1	Predicting future weight status from
2	measurements made in early
3	childhood: A novel longitudinal
4	approach applied to Millennium
5	Cohort Study data
6 7	Miss Emma Mead: PhD student, Health and Social Care Institute, Teesside University, Middlesbrough, TS1 3BA
8 9 10	Professor Alan Batterham: Professor in Exercise Science, Health and Social Care Institute, Teesside University, Middlesbrough, TS1 3BA
11 12 13	Professor Greg Atkinson: Professor of Health Sciences and Biostatistics Research, Health and Social Care Institute, Teesside University, Middlesbrough, TS1 3BA
14 15 16	Dr Louisa Ells: Reader in Public Health and Obesity, Health and Social Care Institute, Teesside University, Middlesbrough, TS1 3BA
17	
18	Correspondence to:
19	Miss Emma Mead
20	Health and Social Care Institute
21	Teesside University
22	Middlesbrough
23	TS1 3BA
24 25	E.MEAD@tees.ac.uk
26	Conflict of interest: Dr Louisa Ells is seconded to Public Health

27 England 2 days per week as a specialist academic advisor.

28 Abstract

29	Background/objective: There are reports that childhood
30	obesity tracks into later life. Nevertheless, some tracking
31	statistics, e.g. correlations, do not quantify individual
32	agreement, while others, e.g. diagnostic test statistics, can be
33	difficult to translate into practice. We aimed to employ a novel
34	analytic approach, based on ordinal logistic regression, to
35	predict weight status of 11-year-old children from
36	measurements at age 5.
37	Subjects/methods: UK 1990 growth references were used to
38	generate clinical weight status categories of 12 076 children
39	enrolled in the Millennium Cohort Study. Using ordinal
40	regression, we derived the predicted probability (percent
41	chances) of an 11-year-old child becoming underweight,
42	normal weight, overweight, obese and severely obese from
43	their weight status category at age 5.
44	Results: The chances of becoming obese (including severely
45	obese) at age 11 were 5.7% (95% CI: 5.2% to 6.2%) for a
46	normal weight 5-year-old and 32.3% (29.8% to 34.8%) for an
47	overweight 5-year-old. An obese 5-year-old child had a 68.1%
48	(63.8% to 72.5%) chance of remaining obese at 11 years.
49	Severely obese 5-year-old children had a 50.3% (43.1% to

50	57.4%) chance of remaining severely obese. There were no
51	substantial differences between sexes. Non-deprived obese 5-
52	year-old boys had a lower probability of remaining obese than
53	deprived obese boys: -21.8% (-40.4% to -3.2%). This
54	association was not observed in obese 5-year-old girls, in
55	whom the non-deprived group had a probability of remaining
56	obese 7% higher (-15.2% to 29.2%). The sex difference in this
57	interaction of deprivation and baseline weight status was
58	therefore -28.8% (-59.3% to 1.6%).
59	Conclusions: We have demonstrated that ordinal logistic
60	regression can be an informative approach to predict the
61	chances of a child changing to, or from, an unhealthy weight
62	status. This approach is easy to interpret and could be applied
63	to any longitudinal dataset with an ordinal outcome.
64	
65	
66	
67	
68	

70 Introduction

71	The increasing prevalence of childhood obesity has become a
72	major public health issue worldwide in both developing and
73	developed countries. ⁽¹⁾ The consequences of childhood obesity
74	can be severe, with an increased risk of developing conditions
75	such as, diabetes, cardiovascular disease and psychosocial
76	disorders. ^(2, 3) Furthermore, there is some evidence that
77	children who are overweight or obese are more likely to be
78	overweight or obese adults; hence, they are more likely to
79	suffer from comorbidities when they reach adulthood. ⁽⁴⁾
80	Nevertheless, most adults who are overweight or obese now
81	were of normal weight as children. ⁽⁵⁾
82	In England, approximately 1 in 5 children aged 4-5 years old
83	and 1 in 3 children aged 10-11 are either overweight or
84	obese ^a . These figures are from the National Child
85	Measurement Programme (NCMP), which was introduced into
86	England in 2006 to measure the height and weight of children
87	in Reception (4-5 years old) and Year 6 (10-11 years old). The
88	rationale for introducing the NCMP included the gathering of
89	population level data on growth trends, informing service
90	planning and delivery, and increasing awareness of weight
91	issues in children. ⁽⁶⁾ The results from the programme are

 $[^]a$ defined using the UK90 population monitoring cut points for overweight (>85 th centile) and obesity (>95 th centile)

92	routinely fed back to parents via letters. ⁽⁷⁾ There is a standard
93	template that may be used by each local authority in England;
94	however, some areas make changes to the letter or do not use
95	the letter at all. This variation in practice leads to a lack of
96	consistency in how local authorities present the results and
97	whether they offer further support to the parents/children. In
98	some local authorities the letter suggests that children who
99	are overweight/obese during Primary School are more likely to
100	be overweight/obese in adulthood; some letters have
101	previously stated that overweight or obese children are more
102	likely to develop disorders such as cancer, diabetes and
103	cardiovascular disease. ⁽⁸⁾ Such information can be distressing
104	and also confusing for parents; therefore, it is important to
105	provide parents with information that is acceptably accurate,
106	informative and easy to understand.
107	The NCMP allows the annual prevalence of childhood obesity
108	to be reported. The NCMP also has the potential to provide
109	prognostic information, i.e. to ascertain whether an individual
110	child is likely or not to have an unhealthy weight status when
111	measured again later in life. Nevertheless, this issue of
112	"tracking" is currently difficult to explore using NCMP data,
113	which up until 2013 was anonymised before the annual upload

114	to the national	data collection	system, thus	prohibiting any
-----	-----------------	-----------------	--------------	-----------------

115 data linkage on an individual level⁽⁹⁾.

116	A statistic that is used commonly in body mass index (BMI)
117	tracking research is the correlation coefficient. In a recent
118	meta-analysis ⁽¹⁰⁾ , tracking correlations were synthesised from
119	48 studies, which varied in their duration between initial and
120	follow-up measurements. The authors of this review
121	concluded that a high degree of tracking existed for follow-up
122	durations of 1, 10 and 20 years, with respective correlation
123	coefficients of 0.78-0.86, 0.67-0.78 and 0.27-0.47, respectively.
124	However, a correlation coefficient does not quantify the
125	prediction error for individual children. ⁽¹¹⁾ Odds ratios, derived
126	from binary logistic regression models, are also commonly
127	reported in BMI tracking research. For example, in a recent
128	secondary analysis of the NCMP data for South
129	Gloucestershire, England, ⁽¹²⁾ multiple binary logistic models
130	were used to derive over twenty separate odds ratios for boys,
131	girls and the pooled sample across various weight categories.
132	In this latter study, one odds ratio was cited to infer,
133	incorrectly, that children who were overweight in Reception
134	(85 th -94 th percentile, UK 1990 growth reference charts) were
135	"13 times more likely" to be overweight or obese in Year 6,
136	compared to children who were between the 2 nd to 49 th

137	percentile in Reception. It is not uncommon for odds ratios
138	and relative risks to be misrepresented in research, rendering
139	them difficult to translate to practitioners and patients. ⁽¹³⁾
140	Furthermore, the analysis by Pearce et al. (2015) only used the
141	population monitoring cut offs for overweight and obesity; in
142	the NCMP feedback letters the clinical cut offs are used.
143	Pearce et al. (2015) also did not predict the odds of a child
144	becoming severely obese, which has shown to be an increasing
145	concern in England. ⁽¹⁴⁾ Lastly, BMI weight categories are clearly
146	ordinal level data, rendering the use of many binary logistic
147	regression models across multiple pairs of weight categories
148	non-parsimonious.
149	Finally, diagnostic test statistics such as sensitivity and
149 150	Finally, diagnostic test statistics such as sensitivity and specificity can help ascertain the individual agreement
149 150 151	Finally, diagnostic test statistics such as sensitivity and specificity can help ascertain the individual agreement between two different measurements of status. ⁽¹⁵⁾
149 150 151 152	Finally, diagnostic test statistics such as sensitivity and specificity can help ascertain the individual agreement between two different measurements of status. ⁽¹⁵⁾ Nevertheless, several additional statistics (e.g. positive
149 150 151 152 153	Finally, diagnostic test statistics such as sensitivity and specificity can help ascertain the individual agreement between two different measurements of status. ⁽¹⁵⁾ Nevertheless, several additional statistics (e.g. positive predictive value, negative predictive value, and positive and
149 150 151 152 153 154	Finally, diagnostic test statistics such as sensitivity and specificity can help ascertain the individual agreement between two different measurements of status. ⁽¹⁵⁾ Nevertheless, several additional statistics (e.g. positive predictive value, negative predictive value, and positive and negative likelihood ratios) are required for a full
149 150 151 152 153 154 155	Finally, diagnostic test statistics such as sensitivity andspecificity can help ascertain the individual agreementbetween two different measurements of status.Nevertheless, several additional statistics (e.g. positivepredictive value, negative predictive value, and positive andnegative likelihood ratios) are required for a fullinterpretation, rendering results that are sometimes difficult
149 150 151 152 153 154 155 156	Finally, diagnostic test statistics such as sensitivity andspecificity can help ascertain the individual agreementbetween two different measurements of status.Nevertheless, several additional statistics (e.g. positivepredictive value, negative predictive value, and positive andnegative likelihood ratios) are required for a fullinterpretation, rendering results that are sometimes difficultto explain to a layperson, such as a child's parent. Steurer et
149 150 151 152 153 154 155 156 157	Finally, diagnostic test statistics such as sensitivity and specificity can help ascertain the individual agreement between two different measurements of status. ⁽¹⁵⁾ Nevertheless, several additional statistics (e.g. positive predictive value, negative predictive value, and positive and negative likelihood ratios) are required for a full interpretation, rendering results that are sometimes difficult to explain to a layperson, such as a child's parent. Steurer et al. (2002) reported that even general practitioners can struggle

The aim of this secondary analysis of longitudinal data was to develop a robust analytic approach to predict the individual weight status of 11-year-old children from weight status data collected at age 5, and to explore the influences of sex and deprivation.

164 Subjects and methods

Subjects in this secondary data analysis are from the 165 166 Millennium Cohort Study (MCS), which recruited over 19 000 children born in the UK between 1st of September 2000 and 167 11th January 2002. Children were identified from the Child 168 169 Benefit register and were recruited, along with their families, when they were approximately 9 months old. ⁽¹⁷⁾ The study 170 used disproportionately stratified sampling to over-represent 171 172 disadvantaged populations and areas with a high prevalence of Black and Minority Ethnic (BME) communities.⁽¹⁸⁾ 173 Data were downloaded from the UK data archive, from sweep 174 175 1 and sweep 5 of the data collection, to select children who 176 were of similar ages to those taking part in the NCMP (it is also 177 possible that the children resident in England were also 178 measured in the NCMP). The following variables were obtained: MCS research serial number, cohort member 179 180 number, sex, age, BMI and index of multiple deprivation (IMD)

181	decile (by country). ^(19, 20) Height and weight were measured by
182	study investigators at each time point, and were not self-
183	reported. Due to the sample stratification and clustering, the
184	data needed to be set for analysis using an attrition/non
185	response weight (whole of UK-level analysis), a Finite
186	Population Correction factor (FPC), a stratum variable, and a
187	ward variable to account for clustering. These variables were
188	also obtained from the dataset. ⁽²⁰⁾ Since variables were
189	required from multiple datasets, files were merged together
190	based on the MCS research serial number and cohort member
191	number (used to represent twins/triplets). Raw BMI values
192	were converted into BMI z scores/centiles using the LMS
193	growth Microsoft Excel add-in ⁽²¹⁾ where UK 1990 growth
194	references were selected. These centiles were then converted
195	into weight status categories using the UK 1990 clinical cut off
196	points: underweight (<2 nd centile); normal weight (≥2 nd but
197	<91 st centile); overweight (\geq 91 st centile but <98 th centile); and
198	obese (\geq 98 th centile). ⁽²²⁾ These categories are also used in the
199	NCMP feedback letters to parents. ⁽⁶⁾ An additional category for
200	severely obese children was also generated using the ≥99.6 th
201	centile cut off. ⁽¹⁴⁾ IMD scores were used to assess the level of
202	deprivation and were presented in quintiles. Ordinal logistic
203	regression was applied to generate the predicted probability
204	(% chances) of a child becoming underweight, normal weight,

205	overweight, obese and severely obese at age 11, with weight
206	status at age 5, sex, deprivation, and their 3-way interaction as
207	predictors. Interaction analyses presented are exploratory. All
208	analyses were performed using Stata [®] software (StataCorp.
209	2013. Stata Statistical Software: Release 13. College Station,
210	TX: StataCorp LP). Point estimates are presented together with
211	95% confidence intervals. These intervals are not adjusted for
212	multiple comparisons. ⁽²³⁾

214	Three sensitivity analyses were conducted. The first simply
215	removed the second and third born twins/triplets to explore
216	whether these had a substantial effect on the estimates. The
217	second relaxed the constraint of the proportional odds
218	assumption underpinning ordinal logistic regression and
219	repeated all analyses using generalised ordinal logistic
220	regression. ⁽²⁴⁾ This model allows the effects of the predictor
221	variables to vary with the point at which the categories of the
222	age 11 weight status variable are dichotomised, rather than
223	enforcing parallel lines. Finally, we explored the effect of
224	missing data, given that 3 116 BMI values were missing at
225	follow up. Under a missing at random assumption, a complete
226	case analysis – our primary analysis - is unbiased in this
227	context and methods such as multiple imputation can only
228	exacerbate problems by introducing additional random

229	variation. However, multiple imputation can be used for a
230	sensitivity analysis to examine the effects of substantial
231	departures from the missing at random assumption. In the
232	current study, it is plausible that those children lost to follow up
233	had substantially higher BMI values - that is, data missing not
234	at random. We imputed the 3 116 missing follow up BMI
235	values predicted from baseline BMI using the Stata® 'MI'
236	module with predictive mean matching (random selection from
237	10 nearest neighbours). Twenty imputations were made by sex
238	and deprivation strata to preserve relationships for the higher
239	order interactions in the analysis model. Using a pattern
240	mixture modelling approach ⁽²⁵⁾ , each imputed follow up BMI
241	value was then inflated by 25% to simulate data missing not at
242	random, with higher follow up BMI in those not presenting for
243	measurement at age 11. We then converted these inflated BMI
244	values into weight status categories using the same method
245	previously described. The identical ordinal logistic regression
246	model was then applied to the 20 imputed data sets, with results
247	combined using Rubin's rules ⁽²⁶⁾ .

249 Results

250 12 076 children were included in the analyses who had a BMI

251 measurement along with complete data for sex and IMD

252	score. The NCMP cleaning protocol ⁽²⁷⁾ was used to explore				
253	whether there were any BMI outliers; only two BMI				
254	measurements were slightly outside the acceptable ranges				
255	given in the protocol; hence, these were retained in the				
256	analysis. Half (50.3%) of the sample were boys, and 25.8% and				
257	19.2% of children were in the most deprived (0-<20%) and				
258	least deprived (80-100%) IMD categories, respectively. The				
259	mean BMI at baseline was 16.3 \pm 1.9 kg/m ² and the mean age				
260	was 5.2 ± 0.3 years. The mean BMI at follow up was 19.2 ± 3.7				
261	kg/m 2 and the mean age was 11.2 \pm 0.3 years. At baseline (age				
262	5) the percentage of children who were underweight, normal				
263	weight, overweight and obese (including severely obese) were				
264	as follows: 1.1% (n=127), 82.4% (n=9 954), 10.3% (n=1 249)				
265	and 6.2% (n=746). At follow up (age 11) the percentages were				
266	as follows: 1.6% (n=188), 71.0% (n=8 577), 15.1% (n=1 819)				
267	and 12.4% (n=1 492). The percentage of children who were				
268	severely obese at age 5 and 11 were 2.9% (n=347) and 4.1%				
269	(n=494), respectively. The tracking of raw BMI between age 5				
270	and age 11 produced a correlation coefficient of 0.61.				
274					
2/1	Results from the full factorial ordinal logistic regression model				
272	are shown in Table 1, split by sex. Sex was shown to have little				
273	influence on these associations. Interestingly, overweight				
274	children had around a 1/3 chance of remaining overweight,				

275	1/3 chance of returning to the normal weight category and 1/3
276	chance of becoming obese. Obese (including severely obese)
277	children at age 5 year-old had nearly a 70% chance of
278	remaining obese at 11 years-old.
279	When the analysis was performed with an additional category
280	for severe obesity, severely obese 5-year-olds had a 52.8%
281	(45.3% to 60.3%) chance of remaining severely obese at 11
282	years, and a 31.3% (27.4% to 35.1%) chance of decreasing
283	their weight status and returning to the obese category (\geq 98 th
284	but <99.6 th centile). There were no substantial differences
285	between sexes: severely obese boys had 49.5% (39.4% to
286	59.5%) chance of remaining severely obese compared to a
287	56.6% (46.0% to 67.2%) chance for severely obese girls.
288	Severely obese boys and girls had a 32.3% (28.1% to 36.5%)
289	and 30.0% (24.1% to 35.8%) chance of decreasing their weight
290	status and becoming obese, respectively. Boys who were
291	obese (not severe) at age 5 had a 23.0% (17.2% to 28.8%)
292	chance of becoming severely obese, whilst obese girls had a
293	27.2% (19.7% to 34.7%) chance.
294	Results stratified by sex and deprivation are shown in Table 2.
295	Non-deprived obese boys had a lower chance of remaining

296 obese at age 11 compared to deprived obese boys; a

297 difference of -21.8% (-40.4% to -3.2%). The opposite

298	association was found in obese girls, where non-deprived girls				
299	were more likely to remain obese than deprived obese girls;				
300	however, this difference was not substantial. The sex				
301	difference in this specific interaction of deprivation and				
302	baseline weight status was -28.8% (-59.3% to 1.6%). No other				
303	substantial differences were found between deprived and				
304	non-deprived boys/girls or when comparing boys versus girls;				
305	this was also the case when normal weight and overweight				
306	status were predicted at follow up (data not shown). We were				
307	unable to include underweight children in the analysis split by				
308	sex and deprivation as there were too few underweight				
309	children in the sample.				
310	Table 3 shows the predicted percent chances of becoming				
311	severely obese by sex and deprivation. We also performed the				

analysis using the population monitoring cut points instead of
the clinical cut points and found a slightly greater increase in
the percent chances of becoming overweight or obese (results
not shown). This was expected because the cut points are

lower; hence, more children will have been categorised as

317 overweight or obese.

318 When second and third born twins/triplets were removed

from the analysis, there were no substantial differences in any

320 of the predicted percent chances (data not shown). Similarly,

321	relaxation of the constraint of the proportional odds				
322	assumption had no material effect on the findings. Results				
323	from the sensitivity analysis with missing data are shown in				
324	Table 4 for predicting obesity by sex and deprivation. When				
325	comparing the original analysis (data missing at random				
326	assumption) against the multiple imputation analysis (missing				
327	not at random assumption), no material differences were				
328	found.				

329 Discussion

330	This secondary analysis of data from the MCS has shown how				
331	a robust statistical approach can be used to predict a child's				
332	future weight status in an informative way using baseline				
333	weight status, sex and deprivation as predictor variables. This				
334	technique could be applied to NCMP data and predictions				
335	could be incorporated into the parental feedback letters, to				
336	better inform parents of the chances of their child becoming				
337	or remaining an unhealthy weight status. In fact, this statistical				
338	technique could be applied to any longitudinal dataset, and				
339	additional predictor variables could be included in the model.				
340	Furthermore, as we had a considerable proportion of missing				
341	outcome data, we have demonstrated an approach to				
342	sensitivity analysis for substantial departures from the missing				
343	at random assumption.				

344	The main findings from the MCS analysis included showing
345	that sex does not strongly influence the tracking of weight
346	status from age 5 and 11. However, our exploratory
347	interaction analyses suggest that deprivation might influence
348	whether obese boys at age 5 will remain obese at age 11, with
349	non-deprived boys substantially less likely to remain obese.
350	This association was not evident in girls. This finding is subject
351	to replication and confirmation, but it suggests that non-
352	deprived obese boys have a protective effect against
353	remaining obese in later childhood, perhaps mediated by
354	environmental and psychological factors.
355	Some of the children included in the MCS would have been
356	measured in the English National Child Obesity Dataset
357	(NCOD) in 2005/2006, which was then renamed the NCMP the
358	following year after improvements were made ⁽²⁸⁾ . Children in
359	the MCS would have also taken part in the NCMP in
360	2011/2012 when they were in Year 6 of Primary School.
361	Analyses of NCMP cohort trends have shown that obesity
362	prevalence in the most deprived children is nearly double the
363	prevalence in the least deprived children. This inequality gap
364	has shown to significantly increase by around 0.5% every year,
365	showing inequalities are continuing to widen ⁽²⁹⁾ . Analysis of

367	weight status of individuals changes over time, and is unable
368	to explore the influence of sex and deprivation in depth. The
369	analysis of individual children in the MCS identified a
370	protective effect against obesity in more affluent obese boys,
371	which would not have been seen in an analysis of cohort
372	trends. Hence, this finding highlights the importance of
373	obtaining linked NCMP data.
374	Following a change in NCMP legislation in 2013 ⁽³⁰⁾ , it is now
375	possible to upload identifiable data through an NHS number,
376	which, if submitted, will facilitate data linkage, and future
377	tracking analyses. Since there are seven years between the
378	two measurements, the earliest any national tracking analyses
379	could be undertaken is 2019. That said, NCMP data can be
380	obtained locally in those areas where data have been stored
381	on the Child Health System (CHIS), although there are lengthy
382	and time consuming governance procedures to overcome in
383	order to access these data. Examples of local authorities that
384	have obtained data via CHIS include $\operatorname{Hull}^{(31)}$ and
385	Southampton ⁽³²⁾ ; however, not all data was collected through
386	the NCMP as some measurements were collected before the
387	start of the NCMP.

388 The main limitation to this analysis was the large amount of389 missing data between baseline (age 5) and follow up (age 11)

390	where it was possible that these data might be missing not at				
391	random. However, we were able to conduct a sensitivity				
392	analysis, which showed only small differences in predicted				
393	probabilities when data was imputed under a missing not a				
394	random assumption. This finding is noteworthy, as we allowed				
395	for a large departure from the missing at random assumption,				
396	with imputed follow-up BMI values inflated by 25%. A second				
397	limitation was that some children were older than 5 years old				
398	at baseline and 11 years old at follow up; however, the				
399	majority of children were close to these ages. Also, only 1.1%				
400	of the cohort were underweight at age 5 and only 1.6% were				
401	underweight at age 11. Furthermore, only 2.9% and 4.1% of				
402	children were categorised as severely obese at age 5 and age				
403	11, respectively. Hence, even though we analysed over 12 000				
404	cases, a much larger sample would be required to be able to				
405	make robust predictions using these two categories. In				
406	addition, BMI may not be the most accurate measure of a				
407	child's weight status as it has shown to not always strongly				
408	correlate with body fat distribution. ⁽³³⁾ However, BMI is the				
409	preferred method to use in a large sample as it is relatively				
410	quick to measure, less invasive than many other body fat				
411	assessments, and has shown to be a relatively robust				
412	measurement at a population level. (34) A final limitation of the				
413	analysis is that the majority of the sample was of white				

414	ethnicity; hence, we were unable to explore the influence of
415	ethnicity, which has shown to strongly affect the likelihood of
416	developing obesity. ^(35, 36) Furthermore, the majority of children
417	were sampled from England; hence, we were unable to
418	conduct a country-by-country analysis.

419 At present MCS data are only freely available up age 11; it will be interesting to explore what effect a longer follow up period 420 421 has on predicting whether children will become overweight or 422 obese in later life, especially as adolescence is anticipated to be an important predictor of adult weight status.⁽³⁷⁾ In 423 424 addition, it would be worthwhile to perform further analyses 425 looking at the effect of physical activity and nutrition on 426 changes in BMI, and also explore what factors contribute to 427 the protective effect against obesity in non-deprived obese 428 boys.

429 To conclude, this secondary data analysis has demonstrated

430 how weight status can be tracked robustly and informatively

431 over time. Such methods could be applied to other

432 longitudinal datasets such as the NCMP.

433 Acknowledgements

434 The authors are grateful to "The Centre for Longitudinal

435 Studies, Institute of Education" for the use of these data and

- 436 to the "UK Data Archive and Economic and Social Data Service"
- 437 for making them available. However, they bear no
- 438 responsibility for the analysis or interpretation of these data.

439 **Conflict of interests**

- 440 Dr Louisa Ells is seconded to Public Health England 2 days per
- 441 week as a specialist academic advisor.

442 Supplementary material is available on NUTD's website.

443 References

444 1. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, 445 Margono C, et al. Global, regional, and national prevalence of 446 overweight and obesity in children and adults during 1980-2013: a 447 systematic analysis for the Global Burden of Disease Study 2013. The 448 Lancet. 2014;384(9945):766-81. 449 2. Friedemann C, Heneghan C, Mahtani K, Thompson M, 450 Perera R, Ward AM. Cardiovascular disease risk in healthy children 451 and its association with body mass index: systematic review and 452 meta-analysis. BMJ (Clinical research ed). 2012;345:e4759. 453 Gouveia M, Frontini R, Canavarro M, Moreira H. Quality of 3. 454 life and psychological functioning in pediatric obesity: the role of 455 body image dissatisfaction between girls and boys of different ages. 456 Qual Life Res. 2014;23(9):2629-38. 457 4. Reilly JJ, Kelly J. Long-term impact of overweight and obesity 458 in childhood and adolescence on morbidity and premature mortality 459 in adulthood: systematic review. Int J Obes. 2011;35(7):891-8. 460 5. Herman KM, Craig CL, Gauvin L, Katzmarzyk PT. Tracking of 461 obesity and physical activity from childhood to adulthood: The 462 Physical Activity Longitudinal Study. Int J Pediatr Obes. 463 2009;4(4):281-8. 464 HSCIC. National Child Measurement Programme: England, 6. 465 2013/14 school year. December 2014. 10/08/2015. Available from: 466 http://www.hscic.gov.uk/catalogue/PUB16070 Falconer CL, Park MH, Croker H, Skow Á, Black J, Saxena S, et 467 7. 468 al. The benefits and harms of providing parents with weight 469 feedback as part of the national child measurement programme: a 470 prospective cohort study. BMC Public Health. 2014;14:549. 471 8. Statham J, Mooney A, Boddy J, Cage M. Taking stock: a rapid 472 review of the National Child Measurement Programme. Report to

473 the Department of Health [Internet]. April 2011. 04/05/2015. 474 Available from: http://eprints.ioe.ac.uk/6743/ 475 Public Health England. National Child Measurement 9. 476 Programme: Guidance for data sharing and analysis July 2014. 477 10/09/2015. Available from: 478 http://www.noo.org.uk/NCMP/analytical guidance 479 10. Bayer O, Krüger H, Von Kries R, Toschke AM. Factors 480 Associated With Tracking of BMI: A Meta-Regression Analysis on 481 BMI Tracking. Obesity (Silver Spring). 2011;19(5):1069-76. 482 11. Atkinson G, Nevill AM. Statistical methods for assessing 483 measurement error (reliability) in variables relevant to sports 484 medicine. Sports Med. 1998;26(4):217-38. 485 Pearce M, Webb-Phillips S, Bray I. Changes in objectively 12. 486 measured BMI in children aged 4-11 years: data from the National 487 Child Measurement Programme. J Public Health (Oxf). 488 2015;pii:fdv058. [Epub ahead of print]. 489 13. Tripepi G, Jager, KJ., Dekker, FW., Wanner, C., Zoccali, C. 490 Measures of effect: Relative risks, odds ratios, risk difference, and 491 'number needed to treat'. Kidney International. 2007;72(7):789-91. 492 14. Ells LJ, Hancock C, Copley VR, Mead E, Dinsdale H, Kinra S, et 493 al. Prevalence of severe childhood obesity in England: 2006-2013. 494 Arch Dis Child. 2015;100(7):631-6. 495 15. Simmonds MB JL, A; Griffiths, C; Yang, H; Owen, C; Duffy, S; 496 Woolacott, N. The use of measures of obesity in childhood for 497 predicting obesity and the development of obesity-related diseases 498 in adulthood: a systematic review and meta-analysis. Health Technol 499 Assess. 2015;19(43):1-336. 500 16. Steurer J, Fischer JE, Bachmann LM, Koller M, ter Riet G. 501 Communicating accuracy of tests to general practitioners: a 502 controlled study. BMJ (Clinical research ed). 2002;324(7341):824-6. 503 Centre for Longitudinal Studies. Millennium Cohort Study. A 17. 504 Guide to the Datasets (Eighth Edition) First, Second, Third, Fourth 505 and Fifth SurveysFebruary 2014. 18/08/2015. Available from: http://www.cls.ioe.ac.uk/page.aspx?&sitesectionid=1266&sitesectio 506 ntitle=User+Guides 507 508 18. Centre for Longitudinal Studies. The Millennium Cohort 509 Study: Technical Report on SamplingJuly 2007. 18/08/2015. 510 Available from: 511 http://www.cls.ioe.ac.uk/page.aspx?&sitesectionid=880&sitesection title=Survey+Design. 512 513 University of London Institute of Education Centre for 19. 514 Longitudinal Studies. Millennium Cohort Study: Third Survey, 2006 515 [computer file]. 6th Edition. Colchester, Essex: UK Data Archive 516 [distributor]; December 2012. SN: 5795, http://dx.doi.org/10.5255/UKDA-SN-5795-3. 517 518 University of London Institute of Education Centre for 20. 519 Longitudinal Studies. Millennium Cohort Study: Fifth Survey, 2012 520 [computer file]. 2nd Edition. Colchester, Essex: UK Data Archive 521 [distributor]; August 2015. SN: 7464,

522 <u>http://dx.doi.org/10.5255/UKDA-SN-7464-2</u>.

523 21. LMS growth Microsoft Excel add-in software. Harlow 524 Printing Limited [accessed 08/06/2015]. Available from: 525 http://www.healthforallchildren.com/shop-526 base/software/Imsgrowth/. 527 22. Cole TJ, Freeman JV, Preece MA. Body mass index reference 528 curves for the UK, 1990. Arch Dis Child. 1995;73(1):25-9. 529 23. Rothman KJ. No adjustments are needed for multiple 530 comparisons. Epidemiology. 1990;1(1):43-6. 531 24. Williams R. Generalized ordered logit/partial proportional 532 odds models for ordinal dependent variables. Stata Journal. 533 2006:6(1):58-82. 534 25. Allinson P. Missing Data: Sage University Papers Series on 535 Quantitative Applications in the Social Sciences. 07-136: Sage; 2001. p. 83-4. 536 537 26. Rubin D. Multiple Imputation for Nonresponse in Surveys. 538 New York: Wiley; 1987. 539 27. HSCIC. Validation of National Child Measurement 540 Programme Data. February 2015. 16/09/2015. Available from: 541 http://www.hscic.gov.uk/media/16230/Validation-of-National-542 Child-Measurement-Programme-Data/pdf/Validation Principle and Rules.pdf 543 544 28. Public Health England. Child Obesity Data Sources 545 [09/09/2015]. Available from: 546 https://www.noo.org.uk/data sources/child. 547 29 Public Health England. National Child Measurement 548 Programme. Changes in children's BMI between 2006/7 and 549 2012/13November 2014. 15/09/2015. Available from: 550 http://www.noo.org.uk/NCMP/National report. 551 The Local Authority (Public Health, Health and Wellbeing 30. 552 Boards and Health Scrutiny) Regulations 2013, No. 218 (2013.). 553 Porter M, Greene T, Taylor A. Childhood obesity in Hull: 31. 554 paired analysis. Hull: Hull PCT, December 2007. 555 32. King D. Child Growth Briefing Note; National Child Measurement Programme 2001/02 to 2009/10 Summary Report 556 557 October 2011. 17/08/2015. Available from: 558 http://www.publichealth.southampton.gov.uk/Images/Child%20Gro 559 wth%20Report%20SC%20PCT%20(2011).pdf. 560 33. Javed A, Jumean M, Murad MH, Okorodudu D, Kumar S, 561 Somers VK, et al. Diagnostic performance of body mass index to 562 identify obesity as defined by body adiposity in children and 563 adolescents: a systematic review and meta-analysis. Pediatr Obes. 564 2015;10(3):234-44. 565 34. Dinsdale H RC, Ells L. A simple guide to classifying body mass 566 index in children2011. 20/08/2015. Available from: http://www.noo.org.uk/uploads/doc/vid_11601 A simple guide t 567 568 o classifying BMI in children.pdf. 569 35. Freedman DS, Khan LK, Serdula MK, Dietz WH, Srinivasan SR, 570 Berenson GS. Racial differences in the tracking of childhood BMI to 571 adulthood. Obes Res. 2005;13(5):928-35. 572 36. Karlsen S, Morris S, Kinra S, Vallejo-Torres L, Viner RM.

573 Ethnic variations in overweight and obesity among children over

- time: findings from analyses of the Health Surveys for England 1998-
- 575 2009. Pediatr Obes. 2014;**9**(3):186-96.
- 576 37. Dietz WH. Critical periods in childhood for the development
- 577 of obesity. Am J Clin Nutr. 1994;**59**(5):955-9.

		Predicted percent chances of becoming each weight status category at age 11 (95%CI)			
Weight status category and sex at age 5		Underweight	Normal weight	Overweight	Obese inc. severe
Underweight	Male	14.2 (1.9 to 26.4)	82.2 (70.6 to 93.9)	2.6 (-0.7 to 5.8)	1.0 (-0.4 to 2.4)
Underweight	Female	29.9 (16.9 to 42.8)	68.2 (55.7 to 80.7)	1.4 (0.8 to 2.0)	0.5 (0.3 to 0.8)
Normal weight	Male	1.4 (1.1 to 1.7)	79.7 (78.4 to 81.0)	13.0 (12.0 to 13.9)	5.9 (5.3 to 6.5)
Normal weight	Female	1.6 (1.3 to 1.9)	80.9 (79.7 to 82.0)	12.1 (11.3 to 12.9)	5.4 (4.9 to 6.0)
Quarwaight	Male	0.2 (0.2 to 0.3)	38.4 (34.5 to 42.3)	31.1 (29.5 to 32.7)	30.3 (26.7 to 33.9)
Overweight	Female	0.2 (0.1 to 0.2)	34.4 (30.7 to 38.0)	31.0 (29.4 to 32.6)	34.4 (31.0 to 37.9)
Obaca inc. cavara	Male	0.0 (0.0 to 0.1)	11.8 (8.6 to 15.1)	20.6 (17.4 to 23.8)	67.6 (61.4 to 73.7)
Obese mic. severe	Female	0.0 (0.0 to 0.1)	10.9 (7.8 to 14.0)	20.2 (16.3 to 24.2)	68.8 (61.9 to 75.8)

Table 1: The predicted percent chances of child becoming underweight, normal weight, overweight and obese at age 11 based on their weight status at age 5 and sex.

Weigł	nt status, sex and IMI	Predicted percent chances of becoming obese (including severe) at age 11 (95%CI)	
	Mala	Most deprived (0-20%)	7.4 (6.2 to 8.6)
Normalwaight	IVIUIE	Least deprived (80-100%)	4.7 (3.9 to 5.5)
Normai weight	Female	Most deprived (0-20%)	6.6 (5.5 to 7.7)
		Least deprived (80-100%)	3.9 (3.0 to 4.7)
	Male	Most deprived (0-20%)	37.2 (29.2 to 45.3)
Quanuaiaht		Least deprived (80-100%)	27.0 (20.3 to 33.6)
Overweight	Female	Most deprived (0-20%)	38.0 (30.7 to 45.3)
		Least deprived (80-100%)	30.9 (22.2 to 39.5)
	Male	Most deprived (0-20%)	71.4 (61.6 to 81.2)
Obasa ina sayara		Least deprived (80-100%)	49.6 (34.0 to 65.2)
Obese IIIc. severe	Female	Most deprived (0-20%)	62.9 (50.9 to 74.9)
		Least deprived (80-100%)	69.9 (51.2 to 88.6)

 Table 2: The predicted percent chances of a most and least deprived child becoming obese at age 11 based on their weight status at age 5 and sex

Weight status, sex and IMD (fifths) at age 5			Predicted percent chances of becoming severely obese at age 11 (95%CI)	
	Male	Most deprived (0-20%)	1.5 (1.2 to 1.8)	
Normalweight		Least deprived (80-100%)	0.9 (0.7 to 1.1)	
Normai weight	Famala	Most deprived (0-20%)	1.3 (1.0 to 1.6)	
	Femule	Least deprived (80-100%)	0.8 (0.6 to 0.9)	
	Male	Most deprived (0-20%)	10.2 (7.0 to 13.5)	
Overweight		Least deprived (80-100%)	6.5 (4.4 to 8.5)	
Overweight	Female	Most deprived (0-20%)	10.2 (7.2 to 13.1)	
		Least deprived (80-100%)	7.6 (4.7 to 10.5)	
	Male	Most deprived (0-20%)	23.8 (13.1 to 34.5)	
Obese (not inc.		Least deprived (80-100%)	12.9 (6.8 to 19.0)	
severe)	Female	Most deprived (0-20%)	18.9 (11.0 to 26.8)	
		Least deprived (80-100%)	22.4 (11.3 to 33.4)	
	Male	Most deprived (0-20%)	58.7 (41.7 to 75.7)	
Savaraly abasa		Least deprived (80-100%)	32.0 (-3.7 to 67.8)	
Severely Obese	Female	Most deprived (0-20%)	46.5 (24.6 to 68.4)	
		Least deprived (80-100%)	76.8 (52.7 to 100)	

Table 3: The predicted percent chances of a most and least deprived child becoming severely obese at age 11 based on their weight status at age 5 and sex

Weight status, sex and IMD (fifths) at age 5			Predicted percent chances of becoming obese (including severe) category at age 11 (95%CI)
Normal weight	Male	Most deprived (0-20%)	16.3 (14.5 to 18.1)
		Least deprived (80-100%)	9.1 (7.7 to 10.5)
	Female	Most deprived (0-20%)	13.1 (11.4 to 14.9)
		Least deprived (80-100%)	7.5 (6.2 to 8.8)
Overweight	Male	Most deprived (0-20%)	55.5 (48.9 to 621)
		Least deprived (80-100%)	37.9 (30.6 to 45.2)
	Female	Most deprived (0-20%)	53.1 (46.7 to 59.5)
		Least deprived (80-100%)	42.1 (33.1 to 51.1)
Obese inc. severe	Male	Most deprived (0-20%)	82.2 (75.4 to 89.1)
		Least deprived (80-100%)	52.5 (40.3 to 64.7)
	Female	Most deprived (0-20%)	74.1 (65.8 to 82.5)
		Least deprived (80-100%)	75.7 (59.3 to 92.0)

Table 4: Sensitivity analysis - multiple imputation of missing data showing the predicted percent chances of a most and least deprived child becoming obese at age 11 based on their weight status at age 5 and sex