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Abstract

Faced with the increasing need for correctly designed hybrid and cyber-physical systems today, the
problem of including provision for continuously varying behaviour as well as the usual discrete changes
of state is considered in the context of Event-B. An extension of Event-B called Hybrid Event-B is
presented, that accommodates continuous behaviours (called pliant events) in between familiar discrete
transitions (called mode events in this context). The continuous state change can be specif ed by a combi-
nation of indirect specif cation via ordinary differential equations, or direct specif cation via assignment
of variables to values that depend on time, or indirect specif cation by demanding that behaviour obeys
a time dependent predicate. The syntactic elements of the extension are discussed, and the semantics is
described in terms of the properties of time dependent valuations of variables. Ref nement is examined
in detail, with reference to the notion of ref nement inherited from discrete Event-B. A full suite of proof
obligations is presented, covering all aspects of the new framework. A selection of examples and case
studies is presented. A particular challenge —bearing in mind the desirability of conforming to exist-
ing intuitions about discrete Event-B, and the impact on tool support (as embodied in tools for discrete
Event-B like Rodin)— is to design the whole framework so as to disturb as little as possible the existing
structures for handling discrete Event-B.

1. Introduction

Today, we see an ever-increasing interaction between digital devices and the physical world. Once, it
was enough to see this in terms of predominantly isolated systems, in which a single digital device inter-
acted with a f xed suite of physical equipment, and to talk, therefore, of embedded systems. Nowadays
though, this picture is proving more and more inadequate. It is more and more the case that families of
such systems are coupled together using communication networks, and can thus inf uence each others’
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working. These days then, the talk is of Cyber-Physical Systems [45, 51, 52, 54, 49, 13, 18, 44, 1, 37],
which is the name that has been adopted for these interacting families of embedded systems.

These new systems throw up novel challenges in terms of design technique, as it is increasingly
diff cult to ignore the continuous characteristics in their behaviours. Unfortunately, the usual kinds of
approaches to the modeling, specif cation and development of conventional discrete systems, offer lit-
tle help for developing the continuous aspects, simply because the usual semantic foundations of such
approaches make almost no contact with what is needed for the continuous world.

That is not to say that discrete techniques have never impinged on the design of systems that are con-
tinuous as regards their physical characteristics — far from it. However, the usual way that purely discrete
technologies interact with the continuous aspects is to tiptoe round them — predominantly because of the
semantic inadequacy just mentioned. Often, the inconvenient continuous aspects are permitted to occur
in only very simplif ed form, and then their consequences can typically be reduced to a small number of
algebraic facts, which can be accommodated within the discrete world.

For very simple problems, this approach can almost be convincing, aside from the fact that the
collection of algebraic facts that are accumulated, usually fail to come with the necessary invariants that
bind them together — precisely because the required invariants emerge from the continuous world, which
is being studiously ignored. Obviously this undermines the integrity of such a technique and weakens
the dependability that it can deliver.

For more complex systems, the problem only gets worse. First, the design is approached from the
purely continuous side (since it is too complicated to ignore the continuous aspects altogether). Con-
ventional techniques from the continuous sphere are applied, until the design has reached a reasonable
state. Then, some engineering heuristics are applied that turn a continuous design into a discrete one,
after which, a kind of collective amnesia takes place. All thoughts of the continuous world are forgotten,
and the discrete design that emerged from the earlier activity —which is regarded now as the top level
spec— is treated as if it were the most obvious and natural way to abstractly specify the desired system.

Unfortunately, there is a major defect to this strategy. Specif cations, by their nature, are intended to
be as clear and perspicuous as the intrinsic nature of the problem will allow, so that they can be clearly
related to domain level requirements, and properly understood by all problem domain stakeholders as
easily as possible. An essential ingredient of this is simplicity of expression and of structure. The B
Method [2, 3] —which is our concern in this paper— more than most, stresses the importance of starting
out with a clear and simple view of the system-to-be, and of adding the complexity only gradually.
However, that which is clear and perspicuous in the continuous world is not the same as that which
is clear and perspicuous in the discrete world. The limiting processes that go into the construction of
continuous world quantities, sweep away vast (in fact unbounded) quantities of the discrete level detail
that goes into their bottom-up construction. This radically changes the nature of what is ‘simple’ in the
two worlds.

In this paper we extend the formalism of Event-B so that it can deal with continuous behaviour
as a frst class citizen. This extends the reach of the B Method so that it is better able to capture the
kind of developments needed to realise the cyber-physical systems spoken of earlier. As a byproduct, in
enabling continuous behaviour to occur in native fashion at the most abstract levels of the development,
the complex, unintuitive detail manufactured by discretization processes, takes its rightful place at the
intermediate levels of a more broadly based development.

In cyber-physical systems design, the communication side of the communication / continuous inter-
play that has to be faced, can be handled by relatively conventional means. After all, communicating
systems have been studied in computer science for many years, and Event-B is no exception in providing
many examples of the modeling of communication (see e.g. [3]). This leaves the continuous side to be
faced, and our extension of Event-B enables it to encompass hybrid behaviour in a frst class way. This
is the main objective of the present paper.



Our extension of Event-B is designed to cause as little disruption as possible to the existing structure
of discrete Event-B. This point is important since considerable investment has already been made in tool
support for Event-B, through projects like RODIN [39], DEPLOY [21] and ADVANCE [4], resulting in
the current state of the Rodin tool [40]. This, we do not wish to spoil.

The remainder of the paper is as follows. In Section 2 we explore preexisting work in more detail
and contrast some of its common features with what we do in this paper. In Section 3 we brief'y review
discrete Event-B. Section 4 is concerned with setting out the semantic foundations for incorporating
continuous behaviours into Event-B in our approach. In Section 5 we def ne the core syntax of our
Event-B extension, indicating how the issues discussed previously relate to it. In Section 7 we discuss
the formal semantics of our framework, relying on standard results from the literature to handle routine
matters. In Section 8 we discuss ref nement in the extended Event-B framework. Section 9 collects
together the proof obligations that keep all the issues discussed previously under control in a specifc
development. Section 10 describes a number of small case studies, starting with the bouncing ball,
continuing with a simple discretization of continuous behaviour, and culminating with a simple study of
the European Train Control System. Section 11 concludes.

2. Related Work and the Hybrid Event-B Approach

The framework for Hybrid Event-B that we will build below is similar in many respects to a num-
ber of formulations of hybrid systems in the literature. Hybrid systems themselves have been stud-
ied intensively for many years, and the literature is too large by now to cover everything in detail
here. Some of the earliest work includes [35, 5, 6, 28, 33]. Shortly after these papers appeared, other
works such as [34, 24, 25, 53] and [26, 43, 22, 8] were published. Slightly later formulations include
[33, 14, 29,30, 17, 7, 16, 23]. Of particular note is the survey [15], which covers a large number of these
formulations, and especially, the tools that support them. A modern and unif ed theoretical overview of
many of these established approaches is to be found in [46], and there is [38] which is closest to our
approach. Moreover, a large body of work has appeared in the International Conference on Hybrid Sys-
tems: Computation and Control series of international meetings, and this, combined with the modern
trends noted above, has joined with other relevant events, creating the major annual CPS Week meeting
in recent years. We now comment on three characteristic that are frequently seen in this class of system.

The frst characteristic of many extant systems for addressing hybrid behaviour, is that they are
conceived with the strategy of verifying that a given hybrid system satisf es some desirable property
— obviously this is a laudable aim in itself. Unfortunately, any language that is expressive enough to
encompass a signif cant portion of hybrid behaviour is highly undecidable. As a consequence, the desire
to make mechanisable inroads into the verif cation high level goal has led to many systems that curtail
quite severely the expressivity of the language used to describe the candidate hybrid system, in order
to lend some decidability to the problem. Even so, the needed decision procedures often have high
complexity, adding yet more diff culties.

The second characteristic comes from this severe curtailment of expressivity inherent in the strategy
just described, which chimes with a kind of bottom up approach. If one cannot express a problem
in the most transparent way, its description will most likely reduce to a complex set of lower level
subproblems (such as with discretization, discussed above). This only makes worse any challenge from
high complexity decision procedures.

The third characteristic is a typical further consequence of this kind of strategy, namely that the con-
nection between the formal description of the two sides of the framework can become weak. While the
discrete side is invariably captured quite precisely, the side of the formalism that deals with the contin-
uous side is either: precise but severely curtailed in expressivity; or is more encompassing regarding



the admitted continuous behaviour but signif cantly less precise regarding its foundations — in extreme
cases delegating all aspects of continuous behaviour to, e.g., the semantics of a simulation tool.?

The extent to which any of these characteristics is present in any given formalism varies widely, of
course. Our own approach for Hybrid Event-B attempts to bypass some of these diff culties by advocating
a top down methodology. By starting with simple models, and designing the properties that they should
satisfy along with them (rather than trying to discover those post hoc), and enriching both along the
way to the fnal system, the aim is to keep the tractability of all aspects of design and verif cation much
higher than if one was confronted with the f nal system outright — without any clues as to its underlying
structure or design motivations.

A salient characteristic of the B-Method in general, of Event-B in particular, and of our hybrid
extension of it, is the extent to which the top down approach is integral to the formalism. This approach
has given Event-B considerable momentum worldwide [47], good reason to inspire our hybrid extension
of it here. The top down approach also has some consequences regarding the issues mentioned above,
which we comment on now.

Regarding verif cation, because we model at the highest level of abstraction possible, we avoid the
pitfalls of an inherently bottom up approach, that would be forced by a low degree of expressivity. This
has the advantage that we can attempt verif cation where it potentially has the least complexity; but it also
has the disadvantage that we can easily write down models for which no verif cation strategy is known.
We elaborate this point further shortly.

Regarding concerns about the formal description of the framework, our approach to the design of Hy-
brid Event-B is more readily distinguished from alternative approaches. First and foremost, we ground
the semantics of the Hybrid Event-B framework-to-be in established facts from the world of textbook
pure mathematics (facts concerning properties of suitable families of piecewise continuous real func-
tions). This standpoint separates soundness-in-principle of the formalism (established by appeal to facts
from mathematical analysis) from verif ability-in-practice (performed by executable algorithms running
with acceptable complexity on specif ¢ classes of examples) — and leads to situations in which we know
(semantically) certain generic facts on which we can rely, even though, in specif ¢ instances we cannot
calculate their consequences. Still, this approach gives our formulation an equally consistent level of
formal rigour for both the discrete and continuous parts of the theory, at least in principle.

In this paper we focus on the generic formal semantics. The preceding remarks imply that there is
a non-trivial road to be navigated from the generic semantic world to the world of verif able problem
instances. We do not embark on that road in this paper, postponing those details to other publications.

Verif ability in practice is the primary concern of tools, and along with the theoretical development
of this paper, there is an intention to enhance the Rodin tool [39] to incorporate the capability to verify
suitable classes of practical examples. Typically, this capability will be somewhat open-ended, in line
with the vast range of applied mathematics about which detailed consequences can be calculated, and
the capability of the extended tool at any point will depend on the effort invested in tool enhancement up
till then.*

What is needed for comprehensive verif cation goes beyond mere calculation of some continuous
behaviour. Looking forward to the needs of the formal semantics, we require the calculation of the times
of preemption of an episode of continuous behaviour by the next discrete transition, and the conf rmation
of invariants over a period of time; looking towards the needs of ref nement, we additionally require
conf rmation of joint invariants over time. All this requires signif cant capability in symbolic calculation

3In fact, the behaviour of many commercial simulation tools intended for the modelling of physical systems is highly
customer-driven, and makes no real contact with any foundational semantic concerns whatsoever [36].

4Thus, we envisage tool capability increasing over time. Despite this though, every version of such a tool will engage with
some subset of the semantic world described in this paper, simplifying the conceptual challenge for practitioners.



for the tool, making the design of a suitable verif cation environment non-trivial, as stated.

Beyond these aspects, there are questions regarding the use of heuristic techniques, and of implemen-
tation. The reach of purely symbolic techniques will not cover all cases of interest, so more approximate
techniques will need to be incorporated into the methodology. And when modelling has reached a suf-
f ciently low level, code generation for appropriate parts of the system becomes relevant. Ideally, these
aspects would be controlled by suitably incisive invariants, but it is to be noted that reasoning about
approximate techniques is usually as diff cult as the issues that cause their use in the frst place, so this
ideal may not be completely attainable.

Putting aside these questions of Hybrid Event-B internal strategy, the picture of system behaviour
that it offers is quite similar to that offered by many of the systems mentioned at the beginning of this
section. The majority of the works mentioned take an automata-theoretic view of hybrid systems, having
named states for the discrete control. Within each of these, continuous behaviour evolves until the next
preemption point, which is triggered by the truth of the guard condition of the next discrete state. We
achieve a similar effect via the mode and pliant events of Hybrid Event-B, described below.

This relatively small degree of difference between formulations is in fact reassuring since, in Hybrid
Event-B and in other approaches, among many things, we need to describe the physical world, and the
physical world is as it is. Obviously, to be effective, any description of it must conform to the single
existing reality. The combination of isolated discontinuous change of state, together with smoothly
continuous behaviour has proved to be a useful framework in a number of formulations at the level of
abstraction needed for applications.

3. Discrete Event-B

In this section we summarise discrete Event-B [3]. Event-B is characterised by proof obligations
(POs) that def ne what consistency means for constructs, and for relationships between constructs. In
keeping with a style we will follow throughout the paper, we do not quote the POs formally as we
discuss various issues in the body of the paper, instead we accumulate all the POs, in Section 9, using a
consistent notation, for better reference. The exception to this is when a PO of discrete Event-B needs to
be modif ed in some way for the continuous extension. Then we quote the original form here.

3.1. Event-B Machines

Event-B consists of MACHINESs, supported by CONTEXTs. Contexts def ne the static data envi-
ronment within which the dynamic behaviour of the machines takes place. Fig. 1 contains a context and
a machine that depends on it. Contexts typically defne sets and constants, the latter being any static
mathematical objects needed by the machines that use them. Relationships between the objects intro-
duced can be asserted using AXIOMS. Further properties that follow from those that are asserted may be
declared in THEOREMS, which must be provable from the axioms. Furthermore, a context may extend
another via an EXTENDS clause, making the entities def ned there available.

An event has a STATUS feld which indicates the role it plays in the development as a whole. An
event may have parameters, declared by ANY. In general these include inputs, local parameters and
outputs, indicated using notations i?,/,0! respectively. While inputs and outputs are connected with
the environment in the expected way, local parameters serve to resolve inherent nondeterminism in the
event’s actions. The WHERE clause gives the guards, which specify any constraints that the parameters
have to satisfy, and any other conditions that have to hold before the event is enabled. If there are no
parameters, then ANY ... WHERE is abbreviated to WHEN. The THEN clause gives the actions which
specify the required updates to the values of the VARIABLES (i.e. specify the required change of state).
Actions that update a set of variables var may take the most general form var :| BApred(var,var’), where
BApred(var,var') is a before-after predicate depending on the before-values var and the after-values



MACHINE Nodes
SEES NCtx AddNode
VARIABLES nod STATUS ordinary
INVARIANTS ANY n
nod € P(NSet) WHERE n € NSet — nod
EVENTS THEN nod := nod U {n}
INITIALISATION END
STATUS ordinary END
BEGIN
nod := & CONTEXT NCtx
END SETS NSet
e e een CONSTANTS aa, bb,cc,dd
AXIOMS NSet = {aa,bb,cc,dd}
END

Figure 1: A simple Event-B machine, together with its context.

var’, and specifying that var is to be updated to any after-values such that BApred is satisf ed. There are
simpler forms, e.g. var := E(var), to handle straightforward assignment to the value of an expression.
Among the events there is the INITIALISATION event, whose guard is posited to be true (indicated by
the guardless BEGIN ... END syntax).

The behaviour of a machine must respect the INVARIANTS. This has a number of consequences.
Firstly, the values established by the initialisation must satisfy the invariants. This is expressed formally
in POs (11) and (12).

Secondly, each variable update must also preserve the invariants. Variable updates are implemented
by event executions. If an event is to be executed, it must be enabled and be feasible. An event is enabled
in the current state, if the event’s guards are true in this state for an appropriate choice of values for
the parameters. An event is said to be feasible iff, whenever in a putative before-state the invariants are
true and the event’s guards are also true, then there is an after-state for which the event’s before-after-
predicate becomes true (when evaluated with the mentioned before-state). This is expressed formally in
PO (13). Furthermore, a feasible event is required to preserve the invariants. So if the invariants and the
event’s guards are true, and a chosen after-state makes the before-after-predicate true, then the after-state
must also make the invariants true. This is expressed formally in PO (15).

For non-terminating systems, after every event, some event must become enabled. Since this is one
point at which the conditions for discrete Event-B differ from those for our continuous extension, we
quote the discrete Event-B PO here:

(1) = (grdmoy (u,1) V grdyops (u,0) V ...V grdyop (u,1)) €))

In (1), MoEv1 ... MoEvN are the requisite events, with / as the parameter for each of them, and /(u) is
the invariant, where u is the state variable. For simplicity, we assumed that all parameter types were the
same. It is possible to be more specif ¢ by separately quantifying each parameter occurrence.

3.2. Event-B Ref nement

In Event-B, development progresses towards implementation via ref nement. We give a small exam-
ple of Event-B ref nement in Fig. 2. It enhances the node set example above with a dynamically added
set of node pairs, yielding a dynamically generated directed graph structure. The requirement of having
directed edges between graph nodes is handled by adding a new variables, invariants and a new event
AddEdge. Since AddEdge does not ref ne any existing event, its occurrences at runtime are considered
to ref ne a ‘notional abstract skip’ event that is not present in the abstract model. Also, to prevent new



MACHINE Nodes MACHINE Edges
REFINES Nodes
SEES NCtx SEES NCtx
VARIABLES nod VARIABLES nod,edg
INVARIANTS INVARIANTS
nod € P(NSet) nod € P(NSet)
edg € P(NSet x NSet)
edg C nod X nod
EVENTS EVENTS
INITIALISATION INITIALISATION
STATUS ordinary STATUS ordinary
REFINES INITIALISATION
BEGIN BEGIN
nod 1= & nod: =@ || edg:=0o
END END
AddNode AddNode
STATUS ordinary STATUS ordinary
REFINES AddNode
ANY n ANY n
WHERE n € NSet — nod WHERE n € NSet — nod
THEN nod := nod U {n} THEN nod :=nodU{n}
END END
END AddEdge
STATUS convergent
ANY n,m
WHERE {n,m} C nod
n+— m € NSet X NSet — edg
THEN edg := edgU {n — m}
END
VARIANT card(NSet x NSet — edg)
END

Figure 2: A ref nement of the earlier Event-B machine.

events from taking permanent control at runtime, they must be ‘convergent’, i.e. they must decrease the
N-valued VARIANT, ensuring relative deadlock freedom.

Ensuring the proper operation of this process is a collection of POs. These cover initialisation (20)
and (21), feasibility and ref nement of existing events (22)-(27), and ‘ref nement of skip’ behaviour and
convergence of ‘new’ events (28)-(29). Finally, a machine can also contain THEOREMS, which must be
provable from the facts available to the machine.

4. Continuous Behaviours

In this section, we discuss, at an appropriately informal level, a number of issues that infuence the
way that our extension of discrete Event-B is designed.

4.0. Discrete Event-B behaviours. The states of an Event-B machine are given by valuations of the
tuple of the machine’s variables, i.e. functions from the tuple of variables that yield a tuple of values.
Runs of Event-B machines are given as sequences of such valuations, each valuation being generated
from its predecessor by some event. Of course, this does not correspond to the real world, where time is
not discrete. So when runs of an Event-B machine are intended to ref ect real world behaviour, each state
is deemed to persist for an appropriate interval of time, and is then superseded by its successor. So the
time dependence of the state is piecewise constant. In this paper, we extend this picture to also include
continuously varying behaviour, taking into account several points as follows.



4.1. Time. We model time as an interval 7 of the reals R, with a fnite left endpoint and with a
right endpoint which is either fnite or inf nite, depending on whether the dynamics is f nite or inf nite,
and on whether the fnal transition (if there is one) lasts forever or not. The values of all variables
become functions of 7. In our semantics, we will allow change of state to happen both continuously,
and discontinuously. The discontinuous changes are restricted to isolated time points, so that 7 partitions
into a sequence of intervals, 7 = ([ty...#1),[t; ...12),...), each non-empty, left-closed, right-open. Times
to,1,t, 13, . .. specify the coarsest partition of 7 such that all mode transitions (specifying discontinuous
change, see 4.6) take place at some boundary point #;.° Note that the #; are not given a priori but emerge
via the runtime semantics. Additionally, below, ‘piecewise continuous’ always means continuous on
non-empty, left-closed, right-open intervals.

4.2. Variables. Variables are partitioned into two subsets: mode variables, which are only permitted to
change discontinuously, and pliant variables, whose types include topologically dense sets, and which
are permitted to evolve both continuously and via discrete changes. Restricting to mode variables, we re-
cover conventional Event-B. In practice, the pliant variables take values in ‘nice’ subsets of R, i.e. subsets
that can be specif ed by simple frst order constraints over R-valued variables. This is certainly needed
if the formal semantics of Section 7 is to be made precise. Still, such constraints are quite suff cient to
construct many quite exotic scenarios using the usual combinators.

4.3. Limits. We consider now how discontinuities are handled. For every variable x, and for every time
—

t € T, the left limit limg_,ox(# — 8) written x(¢) and right limit limg_ox(z+ §), written ;@ (withd > 0 in
both cases) both exist, and for every ¢, x(7) = % (At the endpoint(s) of 7, if is needed for any purpose,
any missing limit is def ned to equal its counterpart.) Thus all valuations are continuous from the right
and have limits from the left. This space of functions is commonly known as Cadlag,® and is much used
in stochastic analysis (pointing to a subsequent smooth stochastic extension of our theory).

4.4. Differentiability. In an interval ;... ), the behaviour of every pliant variable x is given, piece-
wise, by the solution of a well posed initial value problem Dxs = ¢(xs,#) (where xs is a relevant tuple
of pliant variables and D is the time derivative). ‘Well posed’ implies two conditions. Firstly: o(xs,?)
has a Lipschitz constant which is uniformly bounded over [#;...#1). Specif cally, there is a constant K
such that for all z € [#;...%1), we have || d(xsy,7) — d(xs2,7) || < K || xs1 —xs2 ||. Secondly: ¢(xs,?) is
measurable in 7. (In the preceding, || . || denotes the £ norm of a real vector, i.e. the maximum absolute
value of any of its components.) The conditions stated for the DE Dxs = ¢ imply that once initial values
are specif ed, the solution xs exists and is unique in the Carathéodory sense, and is absolutely continuous
over some maximal right-open interval. (See e.g. [48] for differential equations, and [50, 41, 32] for
the biimplication between absolute continuity and differentiability almost everywhere (amounting to the
Carathéodory interpretation of DEs).)

We included the word ‘piecewise’ here, because, for convenience and modelling f uency, pliant vari-
ables may also be directly assigned, e.g. xs := E. (See Section 5.) The expression E is constrained to
yield piecewise absolutely continuous behaviour for xs during a left-closed right-open interval [¢;... % 1).
Thus, although a DE will yield absolutely continuous values during [¢;...# 1), a direct assignment may
have isolated discontinuities coming from the nature of £ and not from machine M ’s mode events.

4.5. Zeno. We desire a constant 8zeno, such that for all i that are relevant, #;, 1 —#; > 8zeno. We say ‘de-

sire’, since Zeno properties are extremely hard to establish statically, usually requiring a full knowledge

SVarious approaches to hybrid system and timed automaton semantics take varying views on the closedness/openness of the
intervals dividing up real time. All can be related to one another, modulo some low level technical details.
®From the French: continue & droite, limite & gauche.



of the dynamics. Moreover, in idealised modelling situations, Zeno behaviour may be tolerable, even if
it is always unphysical in reality. Still, it would typically pose problems for mechanical calculation.’

4.6. Transitions. With the distinction between mode and pliant variables, there is a distinction between
mode transitions and pliant transitions. Mode transitions are just conventional Event-B transitions,
recording a discrete transition from before-values to after-values of some subset of (mode and pliant)
variables, specif ed syntactically by an Event-B mode event.

Pliant transitions record piecewise continuous behaviour of some pliant variables during an interval
[t;...ti+1). Since any such interval is only determined at runtime, values #; and ¢, are unknown statically.
So we introduce two generic constants, ¢t and tg, to refer to the start and end of any such interval, both
in the concrete syntax of the system def nition, and in our discourse about its behaviour.

Pliant transitions are syntactically specif ed by pliant events. A pliant event can specify the initial
conditions that have to hold for the pliant variables. It can also specify other guard conditions needed for
the enabledness of the pliant transition (typically concerning mode variables). It also specif es the DE to
be obeyed (subject to the conditions in 4.4).

As an alternative to writing a differential equation, if the required continuous behaviour is directly
known, then it may be directly assigned to the pliant variable instead of writing a corresponding DE.
Obviously this is very convenient, but to avert the pathologies inherent in mere continuity,® we insist that
such continuous behaviours should also be piecewise absolutely continuous solutions to well posed initial
value problems. One consequence of allowing direct assignments, is the possibility of discontinuities in
the pliant variable behaviour being def ned during [ty ... tRr), as noted in 4.4.

Additionally, any further constraints that need to hold while the pliant transition runs can be specif ed
within the pliant event. Parameters may be introduced in a pliant event. Their syntactic scope is the whole
of the pliant event, and at runtime, they refer to functions of time over the interior of the relevant time
interval, (tp ...tR)). Inputs and local parameters should have the same properties as pliant variables. So
they should be piecewise absolutely continuous solutions to well posed initial value problems.

4.7. Syntactic aspects of time. The semantic aspects of time must be connected with the syntax of
events. Because of its special properties, i.e. as a read-only variable, the time variable must be declared
as such. It is necessary to declare the initial value of 7', most conveniently done in the INITIALISATION.
We also admit clocks. A clock, by def nition, increases at the same rate as time during every pliant event
(i.e. its time derivative is 1), so this property need not be mentioned in the syntax. Clocks can be updated
in mode events. More exotic clocks can be implemented using normal pliant variables.

4.8. Interpretation of mode events. In discrete Event-B, an event describes how two successive valu-
ations in a run are related. In Hybrid Event-B, if the mode transition is regarded as taking place at time
14, then the before-values are normally interpreted as the left limits of the valuations at #,, and the after-
values are the right limits (which equal their values at ¢, itself). Note that the parameters are regarded as
being def ned only at the time 7, itself, so do not possess limits.

The exception to ‘normally’ occurs when a pliant variable undergoes a discontinuity (at time #, say)
arising from a direct assignment (as in 4.4 and 4.6), and the after-value of the discontinuity enables the
mode event (whether the before-value does so or not). Then, to aid f uency in modelling, particularly of
edge-triggered phenomena, the discontinuity after-value plays the role of mode event before-value, the

7Our approach contrasts with many other approaches to the Zeno problem, which demand that any fnite time interval
contains only a fnite number of transitions, or that the sequence of discrete transition times contains no accumulation points.
But this still permits the sequence of times specifed by 711 —# = 1/i, which, while satisfying the mentioned restrictions,
nevertheless allows the # to get arbitrarily (and thus unphysically) close together.

8See standard texts on mathematical analysis, e.g. [42, 31, 27].



mode event executes at 7, and variable values at 7, become as specif ed for after-values in the assignments
of the mode event.

4.9. Interpretation of pliant events. As noted already, there are two ways of specifying pliant be-
haviour: via a DE, and directly. In both cases, the right hand side of the DE or assignment, may contain
discontinuities. In the DE case, Dxs = ¢, the Carathéodory interpretation integrates over any disconti-
nuity in ¢, yielding behaviour that although absolutely continuous, is nonsmooth. See e.g. [19, 20].

In the direct assignment case, xs := E, any discontinuity in £ remains visible in xs. Piecewise absolute
continuity of £ thus yields piecewise absolute continuity of xs. The interaction of such discontinuities
with the enabling of mode events requires care, as already noted. If the discontinuity after-value en-
ables the mode event, then the discontinuity after-value is superseded by the mode event after-value.
(N. B. We deliberately disregard the case where the discontinuity before-value enables a mode event but
the discontinuity after-value doesn’t.)

The solution to a DE gives rise to its transition relation Q. For an interval such as [t ...tg), for
te (tp...tr), O(tL,?) is a t-indexed set of before-/after-value pairs, relating the valuation at time ty, to
the valuation at time ¢. This gives perhaps the closest correspondence to the before-after picture familiar
from the discrete world. For direct assignments, the picture is exactly the same; any discontinuities
encountered are not visible (as such) in the individual Q(ty,¢) pairs of values.

Although beyond the scope of this paper, an additional benef't of the formalism described, arises in
multi-machine systems. There, a mode transition in one machine may be sensed as a kink or discontinuity
during pliant behaviour in another machine which does not experience a mode transition at the same time.

4.10. Mode and pliant event interleaving. In 4.0 we indicated that discrete Event-B transitions were
isolated from each other in time, and that we want to preserve this picture in Hybrid Event-B. Conse-
quently, pliant transitions and mode transitions must alternate. To ensure this, we stipulate that both kinds
of events are feasible, and that at run time, each kind of transition enables the other kind. Therefore a
Hybrid Event-B run ought to have the following properties, where we assume that the machine contains
an INITIALISATION mode event to start a system run.

e Every enabled mode transition is feasible, i.e. has an after-state, and on its completion enables  (2)
a pliant transition (but does not enable any mode transition).?:'°

e Every enabled pliant transition is feasible, i.e. has a time-indexed family of after-states, and  (3)
EITHER:

(1) During the run of the pliant transition a mode transition becomes enabled. Such a mode
transition preempts the pliant transition, and def nes the end of its family of after-states.
ORELSE

(i) During the run of the pliant transition it becomes infeasible, i.e. for some point in time,
all the conditions stipulated cannot be satisf ed simultaneously — f'nite termination.
ORELSE

(iii) The pliant transition continues indef nitely — non-termination.

It is clear from (2), (3) that the time points ¢ for a given run emerge at runtime. The construction of a
given system trace thus proceeds piece by piece, determining the #; as it goes. The set of successfully
constructed system traces will constitute the semantics of the system. See Section 7 for details.

4.11. Preemption. In (3), and in earlier discussion, it is clear that as soon as a mode event becomes
enabled, it preempts the current pliant event. This eager scheduling of mode events in Hybrid Event-B
is the sharpest departure from discrete Event-B, since discrete Event-B schedules events /azily, as noted
in 4.0. The difference is motivated by physical law, which is so relevant to the systems for which Hybrid
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MACHINE HyEvBMch e e
TIME ¢ MoEv
CLOCK clk STATUS ordinary
PLIANT x,y ANY 2,1,0!
VARIABLES u WHERE grd(x,y,u,i?,1,t,clk)
INVARIANTS THEN
xeR x,y,u,0!,clk :| BApred(
yER x,y,u,i?, 1t clk,x’ .y ;o 0!, clk)
ueN END
EVENTS PliEv
INITIALISATION STATUS pliant
STATUS ordinary INIT iv(x,y,u,t,clk)
WHEN WHERE grd(u)
1=0 ANY 2,1,0!
THEN COMPLY BDApred(x,y,u,i?,1,0!,t,clk)
clk =1 SOLVE Dx = ¢(x,y,u,i?,1,t,clk)
X = Xq y,0! = E(x,u,i?ltclk)
Y =)0 END
u = ug END
END

Figure 3: A schematic Hybrid Event-B machine.

Event-B is intended. Physical laws are all eager: e.g. a falling bouncing ball, when it hits a horizontal
surface, does not have any choice about when to bounce up again; see Section 10.1 for more discussion.

5. Syntax of Core Hybrid Event-B Machines

Fig. 3 shows the elements of a Hybrid Event-B machine. After the machine name is the TIME
declaration, which names the variable used to denote real time (if needed). This permits read-only access
to time in the rest of the machine. Time is synchronised (via a WHEN clause) with the start of a run in the
INITIALISATION. Next comes a CLOCK variable c/k. This allows the restrictions discussed in Section
4.7 to be enforced. Then come the PLIANT and VARIABLES declarations. The former introduces the
pliant variables, while the latter introduces the mode variables.

Next come the INVARIANTS. Where these declare typing information, the conventions used in
discrete Event-B are extended to Hybrid Event-B in that the type of a pliant variable such as x or y in
Fig. 3 is the set of values that it can take at any given moment of time (specif cally R in the case of x,y).!!
Other invariants may be written as usual. The fact that time dependence is not part of the type of any
variable, means that an occurrence of a variable in an invariant necessarily refers to its current value,
which is at an arbitrary time during a system run. Consequently any invariant expression written in the
INVARIANTS section has to be true at all times during a system run.

9We deliberately forbid successive mode transitions to occur, as is permitted in some alternative frameworks. This prevents
the semantics of a ‘mode event cascade’ having to be def ned via a f'xed point calculation, and permits the characterisation of
system traces as functions of time for each variable.

Regarding interfacing between continuous and discrete behaviour, it is helpful to have the discrete behaviours described in
straightforward before-after terms. Such specif cations can subsequently be ref ned to sequential code by conventional means,
outside of, and below the level of abstraction of the present formalism.

191f a mode event has an input parameter, to facilitate simpler modelling, the semantics assumes that its value only becomes
available at a time strictly later than the previous occurrence of a mode event, ensuring part of (2) automatically.

'n particular, in our formulation, the type of a pliant variable such as x is not, for example, R™ — R (as it would be in some
related formalisms), i.e. the time dependence is not mentioned explicitly in the type.
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Then come the EVENTS, starting with the INITIALISATION. The STATUS of INITIALISATION
is ‘ordinary’ — for simplicity, existing event status designations are taken over from discrete Event-B
for mode events. The initial value of real time is synchronised to the initial state of the machine in the
WHEN clause. Real time is read-only; it is never assigned. Other variables are assigned their initial
values as usual, including assignment of initial values to clocks. If a nondeterministic initial assignment
to some variables is needed, it can be achieved via the usual ANY ... WHERE ... THEN ... mechanism.

Then come the remaining mode events and pliant events. Mode events are as in discrete Event-B,
aside from timing details, discussed in Sections 4.8 and 6.13. A mode event MoEv appears in Fig. 3.

Pliant events need new syntax. As mentioned in Section 4.6, pliant variables can be assigned values
either via the solution of a DE, or directly by being assigned the value of a (time dependent) expression,
or indeed by being assigned a value consistent with some (time dependent) predicate. We have a f exible
syntax that accommodates all these possibilities.

A schematic pliant event is shown in P/iEv. It starts with a new status declaration, ‘STATUS: pliant’,
on which the remaining new syntax depends. Next come two guard clauses. The INIT guard specif es
initial constraints that must hold concerning the pliant variables (and, if any, constraints that mix mode
and pliant variables), and the WHERE guard specif es initial constraints that must hold concerning mode
variables alone.!?

The ANY clause introduces parameters i?,/, 0!, satisfying the restrictions mentioned in Section 4.6.
As with mode events, if there is no ANY clause, the WHERE clause can be renamed WHEN.

The COMPLY clause defnes a before-during-after-predicate BDApred(x,y,u,i?,l,0!,t,clk). The
BDApred predicate defnes conditions that must hold for the duration of any pliant transition speci-
fed by PliEv. If BDApred is sharp enough, or P/iEv is being specif ed in a suff ciently loose manner,
then BDApred alone may be enough to specify the behaviour required of P/iEv. As an expressiveness
metaphor for the convenience of modellers, we allow pliant variables in COMPLY clauses to refer to
time explicitly. Thus we permit occurrences of terms like ‘Z(y(ex),...)’, where Z is a predicate, y is a
pliant variable and ex is an expression that evaluates to a time between ¢ and z.

Otherwise, the behaviour of the pliant variables during any pliant transition specif ed by P/iEv may
be further constrained by the SOLVE clause. This can contain DEs and direct assignments of pliant
variables and outputs. The form of any DE in the SOLVE clause is required to be in general frst order
form, Dx = 0, as discussed earlier, guaranteeing existence and uniqueness via standard machinery [48].

A direct assignment y, 0! := E is acceptable provided £ is a piecewise absolutely continuous function
of its piecewise absolutely continuous parameters. In that case, direct assignment is equivalent to solving
Dy,Do! = DE, where the solution is reinitialised at points of discontinuity of £, and provided that it
yields a consistent solution.

Although we are quite precise about the structure and meaning of SOLVE clauses, we are less pre-
scriptive about the COMPLY clause (although, in practice, it will typically consist of straightforward al-
gebraic constraints on the variables). To see why, consider a COMPLY clause like x € [0.. . 1]. Unlike dis-
crete Event-B, this specif es a time indexed family of assignments of values to x(¢) for all 7 € (¢ ... tR).
Without any further restriction, this allows the function x(7) to vary uncontrollably, despite the extreme
simplicity of the constraint x € [0...1]. To address this, we stipulate that of all the functions of # that
the bare BDApred in the COMPLY clause admits for the pliant variables, we consider only those that are
piecewise absolutely continuous for # € [t1 ...tg). Thereby, we restrict the pliant variable behaviours
mentioned in the BDApred to the same class of time functions that are specif able using the earlier DE
and direct assignment forms.

To aid modelling fuency, we def ne two further constructs permitted to occur as top level conjuncts

12There is no evident reason why initial constraints on mode and pliant variable might be separated, but it proves useful later.
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in COMPLY clauses: skip and INVARIANTS. The former specif es constant behaviour, while the latter
allows arbitrary piecewise absolutely continuous behaviour, provided the machine’s invariants are re-
spected. Both constructs can be used to specify behaviour for pliant variables not otherwise constrained
in the event. To further simplify model description, when at least one of the COMPLY or SOLVE clauses
contains non-trivial content, COMPLY INVARIANTS is understood to apply to any pliant variables whose
behaviour is not specif ed in these clauses. So COMPLY INVARIANTS only needs to be written when
both the COMPLY and SOLVE clauses have no (other) content. However, we insist that COMPLY skip
must always be written when needed, since it def nes specif ¢ behaviour.

In total then, the set of permitted behaviours for the pliant variables def ned by a pliant event, consists
of the intersection of those permitted by the COMPLY clause and those permitted by the SOLVE clause.

As already mentioned, in the absence of a SOLVE clause, the COMPLY clause can serve as an
implicit specif cation of the required behaviour. This makes it very useful for specifying behaviours that
have to obey global (though potentially time-dependent) constraints, without committing to any specif ¢
dynamics. We call such specif cations pliant envelopes.'?

Overall machine consistency requires that we check various properties of a Hybrid Event-B machine.
Fortunately, a good portion of these are taken care of already in the purely discrete Event-B framework,
and we have commented on them in Section 3. What remains are POs relevant exclusively to pliant
events, and to the interaction between mode and pliant events.

Turning to the pliant event POs, pliant events f rstly have to be feasible. This means that at a presumed
starting time tr, given that the invariants hold and the 7v and grd clauses of the pliant event also hold,
then for some duration of the pliant event defned by tg > tr, for all times ¢ € (¢ ...tR), values for
the variables exist, that satisfy the specif cation of the pliant event, i.e. that the COMPLY and SOLVE
clauses are satisf ed. The formal PO is (14).

Pliant events have to preserve the invariants. Thus, if at ¢ we have the invariants, and in the interval
to tr a behaviour of the system satisf es the COMPLY and SOLVE clauses, then that behaviour must
also satisfy the invariants throughout this interval. The formal PO is (16).

Note that a subtlety arises concerning the failure of invariants and BDA predicates. If an invariant
ever fails during the construction of a system trace, then that trace is abandoned; failure of invariants
is not permitted. However, if a BDA predicate fails during the construction of a system trace, it simply
indicates that the pliant transition in question has become infeasible. Such infeasibility just indicates
fnite termination if no mode event became enabled during the course of the transition, c.f. (3).

Machine well-formedness is concerned with the expected alternation between mode and pliant tran-
sitions in a run. In going from a mode transition to a pliant transition, we demand that in any mode
transition after-state, no mode event guard is true for any choice of parameter, but that some pliant event
guard is true. The formal PO is (17). Conversely, in going from a pliant transition to a mode transition,
we demand that no mode event is ever enabled during the transition, but that either the values of the
variables at the endpoint tg, do enable some mode event for some parameter, or the left limits at tg
enable a mode event in case values at tg do not exist.'*

We still have to be careful though. A fnal pliant transition runs forever or till it becomes infeasible.
If we require such a f'nal pliant transition in the system, for the relevant proof obligation to be effective
(i.e. to not fail on fnal pliant transitions), we need to know statically which pliant events are supposed

131n [38] and in other works by Platzer, such specif cations are called differential invariants. In the context of Event-B, where
the word ‘invariant’ has strong connotations with literally time independent properties, we prefer an alternative terminology, to
avoid potential misunderstanding.

14Observe that this def nition handles the pliant/mode issue of Sections 4.8 and 4.9. If a pliant behaviour is continuous at tg
then both options are equivalent. If there is a discontinuity at tg, then presuming all discontinuities are right continuous (see
Section 4.0), the correct value is used for the mode event guard. Otherwise, the left limit must be used.
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to be fnal and which are not. For this purpose we introduce a new status tag for fnal pliant events,
‘STATUS: pliant fnal’. This declares the tagged event as a fnal one and prevents the relevant check
being demanded of it. See (18) for the formal PO."

6. Further Technical Considerations

In this section we discuss some additional technical issues regarding Hybrid Event-B machines.

6.12. Mode event guard closure. Suppose expression x < 3 occurs in the guard of a mode event MoEYv,
where x is a pliant variable. Suppose x behaves as x(¢) = 4 —t during a pliant transition, where ¢ starts at 0.
Eventually, MoEv will become enabled, but since there is no ‘earliest time immediately after t = 1°, MoEv
cannot execute at an identif able time unless we replace x < 3 in the guard by x < 3, which becomes true
exactly at # = 1 in our example. However, the negation of x < 3 is x > 3, which resurrects the problem.
Our solution is to allow expressions like x < 3 in mode event guards, but to interpret them at runtime via
the topological closure of the regions they def ne when constructing system traces. This interpretation
ensures that mode transitions occur at specif ¢ times, but also allows mode events with non-overlapping
guards (e.g. guards such as x < 3 together with x > 3, or more symmetrically, x < 3 together with x > 3)
to be easily defned for more fuent modelling and reasoning purposes. In the semantics of Section 7,
we restrict to pliant variables whose values are in (subsets of) R. For such variables, we need merely to
replace strict inequalities by nonstrict ones in determining guard closure.

We accept that adding such boundary values into mode event guards may give rise to pathological
counterexamples in which the trajectory does not satisfy event def nitions, or invariants, as written. How-
ever, we claim that these will have little impact in practice, since for the kind of engineering applications
we envisage, the dynamics has to be locally stable in order to be useful. So, a small disturbance to
trajectory data must have a relatively small effect on the trajectory, at least within some time range (the
acceptable limits on such disturbances being highly application dependent). The chief thing is that rea-
soning about the system model allows the maintenance of the invariants to be proved, since these express
what is important about the system. Provided any pathological behaviour permitted by the operational
semantics arises from a disturbance set of measure zero, we can ignore it for practical purposes.

6.13. Event parameter availability. In early versions of discrete Event-B, any parameters needed by an
event were simply assumed available, a natural view when parameters merely resolved nondeterminism.
However, in more recent versions incorporating code generation, parameters can also be input parameters
(decorated with ?), or output parameters (decorated with !); local parameters are written undecorated, as
before. Considering that in discrete Event-B all connections with real time are neglected, the issue of
when any parameter might become available does not really arise.

However, in Hybrid Event-B the issue needs more thought, because of the presence of real time.
There are two design decisions to be made, one for mode transitions and the other for pliant transitions.

For mode transitions, we stipulate that input parameters become available at some time which is
strictly greater than the time at which the most recent preceding mode transition occurred. At that
moment, nondeterminism is resolved by choice of local parameters, and output parameters are calculated
using the event’s BApred. The strict inequality prevents runs contravening the condition in (2), that
forbids a mode transition from immediately enabling another mode transition, and avoids the need to
complicate mode event guards to achieve this effect. This mechanism also gives a convenient way of
modelling stimuli from the environment that arise spontaneously (from the model’s viewpoint).

I5Restricting to statically knowable f nal pliant events theoretically constricts computational expressivity, but does so in way
that can only be regarded as benef cial from an engineering standpoint.
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For pliant events, we stipulate that all required parameters are available immediately that values exist
(in the sense of existential quantif cation), that would enable the event, regardless of whether the event is
then scheduled for execution. In practice, since pliant transitions occupy extended periods of time, their
parameters will also need similar durations, so will most likely be held in permanent elements of any
actual implementation. However Hybrid Event-B makes no assumptions about this and only assumes
that parameters are available during transitions themselves.

6.14. Invariant checking. In modelling a system in which some physical attribute is to be conf ned to
some region, the simplest approach is to def ne an invariant that confnes the relevant variable to that
region. Then enough events should be designed to ensure the invariant is maintained.

Often, mode events are involved in maintaining the invariant, having guards stating that the dynamics
is at the boundary of the region, and with actions that cause a suitable change of course. This raises a
technical niggle for the semantics.

In determining the trajectory of a pliant transition, the semantics f rst looks for the maximal interval
within which the pliant event specif es a consistent dynamics. Only then is the next preemption point
sought. In the situation we are discussing, the dynamics will therefore usually overshoot the desired
region’s boundary (breaking the invariant) before the discovery of the next preemption point. It is thus
important that the invariant is not checked before the next preemption point has been found.

As modelling descends towards implementation, we would normally expect there to be some toler-
ance between the true region boundary and a mode event guard’s view of it, to allow for quantization
errors and similar effects.

6.15. BDApred ty left-limits. The considerations that made us impose a closure interpretation on mode
event guards, and the remarks in 6.14, have implications also for the BDA predicates of pliant events. In
the earlier description, a pliant event gave rise to a transition whose duration was a left-closed right-open
interval [ty ...tR), its right endpoint being determined by the next preemption point, otherwise being
determined by infeasibility beyond tg. To maximise simplicity of modelling, we allow preemption to
be defned by the truth of a mode event guard for variable values which: either arise in the interior of
a piecewise absolutely continuous evolution, or arise as f nite limits at tg in case the BDApred def ning
feasibility is not true beyond tg.16

7. Formal Semantics

In this section we describe the formal semantics of Core Hybrid Event-B. In order to not waste space
on repeating routine material, we rely extensively on existing work. We rely on [3] (especially Chapters
5,9, 14) for the semantics of discrete Event-B; and on [48] (especially Chapter I1I §10) for differential
equations in the sense of Carathéodory.

In this paper we def ne the semantics of a single Hybrid Event-B machine M. For simplicity, the
semantics performs several checks at runtime. In a practical system, most of this would be avoided by
imposing syntactic tests, which would provably guarantee the runtime semantics (see Section 9.15).

We turn to the semantics itself. Firstly, we make precise a few points of terminology and convention.

e Time, referred to as ¢, takes values in the real left-closed right-open set [¢)...+ o), where %, 4)
is an initial value for time. For every other system variable var, there is a type U"". If var is
pliant, then U™ is R.

16Note that the latter case precludes the occurrence of a discontinuity at t.
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e Time is a distinguished variable (read-only, never assigned by events, and synchronised with
the machine during INITIALISATION). All state variables have interpretations which are func-
tions of an interval of time starting at #y; see (7). As well as directly referring to the time
variable, time may be handled indirectly by using clock variables (declared as such), whose
values may be reset by mode events.

e The events of a machine M consist of mode events and pliant events. Given a valuation of
all the state variables, inputs and local parameters, and time, a mode event is enabled iff the
valuation lies in the topological closure of the set of tuples of values in which the WHERE
clause of the event evaluates to true. Given a valuation of all the state variables, and time, a
pliant event is enabled iff the INIT and WHERE clauses evaluate to true.

e The semantics of M is a set of system traces .S. Each system trace S € § is given by a time
interval T = [ty...tpnar) (Where fear, With fea > fo, is fnite or 4o0), and a set of time
dependent variable interpretations (- : 7 — U, one for each state variable var. If § is
empty we say that the semantics of M is vOID. (N.B. For reasons of simplicity, we omit
inputs, local parameters and outputs from system traces. These are regarded as existing only
for the duration of the transitions that they belong to; i.e., the single time value at which a mode
transition occurs, or the topological interior of the interval during which a pliant transition takes
place. With additional machinery, such parameters could be included in system traces.)

e The set of traces S is constructed by the step by step process below, which describes how
individual system traces are constructed incrementally.!” Whenever a CHOOSE is encountered,
the current trace-so-far is replicated as many times as there are different possible choices, a
different choice is allocated to each copy, and the procedure is continued for each resulting
trace-so-far. Whenever a TERMINATE is encountered, the current trace-so-far is complete and
is added to the semantics .S, of M. Whenever an ABORT is encountered, the current trace-so-
far is abandoned (and eliminated from .S). If a VOID is encountered, the semantics is VOID.

The construction of system traces is as follows.

[1] Letm :=0 (where 1 is a meta-level variable).

)

(6)

(M

@®)

[2] Assuming the INITIALISATION is feasible, CHOOSE an initial assignment to all variables satisfy-

ing all the invariants of M, thereby interpreting their values at time #y. Otherwise, VOID.

[3] If any non-INITIALISATION mode event that does not have any inputs (but which may have local
parameters or outputs), is enabled when the state variables have the values at #, and enabling values

exist for the local variables, then ABORT.

[4] With the state variables having the values at #;, CHOOSE an enabled pliant event P/iEv provided

there is one, else ABORT.

[4.1] Considering all occurrences of differential equations and direct assignments in the SOLVE
clause of PliEv, if any pliant variable p/i appears in the left hand side of more than one

occurrence then ABORT.

5]

If there does not exist a fyax > #; such that there is a simultaneous piecewise absolutely continuous
solution of all the differential equations and direct assignments in the SOLVE clause of P/iEv in
the left-closed, right-open interval [fy...%uax), using state variable values at #, as initial values,
with these initial values required to satisfy the INIT and WHERE guards of P/iEv, and with inputs
and local parameters where needed, such that the BDApred (including any implicit INVARIANTS
constraint) in the COMPLY clause of P/iEv in the interval (... fyax) is satisf ed, then ABORT.

7N. B. The process is not intended to be an executable sequential procedure. All traces-so-far are intended to be explored
simultaneously and to completion, even if completion involves an inf nite amount of time for a non-terminating system trace.
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[6] Otherwise, CHOOSE a simultaneous solution as in [5], let #;ox be maximal such that the properties
in [5] hold, and use the solution to assign the values of all pliant variables (and outputs) in the
interval [ty ... fyax)-

[6.1] Forevery mode variable, extend its value at #,, to a constant function in the interval [t . .. fyax)-

[7] If no non-INITIALISATION mode event is enabled by the values of the state variables at any time
tyexr in the open interval (#y...tax) (including left-limit at #y,x itself), together with a choice
of values for inputs and local parameters, then if the invariants of M are not satisf ed in the open
interval (#;...%yax), then ABORT. Otherwise TERMINATE.

[8] CHOOSE f,y41 > t, such that either #, is the earliest time at which a non-INITIALISATION mode
event without inputs (but potentially having suitably chosen local parameters) is enabled according
to the criteria in [7], or a non-INITIALISATION mode event having inputs is enabled (with a
suitable choice of inputs and local parameters) according to the criteria in [7] at #,, and there is
no non-/NITIALISATION mode event without inputs that is enabled according to the criteria in [7]
at any time between #, and #,.

[9] If the invariants are not satisf ed in the open interval (#,...#+1), then ABORT.

[10] Letn:=n+1.

[10.1] Let MoEvs be the set of non-INITIALISATION mode events that are enabled when all state
variables var are interpreted as their values var(t,) at #; (or their left-limit values var(t,) at
ty if ty = tyax), and suitable values are chosen for inputs and local parameters where needed.

[10.2] CHOOSE an enabled event from MoEvs, and an assignment to all state variables and outputs
according to its BApred, such that all the invariants of M are satisf ed, thereby (re)interpreting
those variable values at time #,. Otherwise ABORT.

[10.3] For any other state variable var without a value at #,, interpret its value at #, as its left-limit

. v — . . . . .
at ty, i.e. as var(ty ), provided this is f nite. Otherwise ABORT.
[10.4] Discard the interpretation of all state variables in the open interval (f,...#ax), Where fyax
is the value determined in [6]. (If #;; = #\1ax then the interval is empty.)

[11] Goto [3].

Regarding the soundness of the above construction, since we can take some basic things like mode
event update semantics and the semantics of the existence of solutions to differential equations for
granted, the key remaining issue is whether the handover from pliant to mode transitions, and from
mode to pliant transitions, is well def ned.

We observe that the handover from pliant to mode transitions is trouble-free as follows. Consider
frst, mode events without inputs. Since the set of values at which the WHERE guard of any such mode
event is interpreted is closed (by (6)), then this set, with dependence on local parameters existentially
quantif ed away, is also closed. Then, since the system trajectory is a piecewise continuous function
during any interval in which a pliant rule is active, if the system trajectory meets the quantif ed closure
at all during such an interval, it frst meets it at some specif ¢ time point. (This happens regardless of
whether the time point occurs in the interior of the interval or at its end, and takes into account our
earlier discussion of discontinuities.) In both of these cases the time #,,,; will be strictly greater than #,,
since the test in [3] has earlier been passed, by assumption. Since there are only f nitely many rules, the
minimum of such time points across all of the rules to which these considerations apply, is a unique well
def'ned time point #, 1 > #, at which the pliant transition is to be preempted — if it is to be preempted
by a mode event without inputs.

Secondly, consider mode events with inputs. Point [8] stipulates that #,,; is to be chosen so that
41 > ty is satisf ed, in line with remarks in Section 6.13. Thus, even though a mode event with inputs
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can have its WHERE guard satisf ed by state variable values (plus inputs and local parameters) at time
fy (since such a situation is excluded from causing an ABORT in [3]), in [8] #, is never selected as
preemption point. Apart from this, mode events with inputs can cause the selection of preemption point
at any time at which their WHERE guard is satisf able, provided this is not later than a preemption point
that could be selected according to the frst case. With a preemption point selected, a consistent set of
mode updates can be derived, by [7], [10.1], [10.2].

Note the careful wording in [10.2]. If a machine has a mode event without inputs, MoEvX say,
enabled at #,,, then the machine has to execute some mode event at #,, (to comply with the remarks in
Section 4.11), but the event does not have to be MoEvX. The same does not apply to mode events with
inputs (that would be enabled at #, if inputs were supplied). The semantics has the option of simply not
supplying the required inputs at #,.

We argue that the handover from mode to pliant transitions is also consistent. Upon completion of
a mode transition, some pliant events will (typically) be enabled, [4], required to be unambiguous and
consistent by [4.1]. One can then be selected to run [5], [6], in an ensuing nonempty interval.

With suitable attention to routine details, the above remarks can be turned into a formal proof of the
consistency of the def nition of system traces. The alternation between mode and pliant transitions is a
structural feature that can be policed by proof obligations that enforce a static version of these constraints.
These new POs, specif ¢ to Hybrid Event-B, are given in (17) and (18).

We observe that for pliant transitions, the invariants are checked only after their endpoint has been
determined, in line with remarks in Section 6.14. Only the open interval (#, ... +1) needs to be checked
since variable values at #,, are conf rmed to satisfy the invariants during the preceding mode event.

The above semantics, although for a single machine, is still an open semantics in that outputs are
delivered to the environment, and inputs are accepted from the environment provided they are piecewise
absolutely continuous. Such inputs might be produced by some other Hybrid Event-B machine outside
the discourse, and, specif cally, might themselves have isolated discontinuities. However, our interpreta-
tion of direct assignment and use of the Carathéodory interpretation of differential equations ensures that
a well def ned meaning is available.

Def nition 7.1. 4 Hybrid Event-B machine M is said to be non-void iff its semantics is not VOID, i.e. its
set of system traces S # . It is said to be correct iff it is non-void, and also, during the construction of
its semantics, no ABORT is ever encountered.

8. Ref nement

It is desirable that as far as possible Hybrid Event-B ref nement should add to, rather than modify,
the existing notion of ref nement in discrete Event-B. Seeking to fulf1 this aim restricts the design of
Hybrid Event-B ref nement quite severely. This has the benef't of limiting the complexity of the POs that
capture the new notion, making it more practicable and useful.

We base our design on two principal assumptions. Firstly, we assume that in discrete Event-B, the
events take place at (real world) times appropriate to the application context.!® Secondly, we assume that
in ref ning an abstract model 4 to a concrete model C, the application context remains the same, and the
timings of those C events that are ref nements of 4 events remain unaltered. Therefore, if the ref nement
to C introduced new events, the timings of occurrences of these will interleave the timings of occurrences
of the events inherited from A.

18This is indeed an assumption. In discrete transition systems, the occurrence of an event, instantly enables any successor.
That this successor does not run immediately is an interpretation that is imposed from outside the formal framework.
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In Hybrid Event-B ref nement we assume that time f ows at the same rate in both the abstract and
concrete systems. Consequently, the times at which abstract states and concrete states should be com-
pared, in relations like the joint invariant, should be the same. Thus, relations like the joint invariant, will
be required to hold at all individual times. On this basis, the coincidence of the times at which abstract
and corresponding concrete mode events are deemed to occur becomes derivable in Hybrid Event-B.

Thus, suppose a mode event MoEvA becomes enabled in A. Then, by relative deadlock freedom for
mode events, some concrete mode event MoEvC becomes enabled in C. Since the times at which the
abstract and concrete states being compared in the relative deadlock freedom PO are the same, the times
at which MoEvC and MoEvA become enabled are the same. Conversely, suppose a mode event MoEvC
becomes enabled in C. Then MoEvC is either an ‘old’ event or a ‘new’ event. If it is an old event, then
using guard strengthening for mode events, some abstract event MoEvA simultaneously becomes enabled
in 4. If it is a new event, a ‘notional skip’ is enabled. However, the concept of ‘notional skip’ acquires,
in Hybrid Event-B, additional connotations, not present in discrete Event-B.

In discrete Event-B, it makes no difference whether we view a ‘notional skip’ as actually running or
not. The point is that when an event executes (in general, changing the machine state), a choice point is
generated for the scheduler to select the next enabled event to run. However, if the event that ran was a
skip, the choices available remain the same as before, since the state has not changed. So running or not
running a skip event has no inf uence on the scheduler.

In Hybrid Event-B though, in between the mode transitions, pliant transitions run. Now, it makes a
difference whether we view a notional skip as actually executing or not. If it executes, then fresh choices
may become available to the scheduler, since the pliant transition preceding the skip will have changed
the state. This would be an unwelcome complication. Therefore, we determine that in Hybrid Event-B,
notional skips do not introduce scheduling choice points.

We illustrate the above in a schematic example. Fig.4 shows a fragment of the ref nement of an
abstract run. Time goes left to right. The narrowly spaced vertical bars represent mode events, taking
place instantaneously. The horizontal lines represent the pliant events that interleave them, having non-
zero durations. At the abstract level we have the events MoEvA;, PLiEvA|, MoEvA,, PliEvA,, MoEvAs.
The mode events are ref ned by concrete mode events MoEvC,, MoEvC,, MoEvCs. Between MoEvC)
and MoEvC, there is pliant event PLiEvC| which ref nes PLiEvA;. By the argument above, MoEvA; and
MoEvC are simultaneous, as are MoEvA, and MoEvC;, and noting that mode transitions both enable
and preempt pliant transitions, we conclude that the durations of PLiEvC) and PLiEvA; are the same.

In between MoEvC, and MoEvCs, there are some ‘new’ concrete mode events, MoEvC,; and
MoEvC;,, and interleaving these, are shorter pliant events PliEvC, 1, PliEVC,, and PliEvC;3. The
sequence PliEVC, 1, MoEvVC; 1, PlIEvC; >, MoEVC, 5, PliEVC, 3 ref nes PliEvA, — if we take due ac-
count of the ‘notional skips’ that are needed to abstract MoEvC, 1 and MoEVC, 5, indicated by the heav-
ier strokes through the PliEvA, timeline. Overall, the duration of the sequence PlIEVC; 1, MoEvC) i,
PLiEVC; 5, MoEVC, 5, PLIEVC, 3, equals that of PliEvA; because MoEvA; and MoEvAs3 fx the endpoints
via their ref nements MoEvC, and MoEvCs. In general, the time period during which an abstract pliant
transition runs must consist of one or more concrete pliant event durations, as Fig. 4 shows.

Hybrid Event-B needs proof obligations to guarantee the behaviour just described, while disturbing
discrete Event-B as little as possible. It turns out that we can deal with mode events essentially as
in discrete Event-B, for which the POs are standard. The only remaining point concerns variants and
convergence, to which we return below.

Regarding pliant transitions, an abstract pliant transition starts at the same moment as a ref ning con-
crete pliant transition. This requires pliant guard strengthening, which works like mode guard strength-
ening. Thus, if the abstract and concrete invariants hold, and the concrete pliant INIT and WHERE
guards hold, then so too must the abstract pliant INIT and WHERE guards. The formal PO is (31).

After guard strengthening comes invariant preservation. Since we demand that invariants are true at
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MoEv4, MoEvA, MoEvA,
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| PlEVC,
MoEvC, \ MoEvCy

Figure 4: Typical phenomena observed during the ref nement of some abstract transitions. The progress of time is correlated in
the abstract and concrete systems, implying that the endpoints of abstract and concrete coincide.

all times, if the invariants and concrete guards are all true initially, then for the common duration of both
pliant events, the concrete BDApred and the predicate SOLpjix, ¢ that def nes the concrete solution'® im

ply the existence of abstract states and parameters that cause the abstract BDApred and solution predicate
SOLpjip,4 to hold. See (32) for the formal details. This covers cases in which the concrete pliant event
ref nes an abstract one.

The remaining case is when a concrete pliant transition is an instance of a ‘new’ concrete pliant event,
and occurs after a ‘new’ concrete mode event (the latter ref ning a ‘notional abstract skip’), for example
PliEvC,; in Fig. 4. The point here is that the new mode transition (and its following pliant transition)
run while some abstract pliant transition is also running and continually changing the abstract state, a
situation absent from discrete Event-B due to piecewise constant behaviour.

The new concrete mode event is unproblematic. Its guard strengthens the true guard of an abstract
notional skip, and the discrete Event-B invariant preservation PO for new mode events works as required,
since all the invariants are true by assumption in its before-state, hence easy to re-verify in the after-state.

We turn to the new concrete pliant events. These are trickier due to the continuously changing
abstract state in a period preceding the new concrete pliant transition. This aspect makes a comparison
between the new concrete pliant event’s guards (at the moment it starts) and the guards of the abstract
event it ref nes (which started earlier), much more questionable.

It was for this reason we split pliant events’ guards into two: the INIT guard, involving pliant vari-
ables and combinations of pliant and mode variables, and the WHERE guard, permitted to involve mode
variables alone. The mode variables in the WHERE guard of the abstract pliant event being ref ned by
a new concrete pliant event, have piecewise constant trajectories which do not change throughout any
transition def ned by the abstract pliant event, no matter how many new concrete pliant events contribute
to the ref nement. Therefore, it is reasonable to construct a guard strengthening PO for new concrete
pliant events that refers just to the WHERE guard variables. Syntactically, we indicate the alternative
guard strengthening tactic via a new event status ‘pliant convergent’.

Invariant preservation is the same for old concrete pliant events and for new ones. In both cases, the
concrete event has to name the abstract event it ref nes, since both the abstract and concrete behaviours

19SOL pjigyc is the formal name of the transition relation O discussed in Section 4.9.
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MACHINE AMch

PLIANT u
VARIABLES x
INVARIANTS 7(u,x)
EVENTS
INITIALISATION
MoEvA,
STATUS ordinary

PliEvA,
STATUS pliant

MoEvAy
STATUS ordinary

PliEvA,
STATUS pliant

MoFEvA3
STATUS ordinary

END

MACHINE AMchR
REFINES AMch

PLIANT w
VARIABLES y
INVARIANTS K (u,x,w,y)

EVENTS
INITIALISATION

MoEvC,
REFINES MoEvA;
STATUS ordinary

PliEVC]
REFINES PIliEvA,
STATUS pliant

MoEvC,
REFINES MoEvA;
STATUS ordinary

PLEVC,
REFINES PlLiEvA,
STATUS pliant

MoEvCy |
STATUS convergent

PLEVC,
REFINES PliEvA,
STATUS pliant convergent

MoEvC; 5
STATUS convergent

PLEVC, 3
REFINES PlLiEvA,
STATUS pliant convergent

MoEvCy
REFINES MoEvA3
STATUS ordinary

END

Figure 5: Syntax for expressing a machine and its ref nement, a fragment of whose behaviour is shown in Fig. 4.

are non-trivial. Moreover the abstract guard, which causes the problems just addressed, does not f gure
in the PO, the formal expression for which is (32).

Next is relative deadlock freedom. If, in a given abstract state, some abstract event is enabled, then
viewed through the abstract and joint invariants, a corresponding concrete state should enable some
concrete event. The requirements are the same for mode and pliant events, expressed in the POs (35) and
(36), two individual POs to maintain the separation between mode and pliant aspects.

The fnal topic in this section is convergence and variants. Suppose that discrete convergence holds
for new mode events via a variant /' def ned on a well-founded set. This gives us relative non-Zenoness;
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if the abstract system is Zeno-free, then the concrete system cannot have a Zeno point at any f nite time.

Now suppose all concrete pliant events last for at least dzeno,c. Suppose a concrete run contains
an unbounded sequence of new pliant transitions, ref ning a single abstract pliant transition. Two facts
follow. Firstly, the unbounded sequence must occur at the end of the run. Secondly, the occurrences of
the new pliant transitions must be interleaved with occurrences of new mode transitions only (since if
not, an old concrete mode transition would ref ne an old abstract mode transition, which would preempt
the single abstract pliant transition, a contradiction).

Likewise, suppose a concrete run contains an unbounded sequence of new mode transitions, part
of the ref nement of a single abstract pliant transition. The new mode transitions must be interleaved
with new pliant transitions only (since if not, an old pliant transition would ref ne an old abstract pliant
transition, implying the original single abstract pliant transition was preempted, a contradiction).

The above shows two things. The frst is that tackling Zeno properties is most prof tably done at
the most abstract level possible, since lower level models may then inherit relative Zeno-freedom. The
second is that with non-Zenoness in both models, concrete divergence takes unbounded time, and implies
an unbounded abstract pliant transition at the end of the run. This is in line with conventional views of
divergence through ref nement.

Thus, convergence in the mode event and pliant event regimes of Hybrid Event-B are closely con-
nected. In practice, it is still often easiest to address convergence in the discrete regime, since it avoids
potential problems around asymptotic approach to convergence in the pliant regime.

In Fig. 5, we give the relevant syntactic details that connect the syntactic descriptions of the various
events in Fig. 4 that we discussed above. These are suff cient to enable a tool to generate the required
POs in the correct form.

Def nition 8.1. A Hybrid Event-B machine MR correctly ref nes a Hybrid Event-B machine M iff for
every system trace SR of MR there is a system trace S of ‘M such that:
(i) If SR occupies the time interval [ty...tang), then S occupies a time interval [ty ...tgy), where

fenR < TpIN-
(ii) Foreach tin [ty...tgng), all the invariants hold.
(iii) At each occurrence of a mode event in S there is an occurrence of a mode event in SR.

9. Proof Obligations

In this section, we gather together the proof obligations discussed above. Of course, the main purpose
of the POs is to give a static guarantee of correctness, and we turn to this aspect at the end of the section.

For clarity below, when dealing with mode events, viewed as taking place instantaneously, we write
just the variable names involved, e.g. u. When dealing with pliant events, viewed as def ning time-
indexed families of before-after pairs of states, we indicate time dependence explicitly. We write e.g. u(7),
while not excluding other forms of time dependence e.g. u(¢ — 1), (provided their use yields piecewise
absolutely continuous behaviours). First we summarise the new status tags introduced earlier.

9.1. New STATUS Tags
For ease of reference, we summarise the various additional status tags introduced through the course
of the paper to indicate various attributes of pliant events.
Tag Remarks ©)
pliant an ‘ordinary’ pliant event
pliant convergent a ‘new’ pliant event of a ref nement

pliant f nal a f'nal pliant event that does not need to enable any mode event
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9.2. Contexts

Contexts def ne the static mathematical apparatus with which machines are specif ed. Contexts can
be extended as in discrete Event-B, which implies that any axioms assumed in an abstract context, must
be proved to still hold in the instantiation provided by the extension. Thus if Stat4 contains the static
def nitions of a context Cony, containing axioms Axioms 4, and Statr contains the static def nitions of a
context Cong, which extends Stat4, containing axioms Axiomsg, the following PO must hold.

Staty N Statg N\ Axiomsg = Axioms (10)
9.3. Machine Initialisation POs

For a machine 4 with variables u, initialisation event /nit, and invariant / to be well defned, the
initialisation PO has to frst of all be feasible:

i/ e Inity (') (11)
so at least one initial state exists. Also, any initial state has to establish the invariants:
Inity(u") = 1(u/) (12)

Primes are used in (11) and (12), since initialisation is regarded as a kind of event in Event-B.

9.4. Machine Consistency POs

Machine consistency begins with feasibility POs for both mode and pliant events. For a mode event
MoEvA, with state variables u, parameters i?,/,0! and guard grdy,g,4, given invariants / and with before-
after-predicate BApredys,pv4(u,i?,1,0!,u"), the PO reads:

1(u) A grdupopya(u,i?,1) = (34’ ;0! @ BApredyppya (u,i?,1,0!,u')) (13)

Note that in (13) we do not use the topological closure of the state space region def ned by grdypg,4, in
line with our remarks in Section 6.12. The topological closure is relevant to the runtime semantics of a
Hybrid Event-B machine, but should be ignored for static verif cation.

For a pliant event PliEvA, with state u, parameters i?,/,0!, INIT guard ivpg,4 and WHERE guard
grdpjipy4, given invariants /, and with before-during-after-predicate BDApredpj;r, 4, feasibility asserts that
there is an open interval given by some tr > tp within which the pliant event specif es a behaviour of
the machine. This means that there is a solution predicate SOLpjiz,4 Which, either solves the differential
equation of, or expresses the direct assignment in, the SOLVE clause of P/iEvA, and that in the interval
(tp...tR), both SOLpjg,4 and BDApredpjg, 4 are jointly satisf ed:

I(u(tr)) A ivprigva(u(ty)) A grdpripva(u(tr))
= (E]ﬂ:R > ﬂ:LO[ (TER—TEL > SZenoPliEvA) A ] (Vﬂ:L <t<tre (Elu(l),i?(t),l(l),o!(t) °
BDApVedp]iEvA(u(l),i?(l),l(f)70!(t),f) /\SOLPliEvA(”(Z)ai?(l)7l(t)70!(l)7t)))) (14)

In (14) the portion in bold square brackets expresses the Zeno property of PliEvA, presuming that
OzenopliEv4 1 a suitable constant. The square brackets indicate that it may be regarded as optional, since
Zeno properties are often so hard to prove statically.

Machine consistency continues with invariant preservation. For mode events, with the conventions
used in (13) we have:

I(u) A grdyopa(u,i?,1) A\ BApredyop,a(u,i?, 10!, u') = 1(u) (15)
Machine consistency also includes invariant preservation for pliant events:
I(u(ttL)) N 1VpliEyv4 (M(TEL)) A grdpjigya (M(TEL)) A (E| tr >t e TRM(TER) A (Vﬂ:L <t< TtR,Z/l(Z),
i2(2),1(t),0!(t) e BDApredpiig,4 (u(t),i?(),1(2),0!(t), ) N SOLpjigy4(u(t),i?(¢),1(t),0!(t),t)))
= (VL <t < trel(u(t))) (16)
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In (16), for a nonf nal pliant event, TRM(tg) signif es that tg is (at least as big as) the preemption time
of a pliant transition specif ed by the event and started at ¢t (i.e. tr records the termination time of the
transition). The minimum value of tR is obtainable via the calculation needed for well-formedness in the
PO (18). For a f nal pliant event, TRM(tg) signif es that (16) must be true for unboundedly large tg.

9.5. Machine Well Formedness POs

Well formedness statically checks that mode and pliant steps alternate during a system run. If « is an
after-state of a transition of mode event MoEvA, then it: disables mode events that do not have inputs’
(by ensuring that the disjunction of those mode events’ guards evaluates to false), and enables some
pliant event (by ensuring that the disjunction of pliant event initial values and guards evaluates to true).

Fug,i9?,1p,00! @ I(ug) A grdnsopva (to,i0?,1o) N BApredyopya (uo,io?, 1o, 00! u) A I(u)
= [ e grdypopyar (u,1) V grdypopvar (u,1) . . . grdypopvan (u,1) | A
[ (ivpiigva1 (u) A grdpiigvar (w)) V (ivpievaz (u) A grdpipva (u)) V ... V
(ivpripvam (1) N grdpripvam(u)) | (17)

In (17), we have simplif ed matters by assuming that all mode event local parameters have the same type.
Dually, if PliEvA is a nonf nal pliant event, then the end of the state trajectory in any of its pliant
transitions enables some mode event. Since pliant transitions do not, typically, become infeasible when
preempted, (18) does not demand that pliant events are disabled. We again simplify (18) a little by
assuming that all the mode event inputs and local parameters respectively have the same types.

I(u(ﬁ;L)) N IVPliEvA (M(EL)) A grdpiigya (M(EL)) A (HER >tpe (VEL <t< ER,u(t),i?(l‘),l(t),O!(l‘) .
BDApredpiip,4(u(t),i?(2),1(t),0!(t),t) AN SOLpjigy4(u(t),i?(t),1(t),0!(t),t) A MAXIMAL(tR) A
—|[ Hi?,l.gl"dMoEvAl (u(t),i?,l) V grdMoEvAg(u(t),i?,l) V...V grdMoEvAN(u(t),i?,l) ]))

—_— —_—

= WELLDEF(TI;R) VAN [ 3i?,1 e grdyiopvan ((u(ﬂlR)),i?,l) \/ngMOEVAz((u(ﬂ:R)),i?,I) V...V
(—=) .,
grdyopvan( u(tr)’,i?,1) | (18)

In (18), the term MAXIMAL(tR) abbreviates the statement that there is no greater value of tg such that
the properties stated in the assumptions hold. Likewise, the term WELLDEF(tR) insists that all variables
have well def ned values at tg, whether through, continuity, discontinuity or left-limit at tg. The PO (18)
covers two cases. In both cases the assumptions state that there is no time strictly less than tg such that
the pliant solution exists and a mode event is enabled. Regarding the conclusions, in the frst case, the
solution exists at (and necessarily beyond) tg, and is either continuous there, or suffers a discontinuity
precisely at tg — in which case the overarrows in the terms u(TR)) are disregarded (indicated by the bold
parentheses surrounding the overarrows), and the actual value u(tg) is used to enable some mode event.
In the second case the solution becomes infeasible at tr, and the left limit is needed. As noted above,
the calculation needed for ty in (18) yields the duration of any pliant transition.

9.6. The Zeno Property

The discussion in Section 4 noted the desirability of non-Zenoness. In fact we already addressed this
in PO (14), since proving it with the Zeno terms for all pliant events gives global non-Zenoness, as the
number of pliant events is f nite.

20The semantics ensures mode event inputs are not available at the same time as previously scheduled mode transitions.
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9.7. Measurability and the Lipschitz PO

Two conditions discussed in Section 4 were the Lipschitz and measurability criteria for differential
equations. Regarding measurability in time of the right hand side of DEs, we can rest easy. Non-
measurable functions require considerable mathematical ingenuity to construct, and do not f gure in
engineering applications.

The Lipschitz criterion is of more relevance. Standard references, e.g. [48], delight in showing the
pathologies that arise regarding existence and uniqueness of solutions to DEs when some aspect of the
Lipschitz condition fails. The easiest way to guarantee it is to demand a uniform Lipschitz bound on the
right hand side of every DE that we have to deal with. Thus, let Dxs = ¢(xs,7) be a DE specifying the
behaviour of some pliant event. Then the uniform bound condition reduces to:

K e V1o [|0(xs1, 1) — Oxsz, 1) || <K |[xsy —xs2 || (19)

where || .|| denotes the £ norm of a real vector, i.e. the maximum absolute value of any of its com-
ponents. Normally, the truth of such a property will follow from generic properties of the class of DEs
being used, so will not normally need to be verif ed explicitly.

9.8. Absolute Continuity in the Direct Assignment Case

Besides differential equations, a pliant event may be specif ed via a direct assignment, for example
xs = E(xs,t). As we stated in Section 5, we demand directly that £ is piecewise absolutely continuous,
so the property we need for xs is immediate.

9.9. Absolute Continuity in the Implicit Case

A pliant event may also be specif ed more indirectly, via the BDApred alone (rather than just using the
BDApred as an additional constraint). Aside from the need for all behaviours to be absolutely continuous,
we do not place further restrictions on what is permitted to be specif ed by this means. While, theoret-
ically, this opens the door to defning a wide range of truly exotic behaviours, in practice these are of
no interest for engineering applications, since the content of BDApred will normally exclude excessively
wild behaviour.

One consequence of permitting ‘pure BDApred specif cation’ is that various POs relating to pliant
events are affected. However, this is rather trivial. Since any piecewise absolutely continuous behaviour
SOL satisfying the BDApred is allowed, the combination BDApred N SOL (this being the only context in
which SOL appears in any PO) reduces to just BDApred in the PO.

9.10. Refnement POs

Suppose that as well as machine 4 as above, we have another machine C, with state variable w, and
joint invariant K(u,w), which is a ref nement of 4. This means that the concrete (joint) invariant is a
relation over both » and w, aligning with the B-Method view that a ref nement is an enhancement of its
abstract counterpart rather than a replacement for it. The next sections cover the relevant POs.

9.11. Refnement Initialisation POs

Concrete initialisation feasibility is:
Iw' e Initc (W) (20)
while correct initialisation of C is relative to A4:

Initc(W) = (3u @ Inity(u') A K(u' ;') (21)
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9.12. Refnement Mode Event Consistency POs

Next are the concrete event POs. Let the concrete mode event that ref nes an abstract mode event
MoEvA is called MoEvC. Let MoEvC have state w, input, local and output parameters j?,k,p!, guard
grdyopyc(w,j?, k), and before-after predicate BApredyopoc(w,j?,k,p!,w'). Then, given the concrete in-
variant K (u,w), event feasibility is:

Jue K(u,w) A grdyop,c(w,j?,k) = (3w, p! @ BApredysop,c(w,j2,k,p!,w')) (22)

Two POs must hold if MoEvC refnes MoEvA. The frst, guard strengthening, states that when the
invariants hold, the concrete guard implies the abstract one:
I(u) A K(u,w) A grdpiopve (w,j?,k)
= (3i?, 1o grdysopva (u,i?,1)) (23)
The second, invariant preservation, also referred to as the correctness PO, reads:
I(u) A K(u,w) A grdype,c(w,j2,k) A BApredypg,c(w,j?,k,p!,w')
= (3i2,1,0",u’ @ BApredyopya (u,i?,1,0!,u') AN K(u',w')) (24)
While the guard strengthening and correctness POs, (23) and (24) express what needs to be true for
MoEvC to ref ne MoEvA, they do not indicate how particular abstract i?,/,0!,u’ are to be found for given
concrete j?,k,p!,w'. This is remedied by providing a witness relation W (u,i?,1,0!,u',w,j? k,p!,w') that
can be used to indicate appropriate values. The witness itself has to be feasible:
I(u) A K(u,w) A grdyop,c(w,j2,k) A BApredyiop,c(w,j?,k,p!,w')
= (3i2,1,0",u' @ W(u,i?,1,0!,u’ ,w,j? k,p!,w')) (25)
Given a feasible witness which is appropriate for the problem, the guard strengthening PO changes to:
I(u) A K(u,w) A grdyiopve(w,j2,k) A W (u,i?, 10! 4 ,w,j2? k,p!,w')
= grdMoEvA (u, i?, l) (26)
while the correctness PO changes to:
I(u) A K(u,w) A grdypoe,c (w,j2,k) A BApredyog,c(w,j2,k,p!,w') A
W(u7 i?7 l? 0! ) u/7w7j?7 k?p!7wl)
= BApredyopya(u,i?, 1,00, u') A K(u',w') 27)
where in (26) and (27), there are no more existential quantif ers to f nd values for.
If machine C has ‘new’ events that ref ne notional abstract skips, then the preceding simplif es. The

abstract state does not change, so there is no abstract input either. This obviates the need for existential
quantif cation, or witnesses. The result is:

I(u) A K(u,w) A grdyeweve(w,j2,k) A BApredyeweve (w,j2,k,plaw') = K (u,w') (28)

New events are normally prevented from ‘taking control of the run forever’, which is achieved by de-
manding that each execution of a new event decreases a variant /. We can retain this criterion in Hybrid
Event-B, and the PO reads:

BApredyeweve(w,j2,k,pl,w') = V(W) < V(w) (29)

A possibility in Hybrid Event-B is the fact that it might be harder to restrict the type of the variant to an
‘obviously well founded’ set. But in engineering applications this can usually be overcome with a little
ingenuity.
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9.13. Refnement Pliant Event Consistency POs

Turning to pliant events, we demand that abstract pliant events are ref ned by concrete pliant events.
We start with relative event feasibility, which again features an optional Zeno term, and is again like the
abstract case, aside from the existentially quantif ed abstract state:

(Fu(ty) o I(u(tL)) A K(u(tL),w(tL)) A vpizwe (w(tL)) A grdpigve (w(tL))
(E]ﬂ:R >t 0[ TtR tp > SZenoPllEvC VAN ] (VTEL <t<tre (HW(Z),]Q(I), ( ),p!(l) °
BDApredPliEvC( ( )7]?( )>k( )’p'( )7 ) A SOLPliEvC( ( )7]?(t)>k(t) (t)vt))) ) (30)

Next is the analogue of guard strengthening. This comes in two forms, differing in whether the term
ivpligy, (u(tr)) is included or not (indicated by enclosing it in heavy square brackets):

I(u(ttL)) N K(M(TEL),W(TEL)) N iVPliEvC(W(ﬂ?L)) N ngPliEvC(W(TtL))
= [ vpigva(u(tL)) A grdpiga (u(ty))

€2))

The conditions for ignoring ivpjig,, (u(tr)) come from ref nement, as discussed in Section 8.
The correctness PO becomes:

I(u(ty)) AK(u(tL),w(tr)) A iveigve (W(tL)) A grdpipve (w(tr)) =
(Ftr > tL @ TRM(tR) A (VL < £ < tr,w(¢),j2(¢),k(1),p!(¢) @
BDApredpjig,c(w(t),j?(2),k(2),p! (), 1) N SOLpjig,c(w(t),j?(2),k(2),p!(2),1))
= (VoL <t < tre(Ju(?),i?(t),(t),0!(z) @
BDApredpiip,4(u(t),i?(2),1(t),0'(£),t) N SOLpjigy4(u(t),i?(2),1(1),0!(2),£) A
K(u(t),w(1))))) (32)

The form of (32) implies a number of things. The main one is that time progresses at the same rate in the
abstract and concrete systems. This is a consequence of citing the same time value in both occurrences
of time in K in the conclusion of the inner (universally quantif ed), implication; and also, of using the
same tr value in both the assumptions and conclusions of this implication (as enforced by the scope of
the existential quantif cation over tg). The termination term TRM(tR) refers to preemption (or nontermi-
nation) of a concrete transition started at ¢t;. So (32) assures us that a simulating pair of pliant transitions
lasts as long at the abstract level as at the concrete level.

The PO (32) suffers from the same problem as (24), namely that there is no indication of how to fnd
suitable u(¢),i?(¢),1(t),0!(t) for any given w(z),;?(¢),k(¢),p!(¢), a situation made worse by the fact that
these quantities now depend on time.

The remedy is the same as before. We introduce W(u(t),i?(¢),[(1),0!(¢),w(¢),j?(¢),k(¢),p!(2)), a
pliant witness relation, to point the way. Note that guard strengthening no longer requires a witness,
since it does not involve any of the parameters in the pliant case.

The witness relation W (u(t),i?(¢),1(t),0!(¢),w(t),j?(¢),k(¢),p!(?)) has to be as feasible as the con-
crete transition needs to last:

](u(ttL)) AN K(M(EL),W(TEL)) AN iVPliEvC(W(TtL)) AN g}"dp/l'Evc(W(TtL)) =
(Ftr >t @ TRM(tR) A (VL < ¢ < tr,w(¢),j2(¢),k(),p!(¢) @
BDApredpjig,c(w(t),j?(2),k(2),p! (), 1) N SOLpjig,c(w(t),j?(2),k(2),p!(2),1))

t
= (VoL <t <tre (Ju(r),i?(t),1(t),0!(r) o W(u(t),12(1), (1), 01(¢), w(t),/2(1),k(2),p!(1)))))
(33)
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With the help of the witness, the PO (32) becomes:

T(u(tp)) A K(u(ty),w(tr)) A iverigve(w(tL)) A grdpripse (w(tL)) =
(Ftr >t @ TRM(tR) A (VL < £ < tr,w(¢),j2(¢),k(),p!(¢) @
BDApredpiiguc(w(t),j2(1), k(1),p!(1), 1) AN SOLpiigvc(w(t),j2(t),k(1),p! (1), 1) A
W (u(2),i2(2), 1(2),01(2), w(t),j?(2), k(2),p!(2)))
= (VL <t<tre
BDApredpiipya(u(t),i2(2),1(t),0!(t),t) A SOLpiigva(u(t),i?(2),1(¢),0!(t),t) A
K(u(t) () (34)

9.14. Refnement Relative Deadlock Freedom POs

Acting in tandem with feasibility, relative deadlock freedom guarantees that, despite guards being
individually strengthened during ref nement (see (24)), all together (i.e. taking new events into account)
the concrete system is enabled ‘at least as much’ as the abstract one.

For mode events, utilising the witness relation W (u,i?,1,0!,u',w,j?, k,p!,w') given earlier, and as-
suming at both levels that all events have the same parameter types, the PO reads:

I(u) A K(u,w) A (3ol,plu . w e W(u,i?, 10!t ,w,j2,k,pl,w')) A
[ grdmorvar (u,i2,1) V grdyopvan (u,i?,0) V ...V grdyopyan (u,1?,1) ]
= grdyorvct (Wi, k) NV grdyoevcr (w,j2,k) V ...V grdyorvem (W, ?, k) (35)

We also demand relative deadlock freedom in the continuous sphere. Note that we don’t need a
witness here, since pliant events do not have parameters that can be sensed at the initial instant of a pliant
transition.

I(u) A K(u(te), w(te)) A [ (iveigear (u(tL)) A grdpigear (u(te))) v
(ivprigvaz (u(tL)) A grdpripvaz (u(tr)) V ...V (ivpiigvam (u(tr)) A grdprigvan (u(tr)) |
= [ (ivpieve1 (w(tL)) A grdpripver (w(tL))) V (iveievca(W(tL)) A grdpiigvca (w(tL)) V ... V
(ivpiieven (w(tL)) A grdpripven (w(tL)) | (36)

9.15. Correctness

The objective of having static POs is to enable us to conclude, statically, that runtime errors do not
occur. In this section we examine some correctness properties that follow from the POs above.

Theorem 9.1. Let M be a Hybrid Event-B machine. Suppose that no event (whether mode or pliant)
has an inconsistent specif cation for the update of any variable. Suppose that the POs listed earlier in
this section hold. Then the Hybrid Event-B machine M is correct according to Def nition 7.1.

Proof: 1t will be suff cient to go through the steps of the formal semantics in Section 7, and to conf rm that
the static properties assumed are suff cient to ensure that the ABORT or VOID cases are never encountered.

Regarding step [2], we assume that initialisation assigns values to all variables, consistent with the
invariants.

Next, the mode-to-pliant machine well-formedness PO (17) guarantees that no mode event without
inputs is enabled, passing step [3]; it also guarantees that there is an enabled pliant event governing the
subsequent behaviour, passing step [4]. The check in [4.1] is passed, by assumption.

Pliant event feasibility, (14), ensures that in step [5], some nonempty interval (f...4ax) can be
found, leading to a choice of explicit solution for some maximal #,x in [6]. Step [6.1] is unproblematic.
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If no mode event becomes enabled during (or at the end of) the interval (¢ ... #yax) then, the invariant
preservation PO (16) guarantees successful termination at #y,x, by [7].

Otherwise, the next cycle of execution starts, and step [8] determines the next preemption point
t+1. PO (18) guarantees that however this preemption point is determined, whether by continuous
or discontinuous behaviour assigning variable values, or by left-limit values at the end of a region of
feasibility, all variables are well def ned and enable a non-INITIALISATION mode event. Step [10.1]
determines the set of enabled non-INITIALISATION mode events at #,,, and step [10.2] chooses a mode
transition selected from them. Step [10.3] completes the (re)def nition of variable values at #,. Because
of PO (18), none of these steps can ABORT. Finally, step [10.4] cleans up the time interval (f,...fyvax)-
The proof then continues as from the third paragraph above, though it deals with a generic #, instead of
to. We are done. O

Note that the above proof, while asserting correctness as in Def nition 7.1, does not assure the absence
of Zeno phenomena, unless we are able to include the 8zenopsiey4 terms in the POs that contain them. Note
also that mode event guard closure was never mentioned in either the POs or the proof. Although it is
useful for runtime semantics, it may give rise to phenomena beyond the reach of static verif cation.

Theorem 9.2. Let M and M R be Hybrid Event-B machines. Suppose the conditions of Theorem 9.1 are
satisf ed for both machines. Suppose that the ref nement POs hold for M and MR. Then MR ref nes M
in the sense of Def nition 8.1.

Proof: The proof proceeds by induction. Let SR be a system trace of M R, given by a collection of time
dependent valuations for all the variables of MR over an interval [fy...t:ng). We show that we can
simulate SR by a system trace S of M, such that all the invariants of both machines hold, and at each
occurrence of a mode event in S, there is an occurrence of a mode event in SR.

System trace SR starts with an initial state satisfying M R’s invariants, and the initialisation ref ne-
ment POs ensure a corresponding M initial state satisfying M ’s invariants. Thereafter, pliant transitions
and mode transitions alternate in SR. POs (30)-(32) ensure that the f rst pliant transition of SR can be cor-
rectly simulated until it is preempted by the next mode transition of SR. (That the abstract system trace
S cannot be preempted sooner than the next mode transition of SR follows by the mode event relative
deadlock freedom PO (35), which would enable an A R mode event, forcing an earlier SR preemption.)

Then POs (22)-(28) ensure that the mode transition is correctly simulated, whether by an ‘old’ ab-
stract transition or by a ‘notional skip’, both of which preserve the invariants. The subsequent pliant
transition of SR may be for an ‘old” or a ‘new’ event. In both cases, given that this SR transition is fea-
sible by assumption, the ref nement correctness PO for pliant events (32) guarantees that the simulating
abstract pliant transition is feasible and executes, preserving the invariants. (In particular, in the case of
a ‘new’ event simulated by a ‘notional skip’, it prevents the previous abstract transition from becoming
infeasible precisely at the moment of preemption.)

The inductive process continues to cover all of the interval [fy...#:ng), giving a simulating abstract
system trace S lasting at least as long as SR. It is also clear that for each mode transition in S (disregarding
the notional skip’ transitions) there is a mode transition in SR which gave rise to the S transition through
simulation. We are done. O

We point out that although the above account discussed machines in terms of their state variables
alone, similar considerations apply when events feature parameters. (This typically necessitates suitable
existential claims in the hypotheses regarding inputs etc.).
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MACHINE Bouncing
SEES BounceCtx DeadBall
TIME ¢ STATUS ordinary
PLIANT #,v WHEN mode = bouncing Nh =0 A
VARIABLES mode V<0 AV < Elgy
INVARIANTS THEN mode = dead
mode € MODES END
heR FINAL
hel0...H] STATUS pliant f nal
veR WHEN mode = dead
EVENTS SOLVE 4 =0
INITIALISATION v =0
STATUS ordinary END
WHEN =0 END
THEN
mode = bouncing CONTEXT BounceCtx
h = ho SETS MODES
V=W CONSTANTS bouncing,dead
END ho,vo,8,¢,H, Eiow
Episode AXIOMS
STATUS pliant ) MODES = {bouncing, dead}
WHEN mode = bouncing ho €RA By > 0
SOLVE Dh=v vo €R
END Dv=-g g€RAg>0
ceRAce(0...1)
Bounce , HERANH>0
STATUS ordinary Eiow € R A Ejgy > 0
WHEN mode = bouncing N h =0 A END
v<0
THEN v := —cv
END

Figure 6: A Hybrid Event-B machine for the bouncing ball.

10. Case Studies

In this section we look at a number of relatively small case studies that illustrate the framework we
have described previously. Somewhat larger case studies can be found in [12, 11, 9, 10].

10.1. The Bouncing Ball

We treat a favourite example, the bouncing ball — a nice account can be found in [38]. A pointlike
ball of unit mass is subject to gravity g, and bounces vertically over some point on a horizontal surface,
starting at time ¢ = 0. The ball’s height above the surface is /(¢), initially set to 49 > 0 at ¢ = 0, and its
vertical velocity is v(¢) (positive values indicating upward movement), initially vy at # = 0. Whenever the
ball hits the surface, the speed diminishes by a factor ¢ < 1, and the kinetic energy by a factor ¢>. When
the ball’s energy is low enough, the bounce may simply absorb all the energy, leaving the ball stationary
on the horizontal surface.

To understand this ball’s behaviour, let us consider a single full bouncing episode, with the ball
leaving the surface with velocity ¥. Such an episode reaches a height / given by gh = %172, since this
expresses the conversion of pure kinetic energy at the surface to pure potential energy at the highest point.
Since the energy is diminished after the ball returns to the surface, the maximum height reached during
any individual full episode is an upper bound for any remaining dynamics of the ball. Therefore, if we
wish to impose an invariant such as /(¢) < H (where H is a constant), it is suff cient to check whether the
property is maintained through the frst (partial) episode, and through the next (full) episode.
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At time ¢ = 0 the energy is ghy —I—%vg. This becomes pure kinetic energy when the ball reaches the
ground, at which point it has a velocity —vy.x given by:

Vmax = {/2 <gh0 + %‘%) (37)
If the ball happened to be moving upwards at ¢ = 0, then it would reach a height /,x given by
Zhmax = %vzmax, and this would be the maximum height it would ever reach. If the ball was moving
downwards at = 0, then it would lose speed by the factor ¢ upon bouncing, and, rebounding at a
velocity ¢vmax, would subsequently reach a maximum height 45 given by gl = %(c Vmax)>. These
facts provide the basis for a case analysis that determines whether an invariant like 4(¢) < H is respected
or not, depending on the initial values. (Of course the above account depended on our knowing about
energy and its conservation, allowing us to shortcircuit a more laborious solution of the system as might
be performed by an unsophisticated mechanised reasoner, which would simply integrate the equations
episode by episode, arriving eventually at the same conclusions.)

A Hybrid Event-B model for the system appears in Fig. 6. The context BounceCtx collects all the
easy-to-forget facts concerning the constants that play a role in the system, without which the observa-
tions made above would not be provable. The INITIALISATION synchronises real time to 0, and assigns
the other variables their initial values. The Episode pliant event describes a bouncing episode. It has no
constraints on the initial values of variables except that it checks that the mode is bouncing. Mode event
Bounce discontinuously fips the velocity of the ball when it hits the horizontal surface, and when the
energy of the ball is small enough (< Elow), instead of bouncing, the ball has the option of resting on
the horizontal surface and enabling the FINAL pliant event that brings the dynamics to an end.

Without the mode event DeadBall, the system would exhibit Zeno behaviour — the system’s energy
is conserved except at bounces, and since each bounce depletes the energy by a multiplicative factor ¢,
an inf nite number of these would be needed to consume all the energy. Since the duration of a bouncing
episode is proportional to the ‘lift-off energy’, successive episode durations would be similarly reduced,
leading to a Zeno point at a f nite point in time. Note that this illustrates well the fact that Zeno behaviour
is generally intimately connected with reachability.

With DeadBall, Zeno behaviour is not excluded — it could be though, by strengthening the guard of
Bounce to exclude bouncing at low energy.

The bouncing ball also illustrates the utility of allowing mode event guards to def ne non-closed
regions of the state space, even though such mode event guards are potentially reinterpreted as their
closure at runtime. In the event Bounce, the guard, mode = bouncing N h =0 A v < 0 specif es a non-
closed region, its closure being mode = bouncing N h =0 A v < 0. Statically, the after-state established
by Bounce in the case that v = 0 is the same as the before-state, so re-establishes the guard of Bounce,
and causes a failure of the PO (17). Dynamically though, we know that v = 0 cannot be reached after
any f nite number of events if vy # 0, so insisting on statically closed guards would lead to inconvenient
modelling metaphors.

10.2. A Simple Ref nement-Based Discretization Example

In this example, we examine a simple case of discretization. In the left part of Fig. 7, there is a simple
Hybrid Event-B machine ExUp. It has a single mode variable md and a single pliant variable x. As well
as time ¢, we have a clock variable clk, included to show the syntax. The mode variable md has two
possible values, stat and dyn. Time is def ned as the non-negative reals, and x has values in the closed
interval [0...10].

Machine ExUp has four events: INITIALISATION, IncPli, Stop, FINAL. Upon initialisation, which
is synchronised with time 0, the clock is set to 1, the mode md becomes dyn, and x is set to 0. Upon
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MACHINE ExUp

STATUS ordinary

STATUS pliant

WHEN md = dyn

STATUS ordinary

STATUS pliant f nal

MACHINE ExUpR
REFINES ExUp

TIME ¢ TIME ¢

CLOCK clk CLOCK clk

PLIANT x PLIANT w

VARIABLES md VARIABLES md

INVARIANTS INVARIANTS
md € {stat,dyn} md € {stat,dyn}
1€[0...00) 1e[0...00)
xe[0...10] we0...10]

w=|x|

EVENTS EVENTS

INITIALISATION INITIALISATION

STATUS ordinary
REFINES INITIALISATION

WHEN =0 WHEN =0
THEN THEN
md = dyn md = dyn
x =0 w =0
clk =1 clk =1
END END
IncPli IncPli

STATUS pliant
REFINES IncPli
WHEN md = dyn

SOLVE Dx=1 SOLVE skip
END END
IncD IncD
STATUS ordinary STATUS ordinary
WHEN e NA WHEN e NA
te{l...9} te{l...9}
THEN skip THEN w = w+1
END END
Stop Stop

STATUS ordinary
REFINES Stop

WHEN =10 WHEN =10
THEN md = stat THEN md = stat
w = w+1
END END
FINAL FINAL

STATUS pliant f nal
REFINES FINAL

WHEN clk =11 WHEN clk =11
COMPLY skip COMPLY skip
END END

END END

Figure 7: A simple example of discretization via ref nement.

md becoming dyn, the pliant event /ncPli becomes enabled, which causes x to increase at a steady rate
since its derivative is set to 1. The clock c/k also increases at this rate, by def nition. The behaviour of
IncPli continues for 10 time units, whereupon the mode event Stop changes the mode to stat disabling
IncPli. By this time, the clock has reached 11, which enables the pliant event FINAL, which takes over,
maintaining the value of x unchanged for the rest of time.

Shown in a box, indented, is a ‘notional skip’, /ncD, that will be refned to a real mode event in
machine ExUpR. It is included to illustrate that, unlike for discrete Event-B, the notional skip has to
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Figure 8: The European Train Control System. A movement authority, def ned by its endpoint M4, start braking position SB,
and start talking position ST; dividing the track into a far region, a re-negotiate region, and a correction region (together with
the transition diagram for the corresponding modes).

be envisaged as happening at some specif ¢ time(s), because the real events that ref ne them, do have to
happen at specif c times.

Machine ExUp is ref ned to ExUpR. The main feature of this ref nement is the introduction of pliant
variable w, and joint invariant w = |x|. In ExUpR, event IncD is now a real event, and machine ExUpR
evidently has shorter /ncPli pliant events (of duration one time unit instead of ten), since /ncD preempts
the ref ned IncPli frequently.

Event IncD refnes the notional skip. Note that despite the discontinuity that the concrete IncD
specif es, it does nevertheless ref ne skip. To see this better, consider a small interval surrounding ¢ = 5.
The behaviour of x is continuous through ¢ = 5, consistent with a skip taking place at any chosen moment,
including ¢ = 5. On the other hand, the behaviour of w jumps froﬂ} to 5Satt=75. Just before t =5, we

have x < 5, so |x| = w =4, a fact that persists to the left limit: |x]|(5) = VTS)) =4. Butas soon as ¢ = 5,
then x = 5 holds, so |x](5) = w(5) = 5. These two facts conf rm that the behaviour of w ref nes skip at
t=>5.

Observe that this example illustrates a particularly benign instance of discretization. The previously
smooth (but non-trivial) behaviour of /ncPli and trivial behaviour of (the notional) /ncD, is replaced by
a trivial behaviour of /ncPli and non-trivial behaviour of /ncD. This is a typical ‘zero order hold’, in
which boundary values of pliant transitions corresponding to isolated observations and actuations, def ne
constant behaviour in the next interval.

10.3. The European Train Control System

In our last example we present a simple treatment of the European Train Control System (ETCS),
broadly based on the models in [38]. For ease of comparison, we use the same notations as [38] for
variables where possible (even though this strays beyond the usual lexical conventions of Event-B).

Unlike older train control systems which confned trains to a succession of statically defned rail
track sections, with consequent latencies when crossing section boundaries, the rail track is organised
into dynamically controlled movement authorities. The key invariants are that distinct movement
authorities are always disjoint, that each movement authority contains (at most) one train, and that
each train is in some movement authority. If these are always maintained, then trains cannot collide.

Fig. 8 shows a movement authority. The movement authority is split into successive regions far, neg
and cor, the last of which terminates the movement authority at limit MA4. Within far the train can travel
freely. When point ST (start talking) is reached, which is the boundary between far and neg, the train
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Figure 9: The European Train Control System. A generalised movement authority, def ned by its recommended speed limit
m.r, end position m.e and demanded speed limit (at end) m.d. This is used to control the train parameters: train acceleration
T.a, train speed T.v, and train position T.p. The essential safety invariant is T.p > m.e = T.v < m.d.

enters the negotiation region, and starts to negotiate with the Radio Block Controller (RBC) about an
extension to the movement authority. If this is successful, then the movement authority is extended and
the train once more fnds itself in a new far region. If the negotiation is unsuccessful for some reason
(e.g. unreliable communication, or an emergency situation beyond MA), and the train crosses the point
SB (start braking), it fnds itself in the cor (correction) region, at which point it goes into emergency
braking mode. The design is such that emergency braking must bring the train to a standstill before MA.
Once the train has stopped, manual intervention is needed to restart the system.

Following [38], we actually model a generalised movement authority, shown in Fig. 9. This formu-
lation checks whether the emergency braking distance in the cor region (modelled by train variable T.sb)
is adequate, by reconciling it with the other dynamical variables of the train motion.

The heart of the model consists of train variables and movement authority variables, supported by
suitable constants and other variables. The train variables are T.p, T.v and T.a which represent the current
position, velocity and acceleration of the train, respectively, together with the train emergency braking
distance T.sb (which corresponds to MA — SB earlier). The movement authority variables are m.r, m.e
and m.d. These represent respectively the recommended speed (in what would correspond to the far
and neg regions of the earlier model), the movement authority endpoint (corresponding to MA earlier),
and the demanded speed at the endpoint (corresponding to the maximum permissible speed when the
endpoint is reached).

The object of the exercise is to ensure that m.sb is of suff cient length, that should it happen that the
train passes the SB point, maximum deceleration is capable of reducing the speed to no more than m.d
by the time m.e is reached, i.e. to maintain the invariant T.p > m.e = T.v < m.d.

We now describe a Hybrid Event-B machine to capture this situation. The static data is in the CON-
TEXT ECTS_Ctx in Fig. 10. It contains the normal and emergency mode constants, and the emrg and
newMA message values. It also contains the maximum train deceleration » and maximum train accelera-
tion 4, and also €, which is the polling interval.>! In addition, it contains two static functions, bd and od,
which we will need later.

The ETCS_Mch machine itself is in Fig. 11. Aside from variables already mentioned, there is a
clock 7t.clk to implement the polling. Note that only t.p and t.v are declared pliant since they change

2lwe follow [38] in having a top level model which is already a polling model. An alternative approach, which will be pursued
elsewhere, starts with a ‘more continuous’ abstract top level model, and introduces polling further down the development.
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CONTEXT ETCS_Ctx

SETS MODES, MSGS bERADL>O0

CONSTANTS AERAA>0
normal, emergency ecRAE>0
emrg deRXR—HRZ
b,A,e Xy
bd, od Yxyebdlxy) ==

AXIOMS odeR—R 1
MODES = {normal,emergency} Vzeod(z) =ze+ EAI»:2
MSGS = {emrg,newMA} END

Figure 10: Static data for the European Train Control System.

continuously. Other variables are piecewise constant (albeit having values in R), so are mode variables.
An important feature of Fig. 11 is inv9, which expresses the key safety property, T.p > m.e = t.v < m.d.

We now consider the behaviour of the system. The radio block controller has the exclusive mode
event EMERGENCY, to declare that emergency braking is required, and participates in the mode event
MOVEMENT_AUTHORITY, whereby new data are assigned to the movement authority, and the train
simultaneously reacts by updating its emergency braking point T.sb. Both mode events have input pa-
rameters, so, according to the semantics, the needed values become available at undetermined times that
do not clash with any other mode event occurrences. Note that EMERGENCY can only occur once.
Having happened, an emergency brings the system to rest, completing the dynamics.

Turning to the MOVEMENT_AUTHORITY event, we see that when prompted by the receipt of the
input parameter newMA from the environment it reassigns the movement authority variables, m.r, m.e,
m.d, according to nondeterministically chosen values r,e,d, subject to some restrictions as follows.
Firstly, the event can only take place in normal mode. Secondly, the values assigned must all be positive,
consistent with the restriction that, when under automatic control, the train can only move forwards.
Thirdly, the new values for m.» and m.d must satisfy » > d, i.e. the recommended (i.e. cruising) speed
is greater than the demanded (i.e. limiting) speed, which is also expressed in inv8. This is a natural
property to expect, and although not essential, it simplif es some case analysis below. Fourthly, there are
two further dynamical restrictions on the new movement authority values.

To understand the frst, there is a requirement that any update to a movement authority must be no
more demanding than its predecessor, in case the train is already braking as hard as it can in order to
remain within the current movement authority. Consequently, if the new demanded speed d is greater
than the current one m.d, then since the train is (by assumption) guaranteed to be capable of remaining
within the current movement authority (i.e. to not go past m.e), we need only ensure that the new endpoint
e is no earlier than the current one, (d > m.d = e > m.e).

To understand the second, consider the following. When ideal one-dimensional motion is governed
by acceleration that is piecewise constant over time, then velocity is piecewise linear over the same
time periods within which the acceleration is constant, each piece with respect to an origin of time
appropriate to ensuring continuity (though not differentiability) of the velocity as a whole. Furthermore,
in this situation, position is piecewise quadratic, again over the same time periods within which the
acceleration is constant, and such that each piece is quadratic with respect to the same origin of time
that applied to the velocity, and with an initial value that ensures continuity (though not differentiability
beyond f rst order) of the position as a whole. Thus, during a period of constant ac- or de- celeration a,
the velocity behaves like v = at and the position like d = dj + %at2, with respect to an appropriate origin
for time #, and initial position do. Eliminating ¢, we fnd d = dy +v*/2a, so that over some period of
constant celeration where the velocity does not cross 0, we have:
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MACHINE ETCS_Mch cee e
SEES ETCS_Ctx DRIVE

CLOCK t.clk STATUS pliant
PLIANT WHEN 1t.clk=0
Tp,T.V COMPLY tv>0A
VARIABLES Tk <e
T.a,T.sb SOLVE Dtv=1a
mode Drip=1v
m.r,m.e,m.d END
INVARIANTS SPEED_OK
imd:tpeRATp>0 STATUS ordinary
imvl :tveERATV>0 ANY a
im2:tac€RATac[—b... A WHEN

im3:tsbeRATsb>0
invd : mode € MODES

t.clk = € A mode = normal N\
m.e—1Tp>T.sb ATy <mrA

msg? € MSGS N\ msg? = emrg N\
mode = normal

THEN mode = emergency

END

inv5:m.r € RAmr>0 ac[—b... A
im6:mecRAme>0 THEN t.a == a
il -mdeRAmMd>0 t.clk =0
invd :m.r > m.d END
im9:tp>me=1T.v<md SPEED_HIGH
EVENTS STATUS ordinary
INITIALISATION WHERE
STATUS ordinary t.clk = € \ mode = normal N\
BEGIN m.e—1Tp>T.sbAT.v>mr
t.clk =0 THEN t.a :== —b
T.p,T.v = 0,0 t.clk =0
T.a,T.sb = 0,0 END
mode = normal AUTOMATIC_TRAIN_PROTECTION
m.r,;m.e;m.d = 0,0,0 STATUS ordinary
END WHEN
MOVEMENT_AUTHORITY T.clk =€ A\ (mode = emergency V
STATUS ordinary m.e —T.p < T.sb)
ANY msg?,r,e,d THEN 7t.a := —b
WHERE t.clk == 0
mode = normal N\ END
msg? = newMA N\ FULL_STOP
reRAr>0A STATUS ordinary
ecRAe>0A WHEN 1.v = 0 A mode = emergency
deRANd>0A THEN t.a =0
r>dAn tclk =0
(d>m.d=e>m.e) A END
(d<m.d=e>m.e+ (m.d —d*)/2b) FINAL TRAIN
THEN STATUS pliant f nal
m.r,m.e,m.d = r,e,d WHEN
T.5b = bd(r+4e,d) +od(r) T.clk = 0 N mode = emergency N
END Tv=0AT.a=0
EMERGENCY COMPLY skip
STATUS ordinary END
ANY msg? END
WHERE

Figure 11: A Hybrid Event-B machine for the European Train Control System.




difference in squared velocity

relative displacement = (38)

2 x celeration

where both the numerator and denominator of (38) are positive.

Returning to the last MOVEMENT _AUTHORITY guard, if the new demanded speed d is less than the
current one m.d, then for the new endpoint e, we must allow an extra distance at least enough to permit
maximum braking to successfully bring the train down to velocity d in the worst case. The worst case
is given by assuming that the train started braking as hard as possible as late as possible to still remain
within the current movement authority. In that case, when the train arrives at the current endpoint m.e,
it will be travelling at velocity m.d, by def nition. Therefore, to be going at d by the time e is reached,
we must add at least (m.d? — d?)/2b extra displacement onto m.e to remain feasible, where b is the
maximum braking deceleration. Hence (d < m.d = e > m.e+ (m.d? — d*)/2b). We discuss the update
to t.sb in MOVEMENT_AUTHORITY later.

The remaining events refer purely to the train. The only non-f nal pliant event is DRIVE, which is
scheduled whenever the clock is reset to 0, and lasts for a period t.clk < €. At the left limit of the endpoint
of this period, various mode events can become enabled (via a guard T.clk = €), so by the semantics in
Section 7, such events can continue the system trace. The DRIVE event itself merely stipulates that the
train follows the laws of Newtonian mechanics during any pliant transition specif ed by this event.

The event SPEED_OK stipulates that in normal mode, at the end of a polling interval, if the train’s
current speed does not exceed the recommended maximum and the train has not reached the emergency
braking zone, the acceleration for the next polling interval can be set arbitrarily between its static mini-
mum and maximum values. The clock is reset and DRIVE is re-enabled for the next polling interval.

The next event is SPEED_HIGH. If, in normal mode, at the end of a polling interval, the train’s
current speed exceeds the recommended maximum and the train has not reached the emergency braking
zone, the acceleration for the next polling interval is set, for simplicity, to its static minimum. The clock
is reset and DRIVE is re-enabled for the next polling interval.>?

If, by the end of a polling interval, the mode has been set to emergency or the emergency braking
zone has been entered, then in the next event, AUTOMATIC_TRAIN_PROTECTION, the acceleration
is set to maximum braking and the clock is reset. The actions of this event are identical to those of
SPEED_HIGH in this very simple model (essentially for the reasons explained in footnote 22).

The last mode event, FULL_STOP, is triggered in emergency mode when the velocity reaches 0, at
which point the acceleration is set to 0 too, and the train’s motion stops, enabling the fnal pliant event
FINAL_TRAIN, which keeps the train at rest indef nitely henceforth.

We return to the MOVEMENT _AUTHORITY event. The job of the train’s portion of the event is to
update its start braking variable t.sb, so that it remains consistent with the requirement of being able to
decelerate to the new demanded speed d by the time the new endpoint of the movement authority e is
reached.

Before resolving the implications of this we observe that if the train is travelling at velocity T.v, then
by (38), to reduce speed to m.d (assuming that the train is braking at rate b and that T.v > m.d) requires
a braking distance:

22N.B. In [38], for the corresponding situation, braking is set arbitrarily between —b and 0 (i.e. it permits no braking at all in
extremis), but the ensuing safety discussion of the system is always phrased in terms of the train choosing maximum braking
when appropriate. This is in line with the control engineering concern of controllability, i.e. the ability to choose a suitable
behaviour for the system under particular circumstances by suitably assigning the controlled variables. This approach amounts
to an angelic choice of course. In the B-Method, system behaviour is always analysed with respect to demonic choice, so we
have made the behaviour here more deterministic in order to more easily address the safety requirements.
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T2 —m.d?

bd(T. d) = 39
(T V? m ) 2 X b ( )
This means that at all times it must hold that,

bd(t.v,m.d) < T.sh (40)

i.e. (40) must be an invariant.

To go from this to a safety property and to a safe assignment of tT.sb in MOVEMENT_AUTHORITY ,
we must relate (40) to the data of a movement authority, to the timing of events in the train, and to how
movement authority data changes during the MOVEMENT_AUTHORITY event.

If the train is travelling at velocity T.v and T.v < m.r, then the maximum speed attainable (within an
unchanging movement authority) is m.» + 4¢€. This is because the only event that can make the acceler-
ation positive is SPEED_OK, and this event is still enabled when t.v = m.r. At that point SPEED_OK
might choose to set T.a to as much as 4, which could increase the speed to as much as m.r + A€ over the
next polling interval. After that, SPEED_OK will be disabled and the only other mode events all make
T.a nonpositive; so speed m.r + A€ cannot be exceeded.

In going from m.r to m.r + A¢ the train travels an overshoot distance which is at most:

1
od(m.r) =m.re +§A82 (41)
Therefore, if T.v < m.r holds at some point and the movement authority does not change, then

bd(m.r + Ae,m.d) + od(m.r) < T.sb (42)

represents a safe static weakening of (40) for the remainder of the movement authority. (Note that we
have used inv8 here.)

Alternatively, if the train is travelling at velocity T.v and T.v > m.r, then on the next polling occur-
rence, the train will be compelled to reduce speed to m.r. During this speed reduction the train will travel
a distance, at most:

bd(t.v+ Ag,m.r) +od(1.v) (43)

and, if m.e is close enough and deceleration is to continue down to m.d, it will require a further distance
of bd(m.r,m.d) to reach demanded speed, making a total of bd(t.v+ Ae,m.d) + od(T.v).

The above facilitates a case analysis for determining a safe value of t.sb when the movement author-
ity is updated to a new tuple of values r, e, d.

If T.v < r, then we can use the frst case above to set T.sb to bd(r + Ae,d) + od(r). If T.v > r, then
we can rely on SPEED_HIGH or AUTOMATIC_TRAIN_PROTECTION to ‘immediately’?? start braking
to reduce the speed to r. After that, an assignment of t.sb to bd(r + 4€,d) + od(r) will take care of
deceleration to demanded speed when needed. Thus the value to be assigned to T.sb is the same in
both cases, although the justif cation is different in the two branches. This completes our discussion of
MOVEMENT _AUTHORITY and of the ECTS case study.

23‘Immediately’ means within an overshoot tolerance of od(t.v) which will have been allowed for in a preceding movement
authority.
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10.4. Some Behaviours of the ETCS Hybrid Event-B Machine.

Superf cially all seems well. However, when we look at things in more detail, potentially undesirable
system behaviours become apparent.

Consider the following system behaviour SB1. The system is initialised. During the frst polling
interval nothing changes (except the clock). At the next mode transition, SPEED_OK is enabled, chooses
T.a = A and is scheduled; the train starts to accelerate. At the end of the next polling interval the invariants
are checked and since the speed is now Ag, invariant inv9 fails. Therefore SB1 ABORTs. We conclude
that the ETCS machine cannot be correct according to the criteria in Def nition 7.1.

Now consider system behaviour SB2. The frst polling interval is as in SB1. At the next mode
transition, SPEED_OK chooses T.a = 0; the train remains stationary. Subsequent mode and pliant tran-
sitions are replicas of these two. The completely stationary behaviour carries on indef nitely. Since no
ABORT is encountered, we conclude that the ETCS machine is at least non-void according to the criteria
in Def nition 7.1.

The reason for the failure of SB1 is not hard to fnd. The initialisation of t.sbh did not take into
account the more delicate reasoning that revealed the need for od in calculating T.sb.

Now consider system behaviour SB3[t.sb/0d(0)], in which we change the initialisation so that T.sb
is initialised to od(0). Now, after the frst polling interval (during which, the only thing that changes is
the clock), only AUTOMATIC _TRAIN_PROTECTION is enabled and 7.a is set to —b. In the next polling
interval DRIVE is infeasible since, with an initial velocity of 0 and negative T.q, it becomes impossible
to COMPLY with 1.v > 0 for any f nite time. So SB3[t.sb/0d(0)] also ABORTs.

Consider next system behaviour SB4, in which, exactly at the end of the f rst polling interval (i.e. the
frst occurrence of t.clk = €), a MOVEMENT_AUTHORITY event occurs which sets the movement au-
thority data to ‘sensible values’ that permit the train to move forward while maintaining the invariants.
Suppose the train reaches the emergency braking zone, i.e. AUTOMATIC_TRAIN_PROTECTION be-
comes enabled. The train decelerates, and suppose its velocity reaches 0 when the clock reads t.clk =
€/2, making the DRIVE event no longer feasible. Suppose no mode event occurs at this time. Then we
have successful f nite termination.

Now consider system behaviour SB5. This is just like SB4, but when the train has stopped mid-
way through a polling interval at T.clk = €/2, a MOVEMENT _AUTHORITY event occurs precisely at
that moment (because the environment produced suitable r, e, d values just then) that sets the movement
authority data to some new sensible values that (in their own terms) permit sensible progress of the train.
After the MOVEMENT AUTHORITY event occurrence, the DRIVE pliant event is disabled (because
T.clk # €). Since there is no other enabled pliant event after the MOVEMENT_AUTHORITY event, the
semantics causes an ABORT.

Finally, consider system behaviour SB6. This is like SBS, except that the original movement au-
thority data are such that the train comes to a standstill at a polling interval boundary, i.e. T.clk = €.
A MOVEMENT_AUTHORITY event occurs precisely then, reassigning the movement authority data to
new sensible values. This time the train can continue moving according to the new data and there is no
ABORT.

The above scenarios, consequences of a fairly uncritical transliteration of the ECTS case study in
[38], serve to show a number of things. Firstly, they illuminate some of the darker corners of the Hybrid
Event-B semantics of Section 7. This, although giving a defned behaviour for all Hybrid Event-B
projects is, in practice, such that we would want to exclude the more undesirable of the possibilities
via suitably stringent static checks. Secondly, the uncritical transliteration discarded a number of the
properties inherent in the original d£ programs in [38]. For example, in the original treatment of [38],
MOVEMENT_AUTHORITY was only scheduled at polling interval boundaries, and also, AUTOMATIC_
TRAIN_PROTECTION, if enabled, always overrode the SPEED_OK and SPEED_HIGH provisions due
to being sequentially composed after them — such issues are easy to fx via more careful programming
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and this would obviously be taken care of in a more serious attempt at ECTS via Hybrid Event-B.
Thirdly, we also saw the consequences of the purely demonic policy of the B-Method approach, versus
the option of using angelic choice as utilised in controllability arguments. This forced us to change the
behaviour of SPEED_HIGH, in order to get any guarantee that when the train needed to, then (aside from
emergencies), it could actually be relied on to slow down.

11. Conclusions

In this paper we recalled conventional Event-B before embarking on a design of an extension that
would cope with the demands of the continuous behaviours exhibited by today’s hybrid and cyber-
physical systems. We examined in some detail the often unstated assumptions behind the relationship
between discrete event based systems (such as discrete Event-B) and the real world, in order that the
extension that we eventually presented disturbed existing Event-B conventions and assumptions as little
as possible.’* As well as seeking to minimise the human risk that accompanies inadvertent change to
unspoken assumptions, seeking to stay as consistent as possible with the existing framework for discrete
Event-B enables us to undermine as little as possible the existing features of Event-B as implemented in
the Rodin tool, in which so much effort has been invested to date.

We then examined how these conventions and assumptions could be extended to encompass the
needs of Hybrid Event-B. The exercise focused on the semantic domain, to determine the universe of
mathematical objects in which the extended language would take its values. Given the nature of typical
engineering applications, in which discrete discontinuities in signals commonly occur as systems move
from mode to mode, the chosen universe was the world of piecewise absolutely continuous functions of
time, which allowed characterisation in various ways, DEs, assignments, and predicates with models in
(sets of) such functions. We also examined the implications of imposing a Zeno condition.

After that we presented Hybrid Event-B itself, giving the syntax and semantics for a Hybrid Event-B
machine. We then moved on to consider ref nement. In seeking to disturb existing Event-B as little
as possible, we kept continuous behaviour apart from the existing discrete event framework as far as
possible, and this goal proved achievable.

In Section 9 we gathered together the proof obligations that would give substance to the semantics
of this framework in the Event-B style, and we gave two simple correctness results. In the last section
we gave a collection of examples of Hybrid Event-B modelling. After considering the bouncing ball and
a simple discretization problem, we ended with a simple version of the European Train Control System.
This case study, deliberately patterned rather loosely after the models in [38], gave us an opportunity
to discuss how some of the darker corners of the semantics of Hybrid Event-B could be exercised by
imprudently designed Hybrid Event-B specif cations. Future work will extend the present account to
multiple Hybrid Event-B machines, and further, to include stochastic behaviour as frst class citizen.
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