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Abstract. In this article, the dynamic behavior of inclined rectangular Mindlin plate under the influence of moving load 

along the mid-plate on the plate surface is considered. Finite difference method is used to solve the non- 

dimensionalised form of the resulting coupled partial differential equations. It was found that the response amplitude 

of the plate is affected significantly by the foundation moduli. Also, the effects of the shear deformation, rotatory 

inertia and angle of inclination of the plate are noticeable. 
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1. INTRODUCTION  

 

 An inclined rectangular Mindlin plate is a plate set at an angle, not perpendicular to a horizontal plane. However, the 

work done is the same: Work = Force × Distance, and the distance is increased, whereas the force is decreased. 

(Civalek, 2005; Zhang and Zheng, 2010) In Elementary Physics, an object placed on a tilted surface (inclined plane) 

will often slide down the surface. The greater the tilt of the surface (i.e. the angle of inclination), the faster the rate at 

which the object will slide down it. (Gbadeyan and Dada, 2006) According to Newton’s laws of motion, a moving load 

on an inclined plane will continue to slide down the plane if there is no applied force to balance the forces acting on it, 

especially if the surface is frictionless or with minimal friction. There are always, at least, two forces namely: the force 

of gravity and the normal force, acting upon the moving load positioned on an inclined plate (Khan Academy, 2014). 

The force of gravity acts in a downward direction, while the normal force acts in a direction perpendicular to the 

surface. (Civalek, 2005; Nguyan-Thoi et al, 2013) An inclined plane problem is in every way like any other net force 

problem with the sole exception that the surface has been tilted. An inclined plane therefore can be transformed into the 

form with which we are more comfortable, as illustrated in figure 2. After this transformation, we can ignore the force 

of gravity since it has been replaced by its two components. (Civalek, 2005; Gbadeyan and Dada, 2006). We can now 

solve for the net force and the acceleration. For a load mowing up the inclined plate, the applied force must be greater 

than the component of its weight 11( )F  moving down the inclined plate, to avoid sliding down.  

 

2. THE GOVERNING EQUATION 

 

The set of dynamic equilibrium equations which governs the behavior of inclined Mindlin plate supported by 

Pasternak foundation, and traversed by a partially distributed moving load can be written as follows [Gbadeyan and 

Agarana, 2014]: 
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Figure 1. Diagram of moving load on an inclined plane 

 

 

 
Figure 2. Diagram of  a transformed inclined plane to a flat plane 
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where Eqs. (4 – 8) are the equations for bending moments, twisting moments and shear force, x  and 
y  are local 

rotations in the x   and y   directions respectively.  h  and 1h  are the thickness of the plate and load respectively,   

and L  are the densities of the plate and the load per unit volume respectively. ( , , )W x y t  is the traverse displacement 

of the plate at time t , g  is the acceleration due to gravity,   is the angle of inclination of the plate, u  is the velocity of 

the load ( LM ) of rectangular dimension   by   with one of its lines of symmetry moving along 1Y Y , the plate is xI  

by 
yI  in dimensions and  

2
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( )H x is called Heaviside function. 

G is the modulus of rigidity of the plate, D  is the flexural rigidity of the plate defined by 
3
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 for isotropic plate, 2  is the shear correction factor and   is the Poisson’s ration of the 

plate. 

Since the inertia effect of the load is considered, the uniform partially distributed applied load takes on the form 

[Gbadeyan and Dada, 2006]: 
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Similarly, 
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2 2 2 2

2

2 2 2
2

y y y yd
u u

x tdt t x

     
  

  
                                                                                                                           (18) 

 

2.2. Initial Conditions 
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2.3. Boundary Conditions 

 

 

      
( , , ) ( , , ) ( , , ) 0, for 0 and

( , , ) ( , , ) ( , , ) 0, for 0 and

x y

x x

W x y t M x y t x y t x x a

W x y t M x y t x y t y y b





    

    
                                                                                    (20) 

 

 

3.  PROBLEM SOLUTION 

 

The set of partial differential Eqs. (1) - (11), are the partial differential equations to be solved for the following eleven 

dependent variables 
xM , yM , xyM , 

xQ , yQ , 
xt , W , 

t , 
x  and y .          

 A numerical procedure, finite difference method, can be used to solve the system of Eqs. (1) - (11). Rearranging them 

in matrix form results in 
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Where N and M are the number of the nodal points along x and y axes respectively, Zk is a matrix representing the right 

hand side of Eqs. (12) – (22) defined by 
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Each term in Eqs. (21) and (22) is an 11 x 11 matrix 

 

 
4. EFFECT OF ANGLE OF INCLINATION ON DEFLECTION OF THE INCLINED PLATE 

For the purpose of this paper let 0,B   which implies 0xB   and 
2xL t  . Also, 1fM h M   

(mass); and 0
2
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When 60  , 
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From Eq. (15), if 0B  , the applied load becomes 
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When 0  ,  
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5. RESULTS DISCUSSION 

 
The numerical calculations were carried out for a simply supported rectangular inclined plate resting on a Pasternak 

foundation and subject to a moving load. Damping effect was neglected. 

 In Fig. 3, the deflection of the plate for different values of K is presented. It is observed that the foundation stiffness 

have effect on the deflection of the plate. The highest value of the foundation stiffness K, produces the maximum 

deflection and the lowest value of stiffness produces the minimum deflection. In Fig. 4, the deflection of the plate for 

different values of G, is plotted as a function of time. Evidently, it can be noticed that the response amplitude of the 

plate continuously supported by a subgrade is less than that of the plate not resting on any elastic subgrade (i:e. K=0, 

G=0). It can also be seen that as K and G increase the response amplitude decreases.     It is also observed that there is 

no clear cut difference between the deflection of non – Mindlin and rotatory plates. In other words, the effect of rotatory 

inertia is minimal when compared with the effect of shear deformation.  

In Fig. 4, the deflection of the plate for different values of K and G, keeping the contact area, Arp, constant, is plotted as 

a function of time. Evidently, it can be noticed that the response amplitude of the plate continuously supported by a 

subgrade is less than that of the plate not resting on any elastic subgrade (i:e. K=0, G=0). It can also be seen that as K 

and G increase the response amplitude decreases. Deflection profiles of the Mindlin plate for various values of the 

contact area Arp (Arp=0.02, 0.125 and 0.5)  are shown in Figs. 4, 5 and 6 respectively. In Fig. 4, the response curves of 

the plate is shown for K=0 and with the contact area Arp, as a parameter. The corresponding profiles for K=100 and 

K=200 are depicted in Figs. 5 and 6 respectively. It is found from these figures that as Arp increases, the response 

maximum amplitude increases for fixed values of K and G. For various values of the foundation reaction modulus K, 

the deflection of the plate for the various values of the subgrade’s shear modulus G (i.e G=0, G=0.09 and G=0.9), 

considered were calculated and are plotted in Figs. 7, 8 and 9 as function of time. Specifically in figure 7, the deflection 

profile of the  Mindlin plate is depicted  for K=0 and with the subgrade’s shear modulus G as a parameter, The 

corresponding curves for K=100 and 200 are shown in Figs. 8 and 9 respectively. Clearly, from the figures, the response 

maximum amplitude decreases with an increase in the value of G for fixed values of K, Arp and Up. 
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                                              Figure 3. Deflection of plate at various foundation modulus and different times 
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                                 Figure 5. Deflection of the plate at various values of velocity and different times 

 

6. CONCLUSION 

 
The dynamic behaviour of a Mindlin plate carrying a uniform partially distributed moving load, supported by a 

Pasternak foundation, has been analysed. The non-dimensionalized equations of motion were transformed into 

equivalent finite difference ones, and then solved. Results have been have been presented not only for the deflection but 

also for the velocity, bending and twisting moments, shearing force for all instants of time and at selected space nodes. 

Hence all the components composing the dynamic response of the system have been obtained. The formulation for the 

Kirchoff plate is deduced by neglecting both effects of rotatory inertia and shear deformation. A numerical example of 

simply supported rectangular plate is presented. It is shown that the elastic subgrade, on which the Mindlin plate rests 

has a significant effect on the dynamic response of the plate to a partially distributed load. The effect of rotatory inertia 

and shear deformation on the dynamic response of the Mindlin plate to the moving load give a more realistic results for 

practical application, especially when such plate is considered to rest on a foundation.  
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