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Abstract: This paper presents Differential Transformation Method (DTM) and Picard’s Iterative Method (PIM) 

as computational techniques in solving linear and nonlinear differential equations. For numerical analysis of the 

methods, three examples are considered. The results obtained are compared with their corresponding exact 

solutions. A link between successive terms of the solutions using the two methods is noted. The DTM is very 

effective and reliable in obtaining approximate solutions. The PIM requires the satisfaction of Lipschitz 

continuity condition; though, its results also converge rapidly to the exact solutions. 
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1. Introduction 

Many analytical, semi-analytical or purely numerical methods are available for the 

solution of differential equations encountered in management sciences, pure and applied 

sciences. Most of these methods are computationally intensive because they are trial-error in 

nature, or need complicated symbolic computations [1]. 

Youssef used Picard iteration technique with Gauss-seidel technique for initial value 

problem [2], Rach used Adomian Decomposition method and Picard’s method [3]. Bellomo 
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and Sarafyan also compared Adomian Decomposition method and Picard iterative scheme 

[4]. 

The differential transformation is a numerical method for solving differential equations. 

The concept of differential transform was first introduced by Zhou (1986) while solving 

linear and non-linear initial value problems in electric circuit analysis [5]. Chen and Liu 

applied this method to solve two-boundary problems [6]. Jang et al, apply the 

two-dimensional differential method to solve partial differential equations [7].  Edeki et al 

[8] applied the differential transform method (DTM) as a semi-analytical method to a certain 

class of ODEs. The DTM has been applied to other areas among- difference equations [9], 

differential-difference equations [10], two-dimensional integral equations [11], optimization 

of the rectangular fins with variable thermal parameters [12] and integro-differential 

equations [13]. 

In this paper, linear and nonlinear ordinary differential equations are considered using the 

DTM and the PIM. The numerical results from the two methods are compared with their 

exact solutions. The main advantage of the DTM is that, it can be applied directly to linear 

and nonlinear ordinary differential equations without linearization, discretization or 

perturbation. Also, it is capable of greatly reducing the size of computational work while still 

maintaining accuracy, and providing the series solution with fast convergence rate. The PIM 

is also effective but requires the satisfaction of the Lipschitz continuity condition. 

 

2.  Analysis of the Basic Methods 

 In this section, the basic concepts and theorems for the Differential Transform Method 

(DTM) and the Picard’s Iterative Method (PIM) are systematically introduced. 

2.1 The Fundamental of the Differential Transform Method 

Let ( )y f x   be an arbitrary function expressed in Taylor series about a point 0x    as 

0 0

( )
!

k k

k
k x

x d f
f x

k dx



 

 
  

 
                  (1) 

Then, the differential transformation of ( )f x  is defined as 
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0

1
( )

!

k

k

x

d y
F k

k dx


 
  

 
                           (2) 

As a result, the inverse differential transform of ( )F k  is: 

0

( ) ( )k

k

f x x Y k





                 

(3)  

2.2 Special theorems of the DTM         

The following theorems can be deduced from equations (1), (2) and (3): 

Theorem 1:  If 1 2( ) ( ) ( ),y x y x y x   then 1 2( ) ( ) ( )Y k Y k Y k   

Theorem 2:  If 1( ) ( )y x cy x , then 1( ) ( )Y k cY k , where c  is a constant. 

Theorem 3:  If 1( )
( ) ,

n

n

d y x
y x

dx
 then  1

( )!
( ) ( )

!

k n
Y k Y k n

k


    

Theorem 4:  If 1 2( ) ( ) ( )y x y x y x , then 
1

1 1 2 1

0

( ) ( ) ( )
k

k

Y k Y k Y k k


    

Theorem 5:  If ( ) ny x x , then ( ) ( )Y k k n   where 
1, 

0, 
( )

k n

k n
k n




  . 

2.3 Analysis of the Picard Iteration Method 

Consider the first order ordinary differential equation (IVP) 

            ( , )y g t y   ,             0 0( )y t y                (4) 

To guarantee the existence and uniqueness of the solution of (4), we assume that ( , )g t y  is 

Lipschitz continuous in a ball, *

0( )bB y ; centre 0y  and radius b . We define a complete 

normed space  , , ,
g

       for the function ( , )g t y  equipped with the sup-norm:  

 

 
0,

, ( )sup
t T

g g t y t


                              (5) 

where   is a Hilbert space, ,     an inner product, and 
v
  a norm operator w.r.t v  , 

such that:  

                *

0 0, ( )a bg C a b t B y                    (6) 
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where  

 
     *

0 0 0 0 0 0,  and ( ) ,a bt t a t a B y y b y b                   (7) 

Thus, for every pair of points  ,y y   in 
gGr ; the graph of g , there exists a constant 

0M  , such that : 

  
( , ) ( , )g t y g t y M y y                              (8) 

where  is a Lipschitz constant.M   

Now by integrating both sides of (4) we get: 

 

 
0 0

( , ( ))

t t

t t

y d g y d                            (9) 

Thus, by fundamental theorem of calculus, (5) becomes: 

   
0

0 ( , ( ))

t

t

y t y t g y d      

       
0

0 ( , ( ))

t

t

y t y t g y d                      (10) 

For an arbitrary ,t  it is obvious that  y t  appears both on the LHS and in the integrand of 

(10). Therefore, we resort to iterative approach (Picard) by choosing an initial guess 

 0 0y t y  and setting for 1 , n n   : 

 
0

1 0 ( , ( ))

t

n n

t

y t y g y d                      (11) 

Thus, the approximate solution to (4) is  1 (t)PIM

n y t    , provided the limits in (11) exist 

such that: 

 1 1(t) lim  ( ) lim  ( )PIM

n n n
n n

y t y t y t  
 

             (12) 

 

3.  Applications and Numerical Results 

In this subsection, we will consider some differential equations (IVP) and solve them using 

both methods- the differential transform method DTM and the PIM as discussed above. 
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Example1 Consider the IVP: 

1 0,    (0) 2y y y                              (13) 

with an exact solution: 

( ) 1 t

exy t e                   (14) 

Solution (DTM): 

We rewrite (13) in a standard form and take the differential transform (DT) as follows; 

 ( ) ( ) 1DT y t y t      

By using the basic ideas and theorems of the DTM as stated above, we obtain the following 

recurrence relation as follows:  

( 1) ( 1) ( ) ( )k Y k Y k k    ,                                                           

So,    

1
( 1) [ ( ) ( )]

1
Y k Y k k

k
  


            (15) 

with the initial conditions (0) 2Y  , 

Hence, for  0k   , we obtain values for (1), (2), (3),Y Y Y  as showed below: 

 
1 1 1

for 0,  (1) 1; for 1,  (2) ;  for 2,  (3) ;  for 3,  (4) ,
2! 4! 5!

k Y k Y k Y k Y       
 

2 3 4 5

( ) 2 ...
2! 3! 4! 5! n!

nt t t t t
y t t                 (16) 

2 3 4 5

4 ( ) 2 .
2! 3! 4! 5!

DTM t t t t
t t                (17) 

Solution (PIM): 

We re-express (13) in an integral form of (11) : 

  
0

1 0 ( , ( ))

t

n n

t

y t y g y d     
 

 
0

1 0 02 ( 1 ( )) ,  0 , 2

t

n ny t y d t y                     (18) 

Hence, the following successive approximations are obtained: 
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2 2 3 2 3 4

0 1 2 3 4

2 3 4

2,  2 ,  2 ,  2 ,  2 ,
2! 2! 3! 2! 3! 4!

 ( ) 2
2! 3! 4! n!

n

n

t t t t t t
y y t y t y t y t

t t t t
y t t

              

      

 

S0   
2 3 4

( ) 2 ...
2! 3! 4! n!

n

n

t t t t
y t t                       (19)

     
2 3 4

4

0

( ) 2 ( )
2! 3!

PIM DTM

n

n

t t
t t y t



                       (20) 

Example 2 Consider the IVP:  

2 2,  (0) 0y y y                   (21) 

with an exact solution: 

2( ) 1 t

exy t e                      (22) 

Solution (DTM): 

We rewrite (21) in a standard form and take the differential transform (DT) as follows; 

   ( ) 2 ( ) 2 ,  0 0DT y t y t Y                  

 ( 1) ( 1) 2 ( ) ( )k Y k Y k k    , 

  ∴        
2

( 1) ( ) ( )
1

Y k Y k k
k

  


          (23) 

with the initial conditions (0) 2Y  , 

Thus, for  0.k   , we obtain values for (1), (2), (3),Y Y Y  as showed below: 

2 3 42 2 2
for 0, (1) 2;  for 1, (2) ; for 2, (3) ;  for 3, (4) ,

2! 3! 4!
k Y k Y k Y k Y           

Hence, 

     
2 3 4

0

2 2 2
( ) ( ) 2

2! 3! 4!

k

k

t t t
y t Y k t t





               (24) 

       
2 3 4 5

4

2 2 2 2
( ) 2

2! 3! 4! 5!

DTM
t t t t

t t                (25) 

Solution (PIM): 

We re-express (21) in an integral form of (11): 



722                    S.O. EDEKI, A.A. OPANUGA, AND H.I. OKAGBUE 

  
0

1 0 ( , ( ))

t

n n

t

y t y g y d     
 

 

 
0

1 0 02 (1 ( )) ,  0 , 0

t

n ny t y d t y             (26) 

Hence, the following successive approximations are obtained: 

2 2 3

0 1 2 3

(2 ) (2 ) (2 )
0,  2 ,  2 ,  2 ,  

2! 2! 3!

t t t
y y t y t y t         

Thus, 

2 3 4 5

6

(2 ) (2 ) (2 ) (2 )
( ) 2

2! 3! 4! 5!

PIM t t t t
t t                (27) 

First order non-linear differential equations 

Example 3 Consider the IVP:  

2( ) ( ) 1,  (0) 0y t y t y                   (28) 

with an exact solution: 

( ) tan( )exy t t                      (29) 

Solution (DTM): 

We rewrite (23) in a standard form and take the differential transform (DT) as follows; 

21 ,DT y y            

 
0

( 1) ( 1) ( ) ( ) ( )
k

r

k Y k k Y r Y k r


 
     

 
 , 

∴     
0

1
( 1) ( ) ( ) ( )

1

k

r

Y k k Y r Y k r
k




 
      

              (30) 

with the initial conditions (0) 0Y  , 

Therefore, for 0k  , we obtain values for (1), (2), (3),Y Y Y  as showed below: 

1 2
for 0, (1) 1;  for 2, (3) ; for 4, (5) ;  for 6,

3 15
k Y k Y k Y k          

 (0) (2) (4) (2 2) 0, for 1where Y Y Y Y k k         

Hence, 
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3 5

0

1 2
( ) ( )

3 15

k

k

y t Y k t t t t




                (31) 

      3 5

6

1 2
( ) .

3 15

DTM t t t t                       (32)  

Solution (PIM): 

We re-express (28) in an integral form of (11): 

  
0

1 0 ( , ( ))

t

n n

t

y t y g y d     
 

 
0

2

1 0 0 0(1 ( )) ,  0 , 0

t

n ny t y y d t y              (33) 

Hence, the following successive approximations are obtained: 

3 3 5 7

0 1 2 3

2
0,  ,  ,  ,

3 3 15 63

t t t t
y y t y t y t          

As such, 

    
3 5 7

8

2
( )

3 15 63

PIM t t t
t t                      (34) 

Remark 3.1: We observe a link between the solutions obtained using the DTM and the PIM. 

This is expressed as: 

 
0

DTMn
PIM

k

n
k

tY ky


                   (35) 

3.3 Numerical Comparison of the exact solution, the DTM solution, and the PIM solution 

In the subsection, comparisons between the solutions for each example are displayed in the 

following tables with their graphs in figures 1-3 respectively. 
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   Table 1: Numerical comparison for Example 1 

 

t 

 

Exact 

solution 

 

 3

DTM t  

 

 4

PIM t  

 

 

Absolute 

Error  

( DTM) 

 

Absolute 

Error 

(PIM) 

0.0 2.000000 2.000 2.000000 0.000000 0.000000 

0.1 2.105171 2.105 2.105167 0.000171 4.25E-06 

0.2 2.221403 2.220 2.221333 0.001403 6.94E-05 

0.3 2.349859 2.345 2.349500 0.004859 0.000359 

0.4 2.491825 2.480 2.490667 0.011825 0.001158 

0.5 2.648721 2.625 2.645833 0.023721 0.002888 

0.6 2.822119 2.780 2.816000 0.042119 0.006119 

0.7 3.013753 2.945 3.002167 0.068753 0.011586 

0.8 3.225541 3.120 3.205333 0.105541 0.020208 

0.9 3.459603 3.305 3.426500 0.154603 0.033103 

1.0 3.718282 3.500 3.666667 0.218282 0.051615 

 

Table 2: Numerical comparison for Example 2 

 

t 

 

Exact 

solution 

 

 5

DTM t   

 

 6

PIM t  

  

 

Absolute 

Error    

( DTM) 

 

Absolute 

Error 

(PIM) 

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 

0.1 0.221403 0.221400 0.221403 2.76E-06 9.15E-08 

0.2 0.491825 0.491733 0.491819 9.14E-05 6.03E-06 

0.3 0.822119 0.821400 0.822048 0.000719 7.08E-05 

0.4 1.225541 1.222400 1.225131 0.003141 0.00041 

0.5 1.718282 1.708333 1.716667 0.009948 0.001615 

0.6 2.320117 2.294400 2.315136 0.025717 0.004981 

0.7 3.055200 2.997400 3.042219 0.057800 0.012981 

0.8 3.953032 3.835733 3.923115 0.117299 0.029918 

0.9 5.049647 4.829400 4.986864 0.220247 0.062783 

1.0 6.389056 6.000000 6.266667 0.389056 0.122389 
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 Table 3: Numerical comparison for Example 3 

 

t 

 

Exact 

solution 

 

 6

DTM t   

 

 8

PIM t  

  

 

Absolute 

Error 

( DTM) 

 

Absolute 

Error 

(PIM) 

0.0 0.000000 0.000000 0.000000 0.000000 0.00000 

0.1 0.100335 0.100355 0.100355 2E-05 2E-05 

0.2 0.202710 0.203349 0.203350 0.000639 0.00064 

0.3 0.309336 0.314184 0.314187 0.004848 0.004851 

0.4 0.422793 0.443179 0.443205 0.020385 0.020411 

0.5 0.546302 0.608333 0.608457 0.062031 0.062155 

0.6 0.684137 0.837888 0.838332 0.153751 0.154196 

0.7 0.842288 1.172883 1.174190 0.330594 0.331901 

0.8 1.029639 1.669717 1.673046 0.640079 0.643408 

0.9 1.260158 2.402712 2.410304 1.142554 1.150146 

1.0 1.557408 3.466667 3.482540 1.909259 1.925132 

 

Remark 3.1: We show in Figure [1-3], the graphs representing the solutions of the solved 

examples. Series [1-3] indicate solutions for exact, DTM and PIM respectively. 

 

 

Fig 1: Graph of example 1 Solutions  

 

Fig 2:  Graph of example 2 Solutions 
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Fig. 3: Graph of example 3 solution 

 

4.0   Discussion of Results and Concluding Remarks 

In this paper, we have used the DTM and the PIM successfully in solving both 

linear and nonlinear differential equations (IVP), and the results obtained are 

compared with their corresponding exact solutions. It is observed and noted that all 

previous terms of the DTM are embedded in the corresponding stage of the PIM. 

More accuracy is recorded as the number of terms in the iterations is increased.  

Results from both methods converge faster to their exact solutions. The DTM 

transforms the differential equations to algebraic-recursive equations; hence, it is very 

effective and reduces the size of computational work without linearization, 

perturbation or discretization of the given problem while the PIM transforms a 

differential equation to its equivalent in integral form provided the Lipschitz 

continuity condition is satisfied. 
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