(The FASEB Journal. 2013;27:1050.1) © 2013 FASEB

1050.1

Tertiary Conformational Transition In Horse Haemoglobin Induced By Inositol Hexakisphosphate

Omolola E Omotosho 1 , Kehinde O. Okonjo 2 , Victor T. Omotosho 3 , Solomon O. Rotimi 1 and Shalom N. Chinedu 1

- ¹ Dept. of Biological Sciences, Covenant University, Ota, Nigeria
- ² Dept. of Chemistry, Covenant University, Ota, Nigeria
- ³ Dept. of Physics, Covenant University, Ota, Nigeria

The red blood cell of the domestic horse contains two haemoglobin types. The two haemoglobins were separated on a column of carboxymethylcellulose. The equilibrium constant, Kequ, for the reaction of 5,5'-dithiobis(2-nitrobenzoate) — DTNB — with the CysF9[93] β sulfhydryl group of each haemoglobin was determined at 25°C as a function of pH. The reactivity of CysF9[93] β is affected by allosteric effectors such as the proton (H⁺) and inositol hexakisphosphate (inositol-P₆). Between pH 5.6 and 9.0 Kequ decreased by about two to four orders of magnitude, demonstrating that H⁺ is a heterotropic allosteric effector of haemoglobin with respect to its reaction with DTNB. Inositol-P₆ also decreased K_{equ} by about two to four orders of magnitude across the experimental pH range. CysF9[93] β exists in two tertiary conformations, r and t, in dynamic equilibrium.

 K_{rt} , the equilibrium constant for the r $\stackrel{\longleftrightarrow}{\longleftrightarrow}$ t conformational transition, was determined for each of the two horse haemoglobins from an analysis of the pH dependence of K_{equ} . The calculations from the pH dependence of K_{equ} showed that the pK_a values of the ionisable groups coupled to the DTNB reaction vary

between 5.0 and 8.9. The equilibrium constants, K_{rt} , for the r t tertiary structure transition, were 0.143 \pm 0.05 and 0.446 \pm 0.22 for the fast and slow stripped horse haemoglobins respectively. In the presence of inositol- P_6 , K_{rt} for the fast and slow were 2.219 \pm 0.79 and 2.214 \pm 0.83 respectively. The results show that inositol- P_6 increases the relative population of the t tertiary conformation. So, it increases the affinity of CysF9[93] β by changing the relative distribution of two protein conformations.