What Utilities Wish We Knew will begin shortly...while you wait...

WE NEED YOUR HELP!

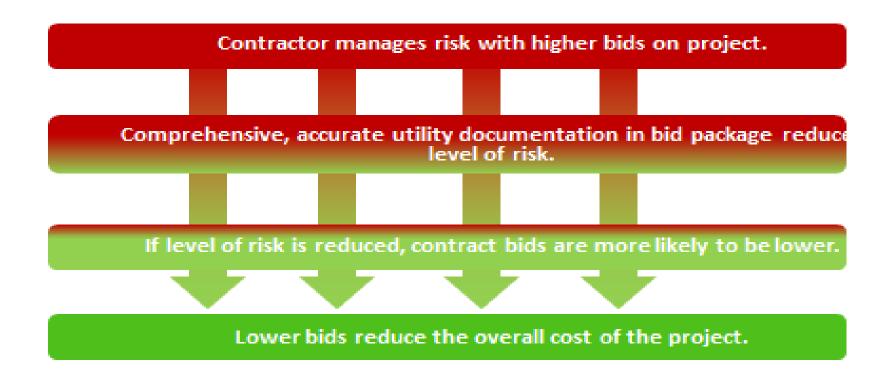
UESI, an institute of ASCE, is conducting a survey on what utility coordination looks like nationally. Please use the QR code to participate in the survey. Thanks!

What Utilities Wish We Knew

Focusing on Communications & Electric Facilities

Joe Kline Tipmont REMC Natalie S. Parks, P.E. USI Consultants, Inc.

Ted Foster
Butler, Fairman, & Seufert, Inc.


Introduction

Why should we have a better understanding about utility facilities, their needs, limitations and requirements?

It's all about RISK MANAGEMENT...

Agenda

- Communications Facilities
- Electric Facilities
- Things to Consider
- Question & Answer

Fiber Optic Internet, TV and Phone

No longer Telephone or Cable TV... ...Now Data Transmission Lines

Landline Use – Declining in the last 20 years

> DSL – faster digital circuits continues to grow

Communications Facilities

- Communications companies now plan how to maintain a large amount of DATA FLOW
- Circuits involve vital links for customers like FAA, Hospitals, and Law Enforcement
- Relocation activities may require completion at NIGHT
- Relocation activities must be done in ADVANCE of road project
- Relocation activities may be limited to certain days

Deregulation Creates New Companies...And New Challenges

- Telecommunications Act of 1996 deregulated
- Created two types of carriers
 - Incumbent Local Exchange Carriers (ILEC's)
 - AT&T, Frontier, Verizon
 - Competitive Local Exchange Carriers (CLEC's)
 - Fiber Companies Metronet, Intelligent Fiber Network,
 Zayo
 - Cable Companies Comcast, Spectrum
 - Voice Over Internet Protocol, VoIP companies

Communications Facilities (1)

Deregulation of Telecommunications

Act of 1996

Funding for Relocation Projects

Response times for relocation

• ILEC's

- Prior to deregulation rate adjustments could be made with the IURC to account for capital spending for relocation projects
- Deregulation requires funding to be allocated from other sources making it harder to respond to obligations under the requirements of right-of-way agreements

Communications Facilities (2)

- CLEC's
 - Generally able to respond more quickly
 - Can be limited in amount of company resources
 - Obtain confirmation of funding

Communications Facilities (3)

- Facility Relocations = Plant Upgrade
 - Existing facilities are not replaced like for like
 - New facilities sized according to current forecasted demand
 - Vacant ducts often placed for future needs
 - Funding is often available only to do required work

Communications Facilities (4)

- Pedestals, Handholes, Manholes
 - Replacing requires replacing or moving cable
 - Replacement of cable and conduit increases scope of work

Relocation may be required outside of project

limits

Communications Facilities (5)

Abandoned vs Retired

- Abandoned how a communication utility views the inactive facility
 - No longer have to pay taxes
 - Do not have the resources to remove large amounts of retired cable

Communications Facilities (6)

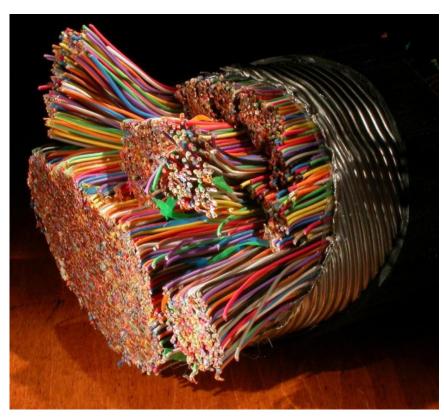
Abandoned vs Retired

- Retired how project owners view inactive facilities
 - UAP Section 13.8 Definition
 - No pay item or scope for Road Contractor to remove facilities

Communications Facilities (7)

Abandoned vs Retired

- Address removal of retired/abandoned facilities early in project development
- Avoids construction delays


Communications Facilities (8)

Dead and Dark

- Dead = cable in service and usable but with no customers
- Dark Fiber = cable placed in anticipation of future growth but with no current customers

Communications Facilities (9)

Communications Facilities (10)

- Copper facilities network being replaced with fiber facilities, but copper facilities will remain in service for decades
- Copper does not suffer loss of signal strength when spliced
- Fiber does not suffer distance penalties

Communications Facilities (11)

- Copper can be spot spliced
- Fiber is affected by the number of splices in the cable
 - Fiber must be spliced between existing splice points

Communications Facilities (12)

- Data circuits through copper cables are designed for specific distances
- Fiber cables are designed with frequent points with coiled cable for future splice as needed

Touchstone Energy®
Cooperatives

Electric Facilities


Electric Companies

- Government & Municipal Electric Companies
- REMC Electric Cooperatives
- Investor Owned

Electric Facilities (2)

- Pole embedment
 - 10% + 2' for wood
 - 10% + 4' for steel
 - Sometimes dependent on soil conditions

Electric Facilities (3)

- Pole lengths
 - 25' to 115' in 5' increments
 - Varies with terrain, line voltage, and number of attachments
 - Dependent on clearance requirements from other obstructions
 - Includes embedment lengths

Electric Facilities (4)

- Pole widths
 - Wider at bottom of pole and tapers to top
 - Pole butt typically 2'
 - Auger for pole installation typically 3'
 - From back of right-of-way to next utility should be 4'

Electric Facilities (5)

- Line Clearances from line to line on a pole
 - Depends on voltage
 - National Electrical Safety Code
 - Rural Utilities Service
- For underbuilds 40" minimum

Electric Facilities (6) All About Poles

- Steel Poles
 - Direct Bury poles
 - Ground, and anchors as needed, anchors the pole
 - Self-Supporting
 - Concrete foundation anchors the pole
 - Will have 4 bolts at the base of the pole

Electric Facilities (7)

- Using Steel over Wood
 - Depends on stresses on pole with or without guy anchors
 - Space constraints for anchor leads
 - Environmental deterioration factors
 - Cost
 - Company policy
 - Steel are primarily used for transmission poles

Electric Facilities (8)

- Cutting grade around poles
 - Depends on facility and company requirements
 - 1' of cut or greater requires a pole analysis
 - Duke allows a 2:1 ratio
- Cutting grade around poles should be avoided if possible
- Check with electric utility for Third Party Standards

Electric Facilities (9)

- Pole Brand
 - Company name
 - Pole height
 - Pole class
 - Sometimes type of wood
 - Sometimes year of installation

Electric Facilities (10)

- Pole Class
 - How fat the pole is at the base
 - The skinner the pole, the higher the number

Electric Facilities (11)

Span Lengths

- Depends on pole height and class, size of wire, number of underbuilds
- Distribution 100'
- Secondary 100'-120'
- Primary max of 225'

Electric Facilities (12)

Wire

- Size of the wire does not mean voltage
- Material of wire copper and aluminum
 - Copper is being replaced by aluminum
 - Material can cause a delay in a project schedule
- Oval wire is used when span lengths need to be longer
- Be careful of "galloping" wire
 - Wires move up and down instead of side to side
 - Can pull poles out of the ground

Electric Facilities (13)

Anchors

- Small anchors buried approximately 5'
- Larger anchors buried approximately 7'
- Some placed at a 45 degree angle or straight up and down
- Anchor depths are dependent on soil conditions
- Anchor angles follow the angle of the down guy...not necessarily straight down.

Electric Facilities (14)

Above Ground Appurtenances

- Transformers
- Junction boxes
- Pedestals
- Street lights
- Riser pole and conduit
- Cabinets
- Switchgear

Electric Facilities (15)

Line Voltages

- Distribution 4kV to 25kV
 - Supply power locally to the customer
- Sub-transmission 23kV to 138kV
 - Lines between substations
- Transmission 138kV to 765kV
 - Generating station to substation
 - Large high voltage structures
 - Lower voltages can be buried but very expensive

Electric Facilities (16)

- Pole alignment
 - Maximum 2% of power line angle can be made without requiring lateral guying
 - Dependent on conductors, conduction tensions, pole height, and span length
- Burying facilities can bury electric and communication in the same trench in different conduits

Electric Facilities (17)

- De-energizing
 - Can only be done if the circuit can be back fed
 - Occurs when clearances are violated or for maintenance or emergency repairs
 - More likely to de-energize in spring and fall
 - Dependent on weather, work in surrounding areas, type of customers served (hospitals, etc), number of customers on a circuit

Electric Facilities (18)

- •MISO, PJM
 - MISO & PJM are regional transmission organizations that coordinate the movement of wholesale electricity
 - Voltages above 138kV require MISO/PJM approval
 - MISO = Duke, IPL, NIPSCO
 - PJM = AEP
 - Line de-energizing approval can take months

Electric Facilities (19)

- Holding Poles
 - Poles can be held temporarily
 - Digger or Derrick trucks hold the pole in place
- Visibility Covers
 - Does not provide protection

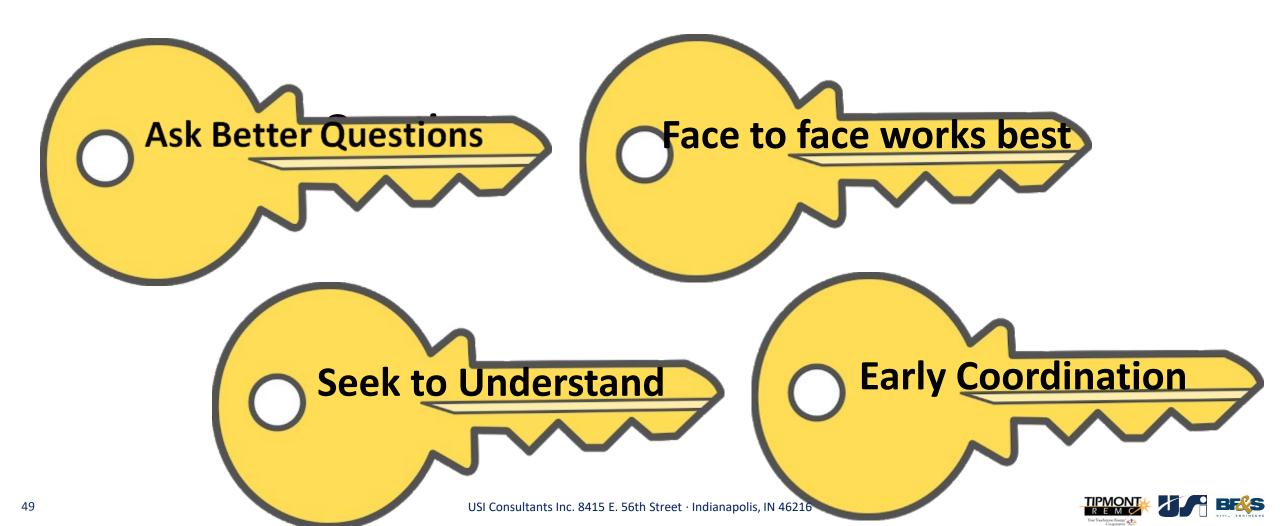
Electric Facilities (20)

- Underbuild Relocations
 - SPANS
 - Underbuild companies submit a request to SPANS
 - SPANS notifies them when they are able to relocate
 - Usually relocated after the electric company completes their relocation

Electric Facilities (21)

Relocation Costs

- Many factors contribute to the cost
 - One pole and conductor for distribution and subtransmission \$10k
 to 16 k
 - Transmission starts at \$15k
 - One mile of new 3 phase distribution is approximately \$160k


Electric Facilities (22)

References

- NESC National Electric Safety Code
- OSHA Electrical Safety

Communication & Cooperation are the keys to successful Coordination

- Data Transmission Facilities:
 - Know the material type copper, fiber, paper wrapped and implications of each
 - Understand differences between manhole & handhole
 - Take into account the time to engineer plans
 - Consider customers on the lines and notification requirements
 - Consider material ordering
 - Check 811 frequently for new fiber installations

• Electric:

- Placing at the right-of-way means a 4' clearance
- Engineering can take 6 months
- Wire elevations fluctuate based on weather and loading
 - Engineer relocations based on NESC weather chart
 - Indiana in Zone 2
- Don't forget arms that may be attached to poles
- Underbuild communication highly dependent on utility coordination process
- Geotechnical information is critical for some decisions
- MISO or PJM approvals take months
- Materials ordering can take time

QUESTIONS?

Contact Information:

Natalie Parks, P.E.

USI Consultants, Inc. 317.526.9045

nparks@usiconsultants.com

Ted Foster

Butler, Fairman, and Seufert, Inc. 317.713.4615

tfoster@bfsengr.com

Joe Kline

Tipmont REMC 765.426.6170 jkline@tipmont.org

