena observed during the ref nement of some abstract transitions. The progress of time is correlated in
the abstract and concrete systems, implying that the endpoints of abstract and concrete coincide.

all times, if the invariants and concrete guards are all true initially, then for the common duration of both
pliant events, the concrete BDApred and the predicate SOLPliEvC that def nes the concrete solution19 im-
ply the existence of abstract states and parameters that cause the abstract BDApred and solution predicate
SOLPliEvA to hold. See (32) for the formal details. This covers cases in which the concrete pliant event
ref nes an abstract one.

The remaining case is when a concrete pliant transition is an instance of a ‘new’ concrete pliant event,
and occurs after a ‘new’ concrete mode event (the latter ref ning a ‘notional abstract skip’), for example
PliEvC2.2 in Fig. 4. The point here is that the new mode transition (and its following pliant transition)
run while some abstract pliant transition is also running and continually changing the abstract state, a
situation absent from discrete Event-B due to piecewise constant behaviour.

The new concrete mode event is unproblematic. Its guard strengthens the true guard of an abstract
notional skip, and the discrete Event-B invariant preservation PO for new mode events works as required,
since all the invariants are true by assumption in its before-state, hence easy to re-verify in the after-state.

We turn to the new concrete pliant events. These are trickier due to the continuously changing
abstract state in a period preceding the new concrete pliant transition. This aspect makes a comparison
between the new concrete pliant event’s guards (at the moment it starts) and the guards of the abstract
event it ref nes (which started earlier), much more questionable.

It was for this reason we split pliant events’ guards into two: the INIT guard, involving pliant vari-
ables and combinations of pliant and mode variables, and the WHERE guard, permitted to involve mode
variables alone. The mode variables in the WHERE guard of the abstract pliant event being ref ned by
a new concrete pliant event, have piecewise constant trajectories which do not change throughout any
transition def ned by the abstract pliant event, no matter how many new concrete pliant events contribute
to the ref nement. Therefore, it is reasonable to construct a guard strengthening PO for new concrete
pliant events that refers just to the WHERE guard variables. Syntactically, we indicate the alternative
guard strengthening tactic via a new event status ‘pliant convergent’.

Invariant preservation is the same for old concrete pliant events and for new ones. In both cases, the
concrete event has to name the abstract event it ref nes, since both the abstract and concrete behaviours

19SOLPliEvC is the formal name of the transition relation Q discussed in Section 4.9.

20



MACHINE AMch
. . .

PLIANT u
VARIABLES x
INVARIANTS I(u,x)
. . .
EVENTS
INITIALISATION

. . .
MoEvA1
STATUS ordinary
. . .

PliEvA1
STATUS pliant
. . .

MoEvA2
STATUS ordinary
. . .

PliEvA2
STATUS pliant
. . .

MoEvA3
STATUS ordinary
. . .

END

MACHINE AMchR
REFINES AMch
. . .
PLIANT w
VARIABLES y
INVARIANTS K(u,x,w,y)
. . .
EVENTS
INITIALISATION

. . .
MoEvC1
REFINES MoEvA1
STATUS ordinary
. . .

PliEvC1
REFINES PliEvA1
STATUS pliant
. . .

MoEvC2
REFINES MoEvA2
STATUS ordinary
. . .

PliEvC2.1
REFINES PliEvA2
STATUS pliant
. . .

MoEvC2.1
STATUS convergent
. . .

PliEvC2.2
REFINES PliEvA2
STATUS pliant convergent
. . .

MoEvC2.2
STATUS convergent
. . .

PliEvC2.3
REFINES PliEvA2
STATUS pliant convergent
. . .

MoEvC3
REFINES MoEvA3
STATUS ordinary
. . .

END

Figure 5: Syntax for expressing a machine and its ref nement, a fragment of whose behaviour is shown in Fig. 4.

are non-trivial. Moreover the abstract guard, which causes the problems just addressed, does not f gure
in the PO, the formal expression for which is (32).

Next is relative deadlock freedom. If, in a given abstract state, some abstract event is enabled, then
viewed through the abstract and joint invariants, a corresponding concrete state should enable some
concrete event. The requirements are the same for mode and pliant events, expressed in the POs (35) and
(36), two individual POs to maintain the separation between mode and pliant aspects.

The f nal topic in this section is convergence and variants. Suppose that discrete convergence holds
for new mode events via a variant V def ned on a well-founded set. This gives us relative non-Zenoness;
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In (16), for a nonf nal pliant event, TRM(tR) signif es that tR is (at least as big as) the preemption time
of a pliant transition specif ed by the event and started at tL (i.e. tR records the termination time of the
transition). The minimum value of tR is obtainable via the calculation needed for well-formedness in the
PO (18). For a f nal pliant event, TRM(tR) signif es that (16) must be true for unboundedly large tR.
9.5. Machine Well Formedness POs

Well formedness statically checks that mode and pliant steps alternate during a system run. If u is an
after-state of a transition of mode event MoEvA, then it: disables mode events that do not have inputs20
(by ensuring that the disjunction of those mode events’ guards evaluates to false), and enables some
pliant event (by ensuring that the disjunction of pliant event initial values and guards evaluates to true).

∃u0, i0?, l0,o0!• I(u0) ∧ grdMoEvA(u0, i0?, l0) ∧ BApredMoEvA(u0, i0?, l0,o0!,u) ∧ I(u)
⇒¬ [ ∃ l•grdMoEvA1(u, l) ∨ grdMoEvA2(u, l) . . .grdMoEvAN(u, l) ] ∧

[ (ivPliEvA1(u) ∧ grdPliEvA1(u)) ∨ (ivPliEvA2(u) ∧ grdPliEvA2(u)) ∨ . . . ∨

(ivPliEvAM(u) ∧ grdPliEvAM(u)) ] (17)

In (17), we have simplif ed matters by assuming that all mode event local parameters have the same type.
Dually, if PliEvA is a nonf nal pliant event, then the end of the state trajectory in any of its pliant

transitions enables some mode event. Since pliant transitions do not, typically, become infeasible when
preempted, (18) does not demand that pliant events are disabled. We again simplify (18) a little by
assuming that all the mode event inputs and local parameters respectively have the same types.

I(u(tL)) ∧ ivPliEvA(u(tL)) ∧ grdPliEvA(u(tL)) ∧ (∃tR > tL • (∀tL ≤ t < tR,u(t), i?(t), l(t),o!(t) •
BDApredPliEvA(u(t), i?(t), l(t),o!(t), t) ∧ SOLPliEvA(u(t), i?(t), l(t),o!(t), t) ∧ MAXIMAL(tR) ∧

¬ [ ∃ i?, l•grdMoEvA1(u(t), i?, l) ∨ grdMoEvA2(u(t), i?, l) ∨ . . . ∨ grdMoEvAN(u(t), i?, l) ]))

⇒ WELLDEF(tR) ∧ [ ∃ i?, l •grdMoEvA1(
(((−−−→
u(tR)

)))
, i?, l) ∨ grdMoEvA2(

(((−−−→
u(tR)

)))
, i?, l) ∨ . . . ∨

grdMoEvAN(
(((−−−→
u(tR)

)))
, i?, l) ] (18)

In (18), the term MAXIMAL(tR) abbreviates the statement that there is no greater value of tR such that
the properties stated in the assumptions hold. Likewise, the term WELLDEF(tR) insists that all variables
have well def ned values at tR, whether through, continuity, discontinuity or left-limit at tR. The PO (18)
covers two cases. In both cases the assumptions state that there is no time strictly less than tR such that
the pliant solution exists and a mode event is enabled. Regarding the conclusions, in the f rst case, the
solution exists at (and necessarily beyond) tR, and is either continuous there, or suffers a discontinuity
precisely at tR — in which case the overarrows in the terms

−−−→
u(tR) are disregarded (indicated by the bold

parentheses surrounding the overarrows), and the actual value u(tR) is used to enable some mode event.
In the second case the solution becomes infeasible at tR, and the left limit is needed. As noted above,
the calculation needed for tR in (18) yields the duration of any pliant transition.
9.6. The Zeno Property

The discussion in Section 4 noted the desirability of non-Zenoness. In fact we already addressed this
in PO (14), since proving it with the Zeno terms for all pliant events gives global non-Zenoness, as the
number of pliant events is f nite.

20The semantics ensures mode event inputs are not available at the same time as previously scheduled mode transitions.
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9.12. Ref nement Mode Event Consistency POs
Next are the concrete event POs. Let the concrete mode event that ref nes an abstract mode event

MoEvA is called MoEvC. Let MoEvC have state w, input, local and output parameters j?,k,p!, guard
grdMoEvC(w, j?,k), and before-after predicate BApredMoEvC(w, j?,k,p!,w′). Then, given the concrete in-
variant K(u,w), event feasibility is:

∃u•K(u,w) ∧ grdMoEvC(w, j?,k)⇒ (∃w′,p!•BApredMoEvC(w, j?,k,p!,w′)) (22)

Two POs must hold if MoEvC ref nes MoEvA. The f rst, guard strengthening, states that when the
invariants hold, the concrete guard implies the abstract one:

I(u) ∧ K(u,w) ∧ grdMoEvC(w, j?,k)
⇒ (∃ i?, l•grdMoEvA(u, i?, l)) (23)

The second, invariant preservation, also referred to as the correctness PO, reads:

I(u) ∧ K(u,w) ∧ grdMoEvC(w, j?,k) ∧ BApredMoEvC(w, j?,k,p!,w′)
⇒ (∃ i?, l,o!,u′ •BApredMoEvA(u, i?, l,o!,u′) ∧ K(u′,w′)) (24)

While the guard strengthening and correctness POs, (23) and (24) express what needs to be true for
MoEvC to ref neMoEvA, they do not indicate how particular abstract i?, l,o!,u′ are to be found for given
concrete j?,k,p!,w′. This is remedied by providing a witness relation W(u, i?, l,o!,u′,w, j?,k,p!,w′) that
can be used to indicate appropriate values. The witness itself has to be feasible:

I(u) ∧ K(u,w) ∧ grdMoEvC(w, j?,k) ∧ BApredMoEvC(w, j?,k,p!,w′)
⇒ (∃ i?, l,o!,u′ •W(u, i?, l,o!,u′ ,w, j?,k,p!,w′)) (25)

Given a feasible witness which is appropriate for the problem, the guard strengthening PO changes to:

I(u) ∧ K(u,w) ∧ grdMoEvC(w, j?,k) ∧W(u, i?, l,o!,u′ ,w, j?,k,p!,w′)
⇒ grdMoEvA(u, i?, l) (26)

while the correctness PO changes to:

I(u) ∧ K(u,w) ∧ grdMoEvC(w, j?,k) ∧ BApredMoEvC(w, j?,k,p!,w′) ∧
W(u, i?, l,o!,u′ ,w, j?,k,p!,w′)
⇒ BApredMoEvA(u, i?, l,o!,u′) ∧ K(u′,w′) (27)

where in (26) and (27), there are no more existential quantif ers to f nd values for.
If machine C has ‘new’ events that ref ne notional abstract skips, then the preceding simplif es. The

abstract state does not change, so there is no abstract input either. This obviates the need for existential
quantif cation, or witnesses. The result is:

I(u) ∧ K(u,w) ∧ grdNewEvC(w, j?,k) ∧ BApredNewEvC(w, j?,k,p!,w′)⇒ K(u,w′) (28)

New events are normally prevented from ‘taking control of the run forever’, which is achieved by de-
manding that each execution of a new event decreases a variant V . We can retain this criterion in Hybrid
Event-B, and the PO reads:

BApredNewEvC(w, j?,k,p!,w′)⇒ V(w′) < V(w) (29)

A possibility in Hybrid Event-B is the fact that it might be harder to restrict the type of the variant to an
‘obviously well founded’ set. But in engineering applications this can usually be overcome with a little
ingenuity.
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With the help of the witness, the PO (32) becomes:

I(u(tL)) ∧ K(u(tL),w(tL)) ∧ ivPliEvC(w(tL)) ∧ grdPliEvC(w(tL))⇒
(((∃tR > tL • TRM(tR) ∧ (∀tL < t < tR,w(t), j?(t),k(t),p!(t) •
BDApredPliEvC(w(t), j?(t),k(t),p!(t), t) ∧ SOLPliEvC(w(t), j?(t),k(t),p!(t), t) ∧
W(u(t), i?(t), l(t),o!(t),w(t), j?(t),k(t),p!(t)))
⇒ (∀tL < t < tR •

BDApredPliEvA(u(t), i?(t), l(t),o!(t), t) ∧ SOLPliEvA(u(t), i?(t), l(t),o!(t), t) ∧
K(u(t),w(t))))) (34)

9.14. Ref nement Relative Deadlock Freedom POs
Acting in tandem with feasibility, relative deadlock freedom guarantees that, despite guards being

individually strengthened during ref nement (see (24)), all together (i.e. taking new events into account)
the concrete system is enabled ‘at least as much’ as the abstract one.

For mode events, utilising the witness relation W(u, i?, l,o!,u′ ,w, j?,k,p!,w′) given earlier, and as-
suming at both levels that all events have the same parameter types, the PO reads:

I(u) ∧ K(u,w) ∧ (∃o!,p!,u′,w′ •W(u, i?, l,o!,u′ ,w, j?,k,p!,w′)) ∧
[ grdMoEvA1(u, i?, l) ∨ grdMoEvA2(u, i?, l) ∨ . . . ∨ grdMoEvAN(u, i?, l) ]

⇒ grdMoEvC1(w, j?,k) ∨ grdMoEvC2(w, j?,k) ∨ . . . ∨ grdMoEvCM(w, j?,k) (35)

We also demand relative deadlock freedom in the continuous sphere. Note that we don’t need a
witness here, since pliant events do not have parameters that can be sensed at the initial instant of a pliant
transition.

I(u) ∧ K(u(tL),w(tL)) ∧ [ (ivPliEvA1(u(tL)) ∧ grdPliEvA1(u(tL))) ∨
(ivPliEvA2(u(tL)) ∧ grdPliEvA2(u(tL)) ∨ . . . ∨ (ivPliEvAM(u(tL)) ∧ grdPliEvAM(u(tL)) ]

⇒ [ (ivPliEvC1(w(tL)) ∧ grdPliEvC1(w(tL))) ∨ (ivPliEvC2(w(tL)) ∧ grdPliEvC2(w(tL)) ∨ . . . ∨

(ivPliEvCN(w(tL)) ∧ grdPliEvCN(w(tL)) ] (36)

9.15. Correctness
The objective of having static POs is to enable us to conclude, statically, that runtime errors do not

occur. In this section we examine some correctness properties that follow from the POs above.

Theorem 9.1. Let M be a Hybrid Event-B machine. Suppose that no event (whether mode or pliant)
has an inconsistent specif cation for the update of any variable. Suppose that the POs listed earlier in
this section hold. Then the Hybrid Event-B machineM is correct according to Def nition 7.1.

Proof: It will be suff cient to go through the steps of the formal semantics in Section 7, and to conf rm that
the static properties assumed are suff cient to ensure that the ABORT or VOID cases are never encountered.

Regarding step [2], we assume that initialisation assigns values to all variables, consistent with the
invariants.

Next, the mode-to-pliant machine well-formedness PO (17) guarantees that no mode event without
inputs is enabled, passing step [3]; it also guarantees that there is an enabled pliant event governing the
subsequent behaviour, passing step [4]. The check in [4.1] is passed, by assumption.

Pliant event feasibility, (14), ensures that in step [5], some nonempty interval (t0 . . . tMAX) can be
found, leading to a choice of explicit solution for some maximal tMAX in [6]. Step [6.1] is unproblematic.
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MACHINE Bouncing
SEES BounceCtx
TIME t
PLIANT h,v
VARIABLES mode
INVARIANTS
mode ∈MODES
h ∈ R

h ∈ [0 . . .H]
v ∈R

EVENTS
INITIALISATION
STATUS ordinary
WHEN t = 0
THEN
mode := bouncing
h := h0
v := v0

END
Episode
STATUS pliant
WHEN mode= bouncing
SOLVE Dh= v

D v=−g
END

Bounce
STATUS ordinary
WHEN mode= bouncing ∧ h= 0 ∧

v< 0
THEN v := −cv
END

. . . . . . . . . . . .

. . . . . . . . . . . .
DeadBall
STATUS ordinary
WHEN mode = bouncing ∧ h= 0 ∧

v< 0 ∧ v2 ≤ Elow
THEN mode := dead
END

FINAL
STATUS pliant f nal
WHEN mode= dead
SOLVE h := 0

v := 0
END

END

CONTEXT BounceCtx
SETS MODES
CONSTANTS bouncing,dead

h0,v0,g,c,H,Elow
AXIOMS
MODES = {bouncing,dead}
h0 ∈ R ∧ h0 > 0
v0 ∈ R

g ∈ R ∧ g> 0
c ∈R ∧ c ∈ (0 . . .1)
H ∈ R ∧H > 0
Elow ∈ R ∧ Elow > 0

END

Figure 6: A Hybrid Event-B machine for the bouncing ball.

10. Case Studies

In this section we look at a number of relatively small case studies that illustrate the framework we
have described previously. Somewhat larger case studies can be found in [12, 11, 9, 10].

10.1. The Bouncing Ball
We treat a favourite example, the bouncing ball — a nice account can be found in [38]. A pointlike

ball of unit mass is subject to gravity g, and bounces vertically over some point on a horizontal surface,
starting at time t = 0. The ball’s height above the surface is h(t), initially set to h0 > 0 at t = 0, and its
vertical velocity is v(t) (positive values indicating upward movement), initially v0 at t= 0. Whenever the
ball hits the surface, the speed diminishes by a factor c< 1, and the kinetic energy by a factor c2. When
the ball’s energy is low enough, the bounce may simply absorb all the energy, leaving the ball stationary
on the horizontal surface.

To understand this ball’s behaviour, let us consider a single full bouncing episode, with the ball
leaving the surface with velocity ṽ. Such an episode reaches a height h̃ given by gh̃ = 1

2 ṽ
2, since this

expresses the conversion of pure kinetic energy at the surface to pure potential energy at the highest point.
Since the energy is diminished after the ball returns to the surface, the maximum height reached during
any individual full episode is an upper bound for any remaining dynamics of the ball. Therefore, if we
wish to impose an invariant such as h(t)≤H (where H is a constant), it is suff cient to check whether the
property is maintained through the f rst (partial) episode, and through the next (full) episode.

30



At time t = 0 the energy is gh0 + 1
2v

2
0. This becomes pure kinetic energy when the ball reaches the

ground, at which point it has a velocity −vmax given by:

vmax =

√
2
(
gh0 +

1
2
v20

)
(37)

If the ball happened to be moving upwards at t = 0, then it would reach a height hmax given by
ghmax = 1

2v
2
max, and this would be the maximum height it would ever reach. If the ball was moving

downwards at t = 0, then it would lose speed by the factor c upon bouncing, and, rebounding at a
velocity cvmax, would subsequently reach a maximum height hm̃ax given by ghm̃ax = 1

2(cvmax)
2. These

facts provide the basis for a case analysis that determines whether an invariant like h(t)≤H is respected
or not, depending on the initial values. (Of course the above account depended on our knowing about
energy and its conservation, allowing us to shortcircuit a more laborious solution of the system as might
be performed by an unsophisticated mechanised reasoner, which would simply integrate the equations
episode by episode, arriving eventually at the same conclusions.)

A Hybrid Event-B model for the system appears in Fig. 6. The context BounceCtx collects all the
easy-to-forget facts concerning the constants that play a role in the system, without which the observa-
tions made above would not be provable. The INITIALISATION synchronises real time to 0, and assigns
the other variables their initial values. The Episode pliant event describes a bouncing episode. It has no
constraints on the initial values of variables except that it checks that the mode is bouncing. Mode event
Bounce discontinuously f ips the velocity of the ball when it hits the horizontal surface, and when the
energy of the ball is small enough (v2 ≤ Elow), instead of bouncing, the ball has the option of resting on
the horizontal surface and enabling the FINAL pliant event that brings the dynamics to an end.

Without the mode event DeadBall, the system would exhibit Zeno behaviour — the system’s energy
is conserved except at bounces, and since each bounce depletes the energy by a multiplicative factor c2,
an inf nite number of these would be needed to consume all the energy. Since the duration of a bouncing
episode is proportional to the ‘lift-off energy’, successive episode durations would be similarly reduced,
leading to a Zeno point at a f nite point in time. Note that this illustrates well the fact that Zeno behaviour
is generally intimately connected with reachability.

With DeadBall, Zeno behaviour is not excluded — it could be though, by strengthening the guard of
Bounce to exclude bouncing at low energy.

The bouncing ball also illustrates the utility of allowing mode event guards to def ne non-closed
regions of the state space, even though such mode event guards are potentially reinterpreted as their
closure at runtime. In the event Bounce, the guard, mode = bouncing ∧ h = 0 ∧ v < 0 specif es a non-
closed region, its closure being mode = bouncing ∧ h = 0 ∧ v≤ 0. Statically, the after-state established
by Bounce in the case that v = 0 is the same as the before-state, so re-establishes the guard of Bounce,
and causes a failure of the PO (17). Dynamically though, we know that v = 0 cannot be reached after
any f nite number of events if v0 6= 0, so insisting on statically closed guards would lead to inconvenient
modelling metaphors.

10.2. A Simple Ref nement-Based Discretization Example
In this example, we examine a simple case of discretization. In the left part of Fig. 7, there is a simple

Hybrid Event-B machine ExUp. It has a single mode variable md and a single pliant variable x. As well
as time t, we have a clock variable clk, included to show the syntax. The mode variable md has two
possible values, stat and dyn. Time is def ned as the non-negative reals, and x has values in the closed
interval [0 . . .10].

Machine ExUp has four events: INITIALISATION, IncPli, Stop, FINAL. Upon initialisation, which
is synchronised with time 0, the clock is set to 1, the mode md becomes dyn, and x is set to 0. Upon
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Figure 8: The European Train Control System. A movement authority, def ned by its endpoint MA, start braking position SB,
and start talking position ST ; dividing the track into a far region, a re-negotiate region, and a correction region (together with
the transition diagram for the corresponding modes).

be envisaged as happening at some specif c time(s), because the real events that ref ne them, do have to
happen at specif c times.

Machine ExUp is ref ned to ExUpR. The main feature of this ref nement is the introduction of pliant
variable w, and joint invariant w = ⌊x⌋. In ExUpR, event IncD is now a real event, and machine ExUpR
evidently has shorter IncPli pliant events (of duration one time unit instead of ten), since IncD preempts
the ref ned IncPli frequently.

Event IncD ref nes the notional skip. Note that despite the discontinuity that the concrete IncD
specif es, it does nevertheless ref ne skip. To see this better, consider a small interval surrounding t = 5.
The behaviour of x is continuous through t= 5, consistent with a skip taking place at any chosen moment,
including t = 5. On the other hand, the behaviour of w jumps from 4 to 5 at t = 5. Just before t = 5, we
have x< 5, so ⌊x⌋ = w= 4, a fact that persists to the left limit:

−−−→
⌊x⌋(5) =

−−→
w(5) = 4. But as soon as t= 5,

then x = 5 holds, so ⌊x⌋(5) = w(5) = 5. These two facts conf rm that the behaviour of w ref nes skip at
t = 5.

Observe that this example illustrates a particularly benign instance of discretization. The previously
smooth (but non-trivial) behaviour of IncPli and trivial behaviour of (the notional) IncD, is replaced by
a trivial behaviour of IncPli and non-trivial behaviour of IncD. This is a typical ‘zero order hold’, in
which boundary values of pliant transitions corresponding to isolated observations and actuations, def ne
constant behaviour in the next interval.

10.3. The European Train Control System
In our last example we present a simple treatment of the European Train Control System (ETCS),

broadly based on the models in [38]. For ease of comparison, we use the same notations as [38] for
variables where possible (even though this strays beyond the usual lexical conventions of Event-B).

Unlike older train control systems which conf ned trains to a succession of statically def ned rail
track sections, with consequent latencies when crossing section boundaries, the rail track is organised
into dynamically controlled movement authorities. The key invariants are that distinct movement
authorities are always disjoint, that each movement authority contains (at most) one train, and that
each train is in some movement authority. If these are always maintained, then trains cannot collide.

Fig. 8 shows a movement authority. The movement authority is split into successive regions far, neg
and cor, the last of which terminates the movement authority at limit MA. Within far the train can travel
freely. When point ST (start talking) is reached, which is the boundary between far and neg, the train
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and this would obviously be taken care of in a more serious attempt at ECTS via Hybrid Event-B.
Thirdly, we also saw the consequences of the purely demonic policy of the B-Method approach, versus
the option of using angelic choice as utilised in controllability arguments. This forced us to change the
behaviour of SPEED HIGH, in order to get any guarantee that when the train needed to, then (aside from
emergencies), it could actually be relied on to slow down.

11. Conclusions

In this paper we recalled conventional Event-B before embarking on a design of an extension that
would cope with the demands of the continuous behaviours exhibited by today’s hybrid and cyber-
physical systems. We examined in some detail the often unstated assumptions behind the relationship
between discrete event based systems (such as discrete Event-B) and the real world, in order that the
extension that we eventually presented disturbed existing Event-B conventions and assumptions as little
as possible.24 As well as seeking to minimise the human risk that accompanies inadvertent change to
unspoken assumptions, seeking to stay as consistent as possible with the existing framework for discrete
Event-B enables us to undermine as little as possible the existing features of Event-B as implemented in
the Rodin tool, in which so much effort has been invested to date.

We then examined how these conventions and assumptions could be extended to encompass the
needs of Hybrid Event-B. The exercise focused on the semantic domain, to determine the universe of
mathematical objects in which the extended language would take its values. Given the nature of typical
engineering applications, in which discrete discontinuities in signals commonly occur as systems move
from mode to mode, the chosen universe was the world of piecewise absolutely continuous functions of
time, which allowed characterisation in various ways, DEs, assignments, and predicates with models in
(sets of) such functions. We also examined the implications of imposing a Zeno condition.

After that we presented Hybrid Event-B itself, giving the syntax and semantics for a Hybrid Event-B
machine. We then moved on to consider ref nement. In seeking to disturb existing Event-B as little
as possible, we kept continuous behaviour apart from the existing discrete event framework as far as
possible, and this goal proved achievable.

In Section 9 we gathered together the proof obligations that would give substance to the semantics
of this framework in the Event-B style, and we gave two simple correctness results. In the last section
we gave a collection of examples of Hybrid Event-B modelling. After considering the bouncing ball and
a simple discretization problem, we ended with a simple version of the European Train Control System.
This case study, deliberately patterned rather loosely after the models in [38], gave us an opportunity
to discuss how some of the darker corners of the semantics of Hybrid Event-B could be exercised by
imprudently designed Hybrid Event-B specif cations. Future work will extend the present account to
multiple Hybrid Event-B machines, and further, to include stochastic behaviour as f rst class citizen.
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