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Abstract: Many new demand response strategies are emerging for energy management in smart
grids. Real-Time Energy Pricing (RTP) is one important aspect of consumer Demand Side
Management (DSM), which encourages consumers to participate in load scheduling. This can help
reduce peak demand and improve power system efficiency. The use of Intelligent Decision Support
Systems (IDSSs) for load scheduling has become necessary in order to enable consumers to respond
to the changing economic value of energy across different hours of the day. The type of scheduling
problem encountered by a consumer IDSS is typically NP-hard, which warrants the search for
good heuristics with efficient computational performance and ease of implementation. This paper
presents an extensive evaluation of a heuristic scheduling algorithm for use in a consumer IDSS. A
generic cost model for hourly pricing is utilized, which can be configured for traditional on/off peak
pricing, RTP, Time of Use Pricing (TOUP), Two-Tier Pricing (2TP) and combinations thereof. The
heuristic greedily schedules controllable appliances to minimize smart appliance energy costs and
has a polynomial worst-case computation time. Extensive computational experiments demonstrate
the effectiveness of the algorithm and the obtained results indicate the gaps between the optimal
achievable costs are negligible.

Keywords: demand side management; smart grid; decision support system; heuristic algorithm;
load scheduling

1. Introduction

Smart grids are modern electricity infrastructure networks. They cost-effectively integrate the
actions and behaviors of all the connected users in order to ensure safe, sustainable and reliable
electricity supply [1]. The emerging smart grid, by use of an Advanced Metering Infrastructure
(AMI)—a two way communication infrastructure—can deliver real-time prices of electricity to
consumers and simultaneously send back their consumption data to the utility service companies
for billing and other purposes [2]. This enables consumers to manage energy distribution efficiently
by modifying their consumption behavior in line with the pricing signals. Currently, most household
consumers buy electricity on flat rate tariff and have no demand response incentives to encourage
shifting energy consumption from peak to off peak period. Smart pricing mechanisms such as RTP,
critical time pricing (CPP), and TOUP could lead to cost-reflective consumption, driven by aspects
of the entire supply chain involved in delivering electricity during a certain period of time in a
given quantity at a specific location [3]. However, the major difficulties in utilizing the pricing
incentives are the current lack of automated decision support system, coupled with most users
not being knowledgeable enough (or having enough spare time) to respond to the time varying
electricity prices. Hence, an automated energy management system or Intelligent Decision Support
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System (IDSS) for load scheduling is highly desirable. Even disregarding the technical challenges and
complexities of connecting an IDSS to both an AMI and controllable home appliances, smart home
load scheduling using variable price signals remains a difficult problem to solve computationally.
In most cases the problem is NP-hard and is also affected by uncertainties such as variations in
appliance power profiles. Moreover, an IDSS is ideally also required to be responsive to unexpected
or emergency events, such as specific DSM requests relayed through the AMI following unexpected
events affecting the wider grid. Therefore, we consider a rolling-horizon framework such that regular
re-optimization with updated information regarding the current system state and energy cost updates
provided by the electricity supplier can be implemented. To be of practical use, the optimization
carried out by the IDSS must be able to deliver results of reasonable quality in a short space of time.
In this paper, we present a low-overhead heuristic scheduling algorithm for use in a consumer IDSS
for minimizing smart appliance energy costs.

In the wider context, effective distributed energy generation based upon renewable resources
is a major goal of the smart grid. Such generation can provide clean and sustainable energy and
(potentially) enhance power system capacity and security. In addition to reducing consumer energy
costs, the enhanced DSM support that can potentially be delivered by consumer IDSSs should be able
to help manage the integration of renewable resources, since a large proportion of energy generation
in smart grids is expected to come from non-dispatchable renewable resources such as wind, solar and
wave energy [4]. These renewables are intermittent in nature and it remains an important challenging
factor to manage their output generation with demand fluctuations. However, the potential
coordination of distributed energy generation, energy storage systems and smart home loads will lead
to more robust optimization and corresponding energy cost savings. Utilizing price signals that reflect
the forecasted value of energy during a particular hour—and also its uncertainty—may help to enable
this optimization and coordination. In this paper, we consider a generic and flexible cost function
for hourly energy pricing in our optimizer. This model can be configured for traditional on/off
peak pricing, RTP, Time of Use Pricing (TOUP), Two-Tier Pricing (2TP) and various combinations
thereof. The heuristic we propose greedily schedules controllable appliances to minimize this cost
function, and has a polynomial worst-case computation time. Extensive computational experiments
demonstrate the effectiveness of the algorithm, and the obtained results indicate the gaps between
the optimal achievable costs are negligible; although some differences in solution structure are
evident in certain cases. The remainder of this paper is structured as follows: Section 2 presents
a review of related work and highlights the contribution of the current paper. Section 3 describes
the models employed, while Section 4 describes the optimization procedure we propose. Sections 5
and 6 describe the simulation studies that have been carried out to investigate the efficiency and
performance of the heuristic algorithm. Section 7 presents our conclusions and outlines areas for
future work.

2. Related Work and Contribution

Extensive demand side management strategies using techniques such as Mixed Integer Linear
Programming (MILP) [5-7], Direct Load Control (DLC) [8], branch and bound algorithms [9,10],
etc., have been presented in the literature as potentially effective solutions for the consumer load
scheduling problem. The fact remains that more work has to be done in practice, as most
existing methods are not readily applicable for scheduling large numbers of appliances and for
real-time implementation in households. Additionally, metaheuristic search algorithms have also
been proposed in the literature over the last two decades for scheduling residential and commercial
loads. Most of the existing metaheuristic such as Particle Swarm Optimization (PSO) [11,12], Ant
Colony Optimization ACO [13], Simulated Annealing (SA) [14], Genetic Algorithm (GA) [15-17],
etc., are inspired by natural phenomenon. These studies explore alternative means of scheduling
and optimizing a power profile at any hour of the day since an optimal deterministic technique is
unrealistic to most customers.
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A significant focus of recent research has also been on heuristic algorithms applicable to
residential and industrial scheduling problems. Heuristic approaches can be efficient in achieving
faster solutions which could be implemented on an embedded system or computer for the purposes
of a consumer decision support system. On the other hand, a “good”, but not necessarily optimal
solution to the optimization problem can only be found, but it will be found in a reasonable time.
In [18], an intelligent Home Energy Management (HEM) algorithm is presented for managing high
power consumption household loads according to a preset priority. Reference [19] proposed a
heuristic algorithm to determine price update interval and step size required for limiting deviation
of power load from a desired load. An aggregator-based residential DR approach for scheduling
residential assets was proposed in [20]. They further designed a heuristic framework to perform
optimization on the profit of the aggregator.

In previous work by the current authors [21,22], an efficient heuristic for scheduling residential
appliances in the presence of RTP was proposed and partially evaluated. The heuristic is based
upon greedy gt pr o g Oh ook SRBHBIES dionS JeBsIRNS. OTEY SNSRIy h the aim of
minimizing cosfgussbjeat spraisebnfonensirainivanek, theiapphianeesin « Fhedsuristic, although it
does not guararftéélthreilisiizest Hoassiplierddatasnenithiple dsvdletficrenteadughrtenedigive that regular
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3.1. Optimization Overview

We assume that the scheduling /planning horizon is divided into H > 0 uniform time slots; each
time slot is of length T > 0 h. Typically, each slot will be of length T = 1 h, although this does not
necessarily have to be so in the general case. Let the number of appliances be denoted as N, and
the number of stages of appliance i be denoted as n; > 0. The power consumption during stage j of
appliance i is denoted by P; j, i € [1, N], j € [1, n;]. Let the starting time of appliance i be denoted by the
integer variable s; € [1, H]. Then the power consumed by appliance i with start time s; during timeslot
h is given by:

() = {Pi,h_si+1 (If0 < (@ —si+1)<n O
0 : Otherwise

Let the cost of consuming x;, > 0 units of energy during a particular hour / be represented by the
cost function Cj,(x;,) = 0. The optimization problem objective function | can then be formulated as the
sum of the energy costs across each slot in the horizon as follows:

H N
J=>.Cn (T-sz(h)) 2)
h=1 i=1
The basic form of the optimization problem can then be formulated as follows:
min(/)

with respect to:
sit1<j<N;

subject to: )
sf\ﬂingsigsf“x,siel:léiéN;
N
Moxilh) < XM 1<h < H; )
i=1

Constraints (3) are the user start time preferences which ensure that each appliance does not
operate outside of the set time preference interval given by siMin and s;Mex  Constraints (4) ensure
the maximum power consumption for all the appliances at any time slot 1 does not exceed the
power threshold, where X, M is the threshold at slot k. Typically this will be set by the household
to suit its own specific constraints, such as the maximum power rating of the incoming supply or
consumer unit. In addition, appliance specific constraints can be applied to ensure certain appliances
start or finish before each other. An example is the case of washing machine and dryer where the
latter must not start until the former has completed all of its operation stages. For certain types of
interruptible appliances, it may also be possible to schedule a bounded amount of time-delay between
two consecutive operation stages (e.g., a delay between a rinse cycle and the next wash cycle in a
washing machine). In such cases, the model may be extended by appropriate splitting of the main
appliance into a number of sub-appliances, each with a separately considered start-time; appropriate
constraints relating the start times of each sub-appliance will then model the required behavior. By
appropriate choice of T and H, the model may be configured to a given level of temporal fidelity and
future planning horizon length. In the remainder of the paper we assume that T =1 and H = 24, i.e,,
hourly slots are considered over a planning horizon of one day. In Appendix A, we shown that the
decision version of the problem described above is NP-Complete, and is hence intractable for large
problem sizes unless P = NP. The optimization version of the problem is therefore NP-hard.
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3.2. Generic Cost Model
3.2. Generic Cost Model

We assume that the cost of energy during a partlcular slot /1 is a generic function Cr(xn) of the
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the more difficult the model would be for customers to participate. Hence, in this paper we will
consider the two tiers pricing to reduce complexity since mid-peak rates only examines the average
costs between the peak and off-peak periods. 2TP is organized such that the rate of tariff paid below
a certain power threshold is lower than the rate paid above it; this to penalize high consumption
in any one hour and encourage even load distribution. However, the effect on demand response
of combining 2TP with RTP—in which a customer may pay a basic unit rate until the threshold is
exceeded, at which time a price linked to the spot price is incurred—has not been investigated fully
in the presence of load scheduling. The simple functions we propose in Equations (5) and (6) allow
such an investigation to be carried out.

Under the assumption that the cost functions Cj(x;,) are linear, or piecewise linear and convex,
the optimization problem above can be solved using mixed integer linear programming (MILP)
software such as the IBM ILOG CPLEX and the YALMIP interface to Matlab [24]. Nevertheless,
solving such MILPs efficiently can only be done for relatively small instances of appliances [25].
Algorithms such as cutting plane methods and the branch and bound method [26] can also be used to
reduce the average execution time complexity. In the case that the costs may be arbitrary non-linear
functions—or combinations of even simple convex and concave functions at different hours over the
horizon—then a large number of additional binary variables may need to be introduced to solve the
problem. This may result in unacceptable overhead, even for relatively small numbers of appliances;
in addition, the use of specialized solvers will be impractical and should be avoided on small devices
such as smart meters and an IDSS computer. Therefore, instead we seek to find good—mnot necessarily
optimal—solutions to this problem, in a reasonable time without undue computational overheads.
The heuristic we propose is described in the next Section.

4. Scheduling Algorithms

In this section, we improve the scheduling algorithms (exact and heuristic) that were proposed
in [22] with the addition of the cost models described in the previous Section. The algorithms
use appliance start times s; as the decision variables and search over the future time horizon
(window) H for the start times which minimize the expected electricity cost | subject to the given
constraints. Parameters such as the number of appliances N, length of timeslot T, hourly timeslot
cost functions (Cj(xy)), constraints etc. are assumed given and define the problem instance. In the
sequel, the performance of the proposed heuristic algorithm will be evaluated and compared against
the proposed exact method in simulation studies.

4.1. Exact Method

In principle, exact methods can guarantee an optimal solution to this NP-hard optimization
problem. This can be achieved by searching the timeslots within the set time window exhaustively.
In our proposed exact method—shown in pseudocode below—the algorithm exhaustively searches
appliance start times for the best possible combination of starting times to obtain the minimum costs
which satisfy the constraints. The exact algorithm iterates through each possible combination of start
times in the specified user intervals in turn. In the worst case, each of these intervals will be of length
H timeslots, giving an exponential run-time complexity of O(HN) for the algorithm. During the search
iteration, the exact algorithm updates the best solution whenever a feasible cheaper cost solution is
found. The algorithm could clearly be improved by adding features such as back-tracking of partial
solutions that cannot improve upon the best solution found so far; however, its use in this paper was
principally to obtain optimal solutions for comparative purposes.
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Adpetithm 1. BxertdWedindd.

: Initialization: Set and initialize the N appliances, constraints and cost functions;
:fori=1to N do

1
2
3. si=gMin,

4: end for;

5: Cs :=INF;

6:S:=[];

7: Done := FALSE;

8: while Done == FALSE do
9: if Constraints Satisfied do
10: ] := Evaluate Full Schedule Cost;
11: ifJ<Csdo

12: Cs:=];

13: S:=[s1, 82 ...5N];
14: end if;

15: end if;

16: fori=1to N do
17:si=si+1;

18: if si>sMxdo

19: si = gMin;

20: ifi== N do

21: Done=TRUE;
22: end if;

23: else

24: break;

25: end if;

26: end for;

28: end while;
29: return [Cs, S];

4.2. Hewristie Method

In the propesed heuristie algorithm, appliances are scheduled sequentially based on a greedy
strategy witheut back-tracking. Auplianice stadt MRS ae sdediulrd one-by-one, and the cost is
evaluated freasinfgesiiig stantiimarngrionedersenlpriie dvarentepplippieand thesethdichharh
alreadyirleacty sshed wlasbantbthaii stassiines fixedeOncedhepnaimamapshionthesursnilap plinees
isppeteraaing d dterakaretMmiesis ixedipndids i ubeh el s ebsagiechaicelsshedal g crHEdeRe
Hop ek tRegdlednagipléanded AP pippliansas Asplsshecsded suhdhisloday: thisingle ASRQ¥e5IY
BREHANGESH| kansid ibngi dhengtate Hraestiohesashe ARPABPHAVE thilthits i pgsilimk d1seerintesmall is
performed. IntibeyorershsawckathhelethaeevinianmalbewillehetloH kengiotd, fimesotpoBinbigia
PRRYRATR A FBIcRE SPTPIAY) o P i (hBN} fticthR;Beikistic algorithm.

Given the similarity of the heuristic algorithm to the “List Processing” algorithm for
multiprocessor scheduling, and the similarity of the considered appliance scheduling to
multiprocessor scheduling (as demonstrated in the Appendix A), it follows that the heuristic
we propose may inherit some of the known good performance bounds of the “List Processing”
algorithm. Indeed, if appliances are all single-stage and are sorted in non-increasing order of power
requirements, then our heuristic would achieve a cost not greater than a factor of 4/3 - 1/(3H) away
from the optimal cost [27]. For a typical configuration with H = 24, the heuristic cost would never be
larger than 32% more than the optimal cost. In order to investigate the heuristic properties in more
depth, detailed computational experiments now follow.
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AMeeriHim 2. HewsinditdWathhdd.

1: Initialization: Set and initialize the N appliances, constraints and cost functions;
2:Cp:=0;

3:5=[];

4:fori=1to N do

5. Cp:=Cp+INF;

6: forsi=sMin to sM= do

7: ] = Evaluate Partial Schedule Cost;
8: if Constraints Satisfied
9: if J<Cs

10: Cs:=];

11: SB 1= Si;

12: end if;

13: end if;

14: end for;

15: si == s8;

16: end for;

17: S =51, 52, ... SN];
18: return [Cs, S];

5. siiiveRha Swylpdty of the heuristic algorithm to the “List Processing” algorithm for multiprocessor
scheduling, and the similarity of the considered appliance scheduling to multiprocessor scheduling
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30 November 2014. The scheduling consists of four controllable appliances namely washing
machine, dishwasher, tumble dryer and Electric Vehicle (EV) as indicated in Table 1. In the
scheduling, appliance operation constraints are applied such that the washing machines stages must
finish before the tumble dryer phase starts. The hourly pricing data for the RTP was taken from the
Scandinavian electricity market Nordpoolspot [28] and samples of these prices are shown in Figure 3

8



Energies 2016, 9, page—page

ergies
nergie:

0.05F

0.04

Price (Eur/kWh)

0.02

0.01

0.03

5 10

15

20 25
Hour of the day
VRV
5 10 15 20 25

1st Dec 2013
1st Jan 2014
1st Feb 2014
1st Mar 2014
1st April 2014
1st May 2014
1st June 2014
1st July 2014
1st Aug 2014
1st Sep 2014
1st Oct 2014
1st Nov 2014

9 of 21

Figure 3. Example of the hourly priaﬁgé’f Hl%&?}’city used in the simulation, showing the plot for 1st

day HevRy. BOMBIFORHR RSP Prring 5 MY WA 1 A8 imulation, showing the plot for Isk
day of everry I Mo Dreeups 2013 to N 2011

.
Table 1. Data spec1f1cat10n of the app iance scheduhng

Devices ser Time Preference
Washipdexicksne Power @aammmmm UseteliiirdiecdQience
Tehaslednarome 30 TqYHE2ER; 00
m&ﬂwé%éfyer R0 1615008228800
19995

el
10

The ﬁw gln%%%r} resultﬁl;()ff(ﬁl{ﬂ togﬁl ]consu

ion C(?&SS for the

1ol B s

acr%&&%a@sﬁmmg&%m%% g&e@ g&m
Total cost schedule for Dec 2013
0.24 = Exact i
|_|— J --------- Heuristic

—_ -
= 0.22
5 o2 =y
ot L~ L
g 0.18 —I

0.16

0 240 e v 380 768
o Total Cost Schedule for Jan 2014
0.23
Exact
--------- Heuristic

é 0.21 J
=
5
w
g 019} = -

0.17

240 480 768

Hiigmre 4. Contt.



Energkitep0162016 4:6-page 10 0f 21
Total cost scheule for Feb 2014
0.205 ! '
Exact
--------- Heuristic
0.195 .
= . L
=
é —
= 0.185
w
S 0.175 -
0.165 - -
0 240 480 768
Total cost schedule for March 2014
0.19 T
Exact
0185 B | e Heuristic |
= -
E 0.17 g==d R
= | :
w
% 016 —
(o]
o
0.15 I-— e
0] 240 480 768
Total cost schedule for April 2014
T
0.19 Exact m
--------- Heuristic
= 017 ™
= ]
@ 0.15 mms e B
‘g -
0.11
L
0 240 480 768
Total cost schedule for May 2014
0.2
Exact
0.18 FLLL L.' """""" Heuristic | |
= -
—
Z 0161  uuy "1
WL 1
w
w 014 -
o
O
012 1
=
0.1
0 240 480 768

Figure 4. Cont.
Figure 4. Cont.



Energies 2016, 9, 6 11 of 21
Energies 2016, 9, page—page
Total cost schedule for June 2014
T T
0.19 Exact
--------- Heuristic I""_‘_\_| I
< 017 i
S '—l |
<
& 015 -
§ 0.13 r
0.11 e
| 1
0] 240 480 768
Total cost schedule for July 2014
0.21 T .
Exact
--------- Heuristic
< 0.19 pum—
E i
5
w
g 0.17 -
0.15 L
240 480 768
Total cost schedule for Aug 2014
0.23
Exact
--------- Heuristic
=) L
= 0.21 -
= it FEE L
3 I_,—a—’_\_
u
g 0.19f _I_y—l =
0.17
0 240 480 768
Total cost schedule for Sept 2014
T
0235 Exact
ammn
--------- Heunstlc 1
= 0.225
E s e ; |..= i
5 0215 — 5 2 i e
o
O 0.205 I—'
0.195 -
1
0 240 480 768

Figure 4. Cont.

Figure 4. Cont.



Energzes 2016, 9, 6 12 of 21
Energies 2016, 9, page—page

Total cost schedule for Oct 2014
0.22 T T

= Exact
Heuristic

0.2

-

0.16

Cost (Eur/kWh)

0.14

0.12 ! !
0 240 480 768

Total cost schedule for Nov 2014
0.22

Exact

......... Heuristic ‘_r_‘_l—‘—l—\_l_‘_‘_bd
suen

=TT

0.18 | —.J

0.14 -

Cost (Eur/kWh)

0.1 :
0 240 480 768

Time (Hour)

FiguFegdud étalatehsommptiptiorostsaleltibossabitined wiith tHeeeaxeatcarah elueistis titgatbnithammoatross
12 mbheras fhe iesimideiopaesadisemmiesember 20BtedNQusahas 2P 14.

Frodirdinethresedtdsywee can ssecthdtathdlhevnistiristivicacdsie nesrpteanl sphitend aohssidre acuoss the
coursé Jfatreheleoteayeady Arogeapenisitbdpseonptionptiscts @ists d6 €L W67d inererpdcas rednpnedripared
to €758 pBRinRADY tie exact algorittih. Porcaiigscodstigrencadp thattebis st ronBomathay that
the }S&lslaO&g@&Sﬁ%Jﬁgﬁé%ﬁ%é@ Ifft@ @167 = 2Ry EA~ 0&%‘&&@ 5P%w@fb$eﬂnﬁalumuon

obtaf btél t?r% the e’facf eqHthmyy OVeV\‘?‘e’?r'bo% AAgorithmssshed Hule frame amount of energy.in y in
heunstlc a esas1 nificantly sma ramounto C utatlontlme. 0.0 86)61
cdmp 04 s)

the hOHS%%%T; Ui c edEse GRS aﬁé‘%%l% A RS atnt of e R e (0 0007
whenco H}%rgefirﬁ% @e% E&ﬁ‘?? oosd.sxach absopithes, 0rlede.Qwhy LIS ARBT Xﬁ{@ﬁtgle@lu/ diffgyence

in the solving time (see [21] for a detailed comparison of CPU execution times for typical configurations).
5.2. Cost Evaluation Based on Two-Tier Pricing (2TP)

5.2. Cost %qéu&gﬁ%lgfzesﬁgl é%’&&%"ﬂféefnfﬁé%’tngf(éﬁgé a 2TP model in conjunction with an RTP model

%ﬁ%&ﬁéﬁﬁ?@iﬁ%ﬁé&li@k%@ﬁim&}m&g SOPT PO SHETSH ESRFHAURIIN WitHlln RITR RR5e] on
bothhk f@&&@}ﬁme?é&?fs EORMES AN Yot m&w&gw&ﬁhﬂﬁﬁaﬁﬁﬁ@ fiies- B“é&l"?‘f‘i’ the
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this dipdndathianievesiitpeyughengpaticevio ineF1g0fk of kel irase igateenfbetben sy tivistiexadgedihgn1500
Wh. This configuration was motivated by the configuration of the British Columbia hydro two-tier
pricing system as shown in Figure 5. We investigate whether the heuristic algorithm would be as
effective at enabling residential energy consumers to respond to the 2TP/RTP charges by shifting

peak consumption to off-peak period as with the response to the RTP-only charges reported above.
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would be as effective at enabling residential energy consumers to respond to the 2TP/RTP charges
by shifting peak consumption to off-peak period as with the response to the RTP-only charges
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Table 2. Simulation Result of 2TP/RTP Model across representative seasons of the year.
Table 2. Simulation Result of 2TP/RTP Model across representative seasons of the year.
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July January 0.40928451 00160401 0.0049367

October A il 048738140 0B85 0.09743%
July 0.40928 0.40461 0.00467

evaluated against a basic TOUP cost model and also a 2TP/TOUP with the same appliance
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during the on-peak and off-peak times, with the higher price again set to be 150% of the base price
for consumption exceeding 1500 Wh. The resulting solutions obtained with both the heuristic and
exact algorithms for TOUP and 2TP/TOUP are shown in Tables 3 and 4, while the differences in the
average total cost consumption are plotted in Figures 6 and 7 below.
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Considering Figures 6 and 7 one may observe that the heuristic algorithm achieves almost
identical costs when compared to the exact algorithm over the course of the simulated months.
In tefiitsist0edhiieiagiosts, better results (in terms of slightly lower bllllng) are achieved with
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these experiments. The pricing data used in thliqsgexperlment is the same with the previous set of
experiments reported in Section 5. For comparison purposes with the exact algorithm, given that the
problem is NP-hard it is very difficult to obtain extensive exact results for large problem instances,
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so we conducted experiments with five and six appliances, each with four different configurations
and price model. The average yearly simulation results for the eight different configurations were as
found in Table 5.

Table 5. Simulation result for multiple households with five & six appliances with different
configurations and pricing model.

Average Yearly Total Five Appliances with Configurations (C1~C4) Six Appliances with Configurations (C5~C8)
Cost (Eur/kWh) C1 C2 C3 C4 C5 Cé C7 Ccs8
RTP RTP/2TP TOUP TOUP/2TP RTP RTP/2TP TOUP TOUP/2TP
Heuristic algorithm 0.2071 0.4763 0.3043 0.5123 0.2276 0.4829 0.2117 0.4781
Exact algorithm 0.2068 0.4722 0.3037 0.5111 0.2273 0.4790 0.2087 0.4758
% Difference 0.0014 0.0086 0.0019 0.0023 0.0013 0.0080 0.0142 0.0048

The simulation results indicate that our heuristic algorithm with the proposed generic cost model
seems to be effective with different appliance and user preference configurations, and has managed to
bring the final consumption cost close to the optimal results (within 0.15%) across all pricing models
and configurations.

7. Conclusions

This paper has presented details of an extensive study into a heuristic scheduling algorithm for
use in a consumer IDSS for minimizing smart appliance energy costs. A generic and flexible cost
model for hourly pricing has been utilized in the model, which captures the salient characteristics
of traditional on/off peak pricing, RTP, Time of Use Pricing (TOUP), Two-Tier Pricing (2TP) and
combinations thereof. In comparisons with an exact (optimal) scheduling algorithm, the effectiveness
of the algorithm has been evaluated in extensive simulations and computational experiments. The
obtained results indicate that, although the worst-case performance of the algorithm could be
closer to 32%, in representative simulations the gaps between the heuristic cost solutions and the
optimal achievable costs have been found to be much lower and almost negligible. Although the
costs differences observed were negligible, some differences were however observed in the power
consumption profile between the algorithms, especially in the presence of the RTP policy; this
indicates that underlying the appliance scheduling problem is potentially sensitive to small changes
in the decision variables around the optimal achievable costs. In comparison, a combination of RTP
and RTP/2TP was found to be less sensitive than RTP alone, and gave a better distribution of the
power consumption. These issues will be investigated in more depth in our future work.
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Appendix A

Proof of NP-Completeness of the IDSS energy scheduling problem considered in this paper.
Consider the decision version of the optimization model presented in Section 3:

IDSS PROBLEM INSTANCE: An integer H > 0 representing the number of considered time slots,
an integer T > 0 representing the length of each slot, an integer N > 0 representing the number
of appliances, integers n; > 0 representing the number of appliance stages, and real-valued power
consumption values for each stage denoted by P;; > 0,1 € [1, N], j € [1, n;], cost function Cj(xy,) = 0
and maximum power consumption thresholds X;,M%* > 0 for each hour of the day, plus user start time
preferences 0 < s;M" < 5;M%* < H for each appliance, and a real-valued cost budget B = 0.
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QUESTION: Is there a set of appliance start times s; such that Constraints (3) and (4) are satisfied,
and the cost calculated using Equations (1) and (2) satisfies | < B?

MULTIPROCESSOR SCHEDULING PROBLEM INSTANCE: Set I' of tasks with cardinality L,
number M > 1 of uniform processors, real-valued length I; > 0 for each task, real-values deadline
D>0.

QUESTION: Does a non-preemptive M-processor schedule for I' exist, ie., a function
fG)ell, ..., M] mapping all L tasks j € I to a processor (without overlap), such that the finish time
for the schedule F:

Fomey, 2
fG) =i
jel
Satisfies the constraint that it is less than the deadline, i.e., F < D?
The multiprocessor scheduling problem above is known to be NP-Complete [27], and is in fact

NP-Complete in the strong sense when M > 2. NP-Completeness of the IDSS problem is now shown
by transformation from MULTIPROCESSOR SCHEDULING.

Theorem1 : IDSS is NP-Complete.

Proof : Transformation from the MULTIPROCESSOR SCHEDULING PROBLEM. Given an
instance of the MULTIPROCESSOR SCHEDULING problem, we configure the following instance
of an IDSS problem:

H = M,;
T=1,;
N=1L;
sMIN = 1,1 <i<N;
sMax — M <N;

Observe that M timeslots have been created in IDSS, each with unit length, and that L appliances
have been constructed each with a single stage having power requirement /;. By the choice of s;i"
and s;M%%, each appliance is free to be started in any of the M available timeslots and incurs an
economic cost /; regardless of which slot it is assigned to. Given the choice of the budget B, any
assignment of start times satisfies the budget constraint eliminating it from the IDSS problem. It is
clear from this construction, however, that assigning an appliance start time s; = j incurs a power cost
of [; units in timeslot j. The claim is that a feasible schedule to this instance of the IDSS problem exists
if and only if a feasible schedule exists for this instance of the MULTIPROCESSOR SCHEDULING
problem. This is proven by taking the assignment of s; = j as equivalent to the assignment of task i on
processor j, and equivalently it must hold that:

Vh,1<h<H:



Energies 2016, 9, 6 19 of 21

From which it is easy to see that the finish time of the schedule F is equivalent to the maximum

power assigned to any of the H = M timeslots, and since the maximum power constraints are
constructed as X;M%* = D for each timeslot a feasible schedule to MULTIPROCESSOR SCHEDULING
exists if and only if there is a feasible solution to IDSS, proving the claim.o

Appendix B
Table Al. Configuration for five appliance scheduling with dynamic pricing [30].
Devices Input Parameters Household Configuration
C1RTP C2 RTP/2TP C3 TOUP C4 TOUP/2TP
Start time Range 10~20 10~20 10~20 10~20
Washing Machine Timeslot Lenght 136 161 130 154
Power 2249.96 2249.96 2249.96 2149.96
Start time Range 9~23 9~23 9~23 9~23
Dish washer Timeslot Lenght 82 134 78 87
Power 1739.96 1880.96 1740.96 1840.96
Start time Range 13~23 13~23 13~23 13~23
Tumble dryer Timeslot Lenght 90 120 105 70
Power 1200 1200 1500 1200
Start time Range 1~6 1~6 1~6 1~6
Electric vehicle Timeslot Lenght 120 110 150 120
Power 1100 1000 2500 2000
Start time Range 5~20 5~20 5~20 5~20
Water heater Timeslot Lenght 105 60 90 60
Power 950 900 700 1000
Table A2. Configuration for six appliance scheduling with dynamic pricing [30].
Devices Input Parameters Household Configuration
C5 RTP C6 RTP/2TP C7 TOUP C8 TOUP/2TP
Start time Range 10~20 10~20 10~20 10~20
Washing Machine Timeslot Lenght 135 135 155 135
Power 1939.96 1899.96 2249.96 1899.96
Start time Range 9~23 9~23 9~23 9~23
Dish washer Timeslot Lenght 89 88 132 108
Power 1720.96 1700 1960.96 1700
Start time Range 13~23 13~23 13~23 13~23
Tumble dryer Timeslot Lenght 90 90 90 90
Power 1100 1000 1100 1000
Start time Range 1~6 1~6 1~6 1~6
Electric vehicle Timeslot Lenght 120 120 120 110
Power 1500 1200 1000 1300
Start time Range 5~20 5~20 5~20 5~20
Water heater Timeslot Lenght 90 90 90 90
Power 900 900 900 900
Start time Range 6~22 6~22 6~22 6~22
Electric cooker Timeslot Lenght 75 75 75 75
Power 600 600 600 600
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