Load Rating of Bridges without Plans

106th Purdue Road School March 10, 2020 Mark. D Bowman Rafael R. Armendariz

Study Advisory Committee

- Mark D. Bowman PI (Purdue Univ.)
- Tim Wells PA (INDOT)
- Merril Dougherty BO (INDOT)
- Jeremy Hunter INDOT
- George Snyder INDOT
- Sean Hankins INDOT
- Jose Ortiz FHWA

Outline

- Problem Definition
- Proposed Load Rating Procedure
- Field Assessment
- Case Study: Doan's Creek Bridge
- Conclusions

PROBLEM DEFINITION

Introduction

- Typically performed using relevant bridge information available on bridge plans
- Common practice for load rating bridges without plans
 - Load testing
 - Prescribed rating value based on NBI condition rating

Problem Statement

- Challenging to adequately complete for bridges without plans
- Research conducted to evaluated old, poorly-documented bridges is limited
- The MBE and load rating methodologies do not provide a straightforward load rating process for bridges without plans

Objective

- Propose a general load rating procedure for bridges in Indiana with unknown details
- Procedure in compliance with the MBE and INDOT standards

Methodology

- Literature review
 - Includes the study of load rating techniques and processes for the assessment of existing bridge structures
- Formulation of the general procedure
- Proof of concept of procedure using two case study bridges

PROPOSED LOAD RATING PROCEDURE

General Procedure

- Four-step process:
 - Bridge Characterization
 - Bridge Database
 - Field Survey and Inspection
 - Load Rating Evaluation

Bridge Characterization

- Identification of critical bridge information needed for the load rating and assessment of the bridge structure
 - Material properties, geometric feature, limit states
 - Create a list of variables

Bridge Database

- Collection of historical and representative information complied of similar bridge structures
 - Historical inspection reports
 - AASHO/AASHTO/ASTM standards
 - Survey of comparable bridge plans

Field Survey and Inspection

- Measurements of actual bridge geometric features and collection of information of the structural condition
 - Corroborate information detailed in inspection reports
 - Supplement unknown bridge information
 - Create as-built drawings (layout for structural modeling)

Load Rating Evaluation

- Measure of the safe live load capacity
- Load rating options:
 - Simplified structural analysis
 - Refined structural analysis
 - Load testing

Flowchart

FIELD ASSESSMENT

Indiana Bridge Inventory

- Stated-owned without plans
- Total of 53 bridges
 - 29 with soil cover
 - 2 case study
 bridges selected

Type of Bridge	Abbreviation	Qty.
Multi-Plate Arch Under Fill	MPA-UF	14
Reinforced Concrete Arch	RCA	11
Reinforced Concrete Arch Under Fill	RCA-UF	5
Reinforced Concrete Box Under Fill	RCB-UF	5
Precast Concrete Slab Under Fill	PCS-UF	2
Precast Concrete Arch Under Fill	PCA-UF	2
Steel Thru Truss	STT	2
Riveted Plate Girder	RPG	2
Prestressed Concrete Box Beam	PCBB	1
Steel Box Girder	SBG	1
Continuous Steel Girder	CSG	1
Prestressed Concrete I-Beam	PCIB	1
Reinforced Concrete Slab	RCS	1
Precast Concrete Beam	PCB	1
Welded Girder Rigid Frame	WGRF	1
Reinforced Concrete Slab Under Fill	RCS-UF	1
Bailey Truss	BT	1
Metal Pipe Arch	MPA	1

Field Assessments

Field Assessment 1

165-200-08007

024-52-07576

024-52-07579

17-00-04177 R

035-09-01948 A

025-09-03841

Field Assessment 2

150-84-02520 A

045-28-06236

231-67-07504

046-84-06241

046-53-08789 WBL

P000-49-07961

CASE STUDY: DOAN'S CREEK BRIDGE

Bridge Description

- Two-span earthenfilled RC arch
- Built in 1942
- Rigid buried structure

Rigid Buried Structures

- Major components:
 - Backfill material
 - Structural member
- Very stiff and do not deflect appreciably
- Load-carrying capacity mostly provided by structural member
- Works primarily in compression but subjected to some degree of flexure (arch)

Rigid Buried Structures

- Assessment of Doan's Creek using general load rating procedure
 - Bridge characterization
 - Bridge Database
 - Field Survey and Inspection
 - Load rating

Bridge Characterization

T 7 ' 1 1		
Variable	Description	
	bh	
A_s	Area of tension reinforcement	
A'_s	Area of compression reinforcement	
A_{v}	Area of transverse reinforcement	
<i>C.C.</i>	Clear concrete cover	
Ь	Width of arch barrel	
d	Distance from extreme tension fiber to	centroid of
d'	Distance from extreme compression fib	er to centro
Ec	Modulus of elasticity of concrete	
Es	Modulus of elasticity of reinforcement	
f	Rise	
f'_c	Compressive strength of concrete	
f_{v}	Yield strength of steel reinforcement	
ĥ	Height of arch barrel	
Η	Depth of earth cover over crown	
1	Clear span	
S	Spacing of principal reinforcement	
s_v	Spacing of transverse reinforcement	
γ _c	Unit weight of concrete	
γ_s	Unit weight of backfill	
k	Lateral earth coefficient	
ϕ'_f	Effective friction angle of backfill	
DIID		

- A_s, A_s' = Area of steel reinforcement
- f = Rise of arch
- *f*'_c = Concrete compressive strength
- f_{y} = Rebar yield strength
- *h* = Thickness of arch
- *H* = Depth of earth cover over crown
- / = Clear span

Bridge Database

- Indiana Bridge Inspection Application System (BIAS)
 - Stated-owned bridges
 - From1940 through 1950
 - Bridge type: RCA-UF
- Query results:
 - 45 bridges matched search
 - 22 had comparable plans on file (BIAS)

Comparable Plan Example

Purdue

UNIVERSITY

List of Comparable Plans

		h	f	1			$A_{\!s}$	
Bridge	Year	(in.)	(ft.)	(ft.)	h/l	f/l	(in. ²)	ρ
BRG-01	1940	8	8	35	0.019	0.229	0.31	0.0045
BRG-02	1940	8	10.5	30	0.022	0.350	0.31	0.0045
BRG-03	1940	8	8	25	0.027	0.320	0.31	0.0045
BRG-04	1941	8	8	25	0.027	0.320	0.31	0.0045
BRG-05	1941	9	10.5	30	0.025	0.350	0.31	0.0039
BRG-06	1941	8	7	30	0.022	0.233	0.31	0.0045
BRG-07	1942	9	10.5	30	0.025	0.350	0.20	0.0025
BRG-08	1946	10	15	35	0.024	0.429	0.31	0.0034
BRG-09	1946	9	7	30	0.025	0.233	0.44	0.0055
BRG-10	1947	9	9	25	0.030	0.360	0.20	0.0025
BRG-11	1947	9	12	30	0.025	0.400	0.20	0.0025
BRG-12	1947	8	8	25	0.027	0.320	0.31	0.0045
BRG-13	1948	9	9	35	0.021	0.257	0.20	0.0025
BRG-14	1948	9	12	30	0.025	0.400	0.20	0.0025
BRG-15	1948	9	11	30	0.025	0.367	0.31	0.0039
BRG-16	1948	9	9	25	0.030	0.360	0.31	0.0039
BRG- 17	1948	8	8	25	0.027	0.320	0.31	0.0045
BRG-18	1948	9	12	35	0.021	0.343	0.31	0.0039
BRG-19	1948	9	11	40	0.019	0.275	0.44	0.0055
BRG-20	1950	8	9	30	0.022	0.300	0.31	0.0045
BRG-21	1950	9	9	25	0.030	0.360	0.31	0.0039
BRG-22	1950	10	15	40	0.021	0.375	0.31	0.0034

Note: A_s = area of tension reinforcement, f = rise, h = thickness of arch member, l = clear span, ρ = tension steel reinforcement ratio.

Comparable Plans Findings

- Primary reinf.:
 - 2 layers @ 24 in.
- Secondary reinf.:
 2 layers @ 24 in.
- Single leg stirrups:
 - Rebar # 4 @ 24 in.

■ 8 in. ■ 9 in. ■ 10 in.

Primary Reinforcement

27

Field Survey and Inspection

- Geometric features
 - Clear span: 11.5 ft.
 - Rise: 5.75 ft.
 - Semi-circular arch
 - Soil cover: 3.4 ft.
- No signs of distress

As-Built Drawings

Plan View

Cross-section

Material Properties

- Concrete
 - Unit working stress of 1,000 psi based on f'c = 3,000 psi (AASHO, 1941)
 - f'c = 2,500 psi if built prior 1959 (MBE, 2018)
- Steel reinforcement
 - Unit working stress of 18,000 psi, assumed as
 0.545 of yield point (AASHO, 1941)
 - fy = 33,000 psi (AASHO, 1941 & MBE ,2018)

Idealized Cross-Section

- Most common cross-section
 - Arch thickness 9 in.
 - Primary rebar # 5 ($A_b = 0.31in.^2$)
- Minimum cross-section
 - Arch thickness 8 in.
 - Primary rebar # 4 ($A_b = 0.20 \text{ in.}^2$)
 - Conservatively used for load rating calculations

Load Rating Evaluation

- Simplified model
 - Loads calculated on a 1-ft. wide section
 - Arch divided into portions approximated by straight members of equal lengths
 - Frame element (beam-column formulation)
 - Forces along arch: axial, shear, & moment
 - Two BCs: two-hinged (pinned) & hingeless (fixed)

Interaction Diagram

- Combined action of axial compression and flexure controlled
- Useful for design but limitation for load rating
- Load-carrying capacity depends upon unknown load
- Rating Factor (RF) is a function of loadcarrying capacity

Example of Simplified Analysis

Moment Diagram

Axial Force Diagram

Load Rating - Interaction Diagram

Numerical Load Rating Flowchart

e = eccentricity P_b = balanced load P_{DI} = axial force effect due to dead load $P_{n \text{ compression}}$ = compression-controlled axial capacity $P_{n \text{ tension}}$ = tension-controlled axial capacity P_{II} = axial force effect due to live load P_{SDI} = axial force effect due to superimposed load P_{μ} = factored axial force M_{Dl} = bending moment effect due to dead load $M_{n \ compression}$ = compression-controlled moment capacity $M_{n, tension}$ = tension-controlled moment capacity M_{SDI} = bending moment effect due superimposed load RF = rating factor ΔRF = rating factor increment γ_{DI} = load factor for dead load γ_{SDI} = load factor for superimposed load γ_{II} = load factor for live load Y ϕ = reduction factor $RF = RF + \Delta RF$

VERSIT

Load Rating Results

- Automated load rating using Matlab
- Inventory level (LFR)
 - RF = 3.27 at crown (two-hinged)
 - RF = 3.72 at end supports (hingeless)
- Operating level (LFR)
 - RF = 5.45 at crown (two-hinged)
 - RF = 6.20 at end supports (hingeless)

Load Rating Validation

Concrete Compressive Strength

- f'c = 2,500 psi (minimum value per MBE)
- Inventory Level (LFR)
 - -RF = 3.22 (two-hinged)
 - -RF = 3.62 (hingeless)

Field Load Testing

- Bridge instrumented
- Conducted to complement calculations
- Two fully loaded trucks used
- One lane and two lane loadings
- Static and dynamic loadings

Description

- Concrete strain gages (10)
- String potentiometers (2)
- Campbell Scientific Datalogger (1)
- Two tandem dump trucks (60-Tons total)

Sensor Layout (Cross-Section)

Sensor Installation

Tandem Dump Truck

Truck Dimensions

Load Cases

- Load cases designed to record the peak values of strain in the arch
- Load cases (10)
 - Static (7)
 - Crawl speed, approx. 5 mph (2)
 - Dynamic (1)

Wheels Placement (Both Trucks)

Data Results (Strain)

U

Load Case 10 (Dynamic)

Load Testing Remarks

- Small magnitudes of strains
- Small magnitudes of deflections
- Earth fill dissipates live load effects
- Have more than enough load-carrying capacity (High RF)

Finite Element Analysis (FEA)

- FE model developed in Abaqus 6.14
- 3D FEA to account for both the in-plane and out-of-plane live load spreading
- Model geometry based on as-built drawings

Element Modeling

- Arch section
 - S4R (4-node doubly curved thin or thick shell, reduced integration, hourglass control, finite membrane strains)
- Soil medium
 - C3D6 (6-node triangular prism)
 - C3D8R (8-node linear brick, reduced integration, hourglass control)

Model Considerations

- Soil medium
 - Divided into four layers (SW95 & SW85)
 (Petersen et. al., 2010 NCHRP Rep. 473)
 - Uniform soil layer SW-High (TXDOT Culvert Rating Guide, 2009)
- Pavement (Seo et al., 2017)
 - Rigid (concrete)
 - Flexible (asphalt)

FE Model

3D View

Arch Section

Results

Axial Force

Bending Moment

Main Findings

- Rigid pavement has greater effect on spreading the live load than flexible pavement
- Four-layered soil model predicted higher strains than load test
- Uniform soil layer results were more consisted with load test measurements

Doan's Creek Bridge Conclusions

- Satisfactory load rating using general procedure and worst-case (conservative) bridge information
- Controlling strength limit state is the combined action of axial compression and flexure
- Automated load rating allows for quick and efficient solution for earthen-filled RCA

CONCLUSIONS

Conclusions

- Systematic methodology for load rating old, poorly-documented bridges
- Implement at the state or county bridge inventory
- Procedure can be customized for a specific bridge type

SPR-3816 Final Report

- Armendariz, R. R., & Bowman, M. D. (2018). <u>Bridge load rating</u> (Joint Transportation Research Program Publication No. FHWA/IN/JTRP-2018/07). West Lafayette, IN: Purdue University.
 - https://doi.org/10.5703/1288284316650

THANK YOU!

Corrugated Steel Pipe Flowchart

Earthen-Filled RC Arch Flowchart

