
Oyelami Olufemi Moses

International Journal of Experimental Algorithms (IJEA), Volume (4) : Issue (2) : 2013 17

Bidirectional Bubble Sort Approach to Improving the
Performance of Introsort in the Worst Case for Large Input Size

Oyelami Olufemi Moses olufemioyelami@gmail.com
College of Science and Technology/
Department of Computer and Information Sciences
Covenant University
Ota, Post code, Nigeria

Abstract

Quicksort has been described as the best practical choice for sorting. It is faster than many
algorithms for sorting on most inputs and remarkably efficient on the average. However, it is not
efficient in the worst case scenarios as it takes O(n

2
). Research efforts have been made to

enhance this algorithm for the worst case scenarios by improving the way the algorithm chooses
its pivot element for partitioning, but these approaches have the disadvantage of increasing the
algorithm’s average computing time. Introsort was, however, developed to overcome this
limitation. This paper presents an approach that uses Bidirectional Bubble Sort to improve the
performance of Introsort. Instead of using Insertion Sort as the last step of the sorting algorithm
for small lists, the approach uses Bidirectional Bubble Sort. The results of the implementation and
experimentation of this algorithm compared with Introsort shows its better performance in the
worst case scenario as the size of the list increases.

Keywords: Quicksort, Introsort, Bidirectional Bubble Sort, Worst Case, Improved Introsort.

1. INTRODUCTION

Among the sorting algorithms that are not difficult to implement is Quicksort. “The algorithm works
well for a variety of input data and consumes fewer resources than any other sorting method in
many situations” [1]. The algorithm is also an in‐place sorting algorithm. “It is the fastest known
generic algorithm in practice” [2]. Its worst‐case running time is, however, O(n

2
) on an input array

of n numbers. “In spite of this slow worst‐case running time, Quicksort is often the best practical
choice for sorting because it is remarkably efficient on the average” [3, 4]. Research effort has,
however, been made to improve the algorithm to eliminate its drawback in the worst case
scenario. Introspective sorting, otherwise called Introsort, is a modified and improved Quicksort
that is self-aware. Through its self-awareness it is able to solve the problem of inefficiency of
Quicksort for the worst case scenario. This paper presents an approach to further enhance the
performance of Introsort in the worst case scenario. The approach uses Bidirectional Bubble Sort
in place of Insertion Sort employed by Introsort for small lists.

2. SORTING ALGORITHMS

Given a list of input elements or objects, sorting arranges the elements either in ascending order
or descending order and produces a sorted list as the output. The elements to be sorted need to
be stored in a data structure for manipulation. Among the various data structures usually used for
sorting are: arrays, linked list, heap, etc. Sorting can either be internal or external. “Internal
sorting is the type of sorting that requires all the elements to be sorted to be in the main memory
throughout the sorting process while an external sorting allows part of the elements to be sorted
to be outside the main memory during the sorting process” [5]. Examples of internal sorting
algorithms are: Insertion Sort, Selection Sort, Bubble Sort, Shellsort, Quicksort, etc.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Covenant University Repository

https://core.ac.uk/display/32226566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Oyelami Olufemi Moses

International Journal of Experimental Algorithms (IJEA), Volume (4) : Issue (2) : 2013 18

2.1 Quicksort
Quicksort uses divide and conquer approach to divide a list of elements to be sorted into two sub-
lists. It chooses an element and then splits the whole list into two halves consisting of the
elements smaller and the elements greater than the selected one. The same procedure is then
applied to each half.

2.1.1 Improvements on Quicksort
There have been several successful attempts at improving quicksort:

2.1.1.1 Median-of-Three Rule
Unlike quicksort that picks the first element as the pivot value, the Median-of-Three version
selects the median of the first, middle and the last elements in each sub-list. This approach
increases the performance of quicksort when the list of elements to be sorted is already or
partially sorted [1, 6].

2.1.1.2 Small Sub-lists
Quicksort is not efficient when the size of the elements to be sorted is less or equal to 20. The
sub-list approach uses an efficient sort like Insertion Sort in this situation. Alternatively, small sub-
lists may be ignored, and upon termination of Quicksort, the list will just be slightly unsorted.
Insertion sort can then be applied [1].

2.1.1.3 Improved Median-of-Three Sort for the Average Case
“The proposed approach for improving Median‐of‐Three Sort for average case scenarios first of
all divides the elements to be sorted into sub‐sequences just like Shell Sort does, but by first of all
comparing the first element with the last. If the last is less than the first, the two swap positions,
otherwise, they maintain their positions. Later, the second element is compared with the second
to the last, if the second to the last element is smaller than the second, they are swapped.
Otherwise, they maintain their positions. This process continues until the last two consecutive
middle elements are compared, or until it remains only one element in the middle”[7,8,9].

2.1.1.4 Introsort
“Introspective sort otherwise referred to as Introsort is a comparison sorting algorithm invented by
David Musser in 1997” [10]. It starts with Quicksort, but switches to Heapsort if the depth of the
recursion is too deep to eliminate the worst-case, and uses Insertion Sort for small cases
because of its good locality of reference. “Introsort brings the introspective element into play by
monitoring the recursion depth the algorithm reaches as a function of the length of the array of
data. Since the recursion depths for the best and worst cases runtime are known, a reasonable
value in-between can be calculated dynamically. This value acts as a threshold and once it is
exceeded, Introsort detects that the Quicksort algorithm it uses degenerates to quadratic
behaviour. The reaction to this is changing the sorting algorithm for the current sub-array of data”
[11]. “The algorithm is the best of both average and worst cases worlds, with a worst-case and
average case O(n log n) runtimes and practical performance comparable to Quicksort on typical
data sets. The algorithm is presented in FIGURE 1 below. The test p - f ≥ b - p is to ensure that
the recursive call is on a subsequence of length no more than half of the input sequence so that
the stack depth is O(log N) rather than O(N)” [10].

Algorithm Introsort(A, f, b)

Inputs: A, a random access data structure containing the sequence of data to be
sorted in positions A[f], …, A[b-1];
f, the first position of the sequence
b, the first position beyond the end of the sequence
size, the number of data to be sorted equivalent to b-f

 Output: A is permuted so that A[f]≤A[f+1] ≤ …≤A[b-1]
 Introsort_Loop(A, f, b, 2*FLOOR_LG(b-f)
 Insertion_Sort (A, f, b)

Oyelami Olufemi Moses

International Journal of Experimental Algorithms (IJEA), Volume (4) : Issue (2) : 2013 19

Algorithm Introsort_Loop (A, f, b, depth_limit)
 Inputs: A, f, b as in Introsort;
 depth_limit, a nonnegative integer
 Output: A is permuted so that A[i] ≤ A[j] for all i, j: f≤i≤j<b and size_threshold < j-i
 while b-f > size_threshold
 do if depth_limit =0
 then Heapsort(A, f, b)
 return
 depth_limit=depth_limit -1
 P=Partition(A, f, b, Median_of_3(A[f], A[f+(b-f)/2], A[b-1]))
 Introsort_Loop(A,p,b,depth_limit)
 b = p

FIGURE 1: Introsort [10].

2.2. Bidirectional Bubble Sort
“Bidirectional Bubble Sort also known as Cocktail Sort or Shaker Sort is a variation of Bubble Sort
that is both a stable sorting algorithm and a comparison sort. The algorithm differs from Bubble
Sort in that it sorts in both directions each pass through the list. The average number of
comparisons is slightly reduced by this approach” [12]. “This sorting algorithm is just slightly more
difficult than Bubble Sort to implement. It solves the problem with so-called turtles in Bubble Sort”
[13]. FIGURE 2 below illustrates Bidirectional Bubble Sort for sorting the list: 8 4
 3 2 in ascending order [13].

FIGURE 2: Bidirectional Bubble Sort.

2.3. Improved Introsort
The proposed algorithm (Improved Introsort) is shown in FIGURE 3 below. Call to
Insertion_Sort(A, f, b) in FIGURE 1 has been replaced by a call to Bidirectional Bubble
Sort(A, size).

Oyelami Olufemi Moses

International Journal of Experimental Algorithms (IJEA), Volume (4) : Issue (2) : 2013 20

Algorithm Introsort(A, f, b)
Inputs: A, a random access data structure containing the sequence of data to be

sorted in positions A[f], …, A[b-1];
f, the first position of the sequence
b, the first position beyond the end of the sequence
size, the number of data to be sorted equivalent to b-f

 Output: A is permuted so that A[f]≤A[f+1] ≤ …≤A[b-1]
 Introsort_Loop(A, f, b, 2*FLOOR_LG(b-f)
 Bidirectional Bubble Sort (A, size)
Algorithm Introsort_Loop (A, f, b, depth_limit)
 Inputs: A, f, b as in Introsort;
 depth_limit, a nonnegative integer
 Output: A is permuted so that A[i] ≤ A[j] for all i, j: f≤i≤j<b and size_threshold < j-i
 while b-f > size_threshold
 do if depth_limit =0
 then Heapsort(A, f, b)
 return
 depth_limit=depth_limit -1
 P=Partition(A, f, b, Median_of_3(A[f], A[f+(b-f)/2], A[b-1]))
 Introsort_Loop(A,p,b,depth_limit)
 b = p

FIGURE 3: Improved Introsort.

3. PERFORMANCE ANALYSIS OF ALGORITHMS
“The most important attribute of a program/algorithm is correctness. An algorithm that does not
give a correct output is useless. Correct algorithms may also be of little use. This often happens
when the algorithm/program takes too much time than expected by the user to run or when it
uses too much memory space than is available on the computer”[14]. “Performance of a program
or an algorithm is the amount of time or computer memory needed to run the program/algorithm.
Two methods are normally employed in analyzing an algorithm:

i.) Analytical method

ii.) Experimental method

In analytical method, the factors the time and space requirements of a program depend on are
identified and their contributions are determined. But, since some of these factors are not known
at the time the program is written, an accurate analysis of the time and space requirements
cannot be made. Experimental method deals with actually performing experiment and measuring
the space and time used by the program. Two manageable approaches to estimating run time
are” [14]:

i.) Identify one or more key operations and determine the number of times they are performed.

ii.) Determine the total number of steps executed by the program.

3.1. Worst Case, Best Case and Average Case Analysis of Sorting Algorithms
“The worst-case occurs in a sorting algorithm when the elements to be sorted are in reverse
order. The best-case occurs when the elements are already sorted. The average case may occur
when part of the elements are already sorted. The average case has data randomly distributed in
the list” [15]. “The average case may not be easy to determine in that it may not be apparent what
constitutes an ‘average’ input. Concentration is always on finding only the worst-case running
time for any input of size n due to the following reasons” [3]:

Oyelami Olufemi Moses

International Journal of Experimental Algorithms (IJEA), Volume (4) : Issue (2) : 2013 21

i.) The worst-case running time of an algorithm is an upper bound on the running time for any
input. Knowing it gives us a guarantee that the algorithm will never take any longer. “We need not
make some educated guess about the running time and hope that it never gets much worse”.

ii.) For some algorithms, the worst-case occurs fairly often. For example, in searching a database
for a particular piece of information, the searching algorithm’s worst-case will often occur when
the information is not present in the database. In some searching applications, searches for non-
existent information may be frequent.

iii.) The average case is often roughly as bad as the worst case.

3.2. Analysis of Improved Introsort
“Generally, the running time of a sorting algorithm is proportional to the number of comparisons
that the algorithm uses, to the number of times items are moved or exchanged, or both” [1].
Because both Introsort and Improved Introsort are comparison-based algorithms, the approach
employed in their analysis was to compare the number of comparison operations carried out by
each algorithm, as well as the number of swappings or exchanges carried out. The same sets of
data were used for the same sizes of input to the algorithms. Also, the two algorithms were tested
for data in reverse order resulting in the worst case scenario since concentration is always on
finding the worst-case as justified earlier by Thomas, et al. [3]. The two algorithms were also
tested for the best-case scenario when the data are already sorted.

4. RESULTS AND DISCUSSION
The results obtained from the experiments carried out when the programs were tested on a
system running Windows 7 Ultimate using Bloodshed Dev-C++ 4.9.9.2 are presented in tables 1
and 2.

 Introsort Improved Introsort

Size Comparison Swapping Swapping-
based
Assignment
Operations

Total
Operations

Comparison Swapping Swapping-
based
Assignment
Operations

Total
Operations

900 6,364 450 1,350 7,714 8,159 450 1,350 9,509

5,000 50,512 2,500 7,500 58,012 60,507 2,500 7,500 68,007

10,000 111,024 14,999 44,997 156,021 131,019 5,000 15,000 146,019

20,000 242,048 29,999 89,997 332,045 282,043 10,000 30,000 312,043

80,000 1,128,192 119,999 359,997 1,488,189 1,288,187 40,000 120,000 1,408,187

TABLE 1: Performance of Introsort and Improved Introsort in the Worst Case Scenario.

Oyelami Olufemi Moses

International Journal of Experimental Algorithms (IJEA), Volume (4) : Issue (2) : 2013 22

 Introsort Improved Introsort

Size Comparison Swapping Comparison Swapping

900 6,363 0 6,362 0

5,000 50,511 0 50,510 0

10,000 111,023 0 111,022 0

20,000 242,047 0 242,046 0

80,000 1,128,191 0 1,128,190 0

TABLE 2: Performance of Introsort and Improved Introsort in the Best Case Scenario.

TABLE 1 shows the performances of Introsort and Improved Introsort in the worst case scenario.
For small input sizes, Introsort has a reduced number of comparisons while both sorting methods
have the same number of swappings. This means that Introsort is more efficient when the input
size is small. However, as the size of the input grows, Improved Introsort gets more efficient than
Introsort by having a reduced number of swappings (although the comparisons are still higher
than for Introsort). The reduced number of swappings could be attributed to the stability of
Bidirectional Bubble Sort. This has resulted in its better performance as the input size grows.
From the results presented in TABLE 1, one might be tempted to conclude that Introsort also
performs better when the number of comparisons and swappings are added together as the input
size increases, but because each swapping takes three assignment statements, the column
labeled “Swapping-based Assignment Operations” is instead added to the column for
comparison which gives the total number of operations. TABLE 2 shows the performance of the
two algorithms in the best case scenario. In this scenario, Improved Introsort outperforms
Introsort for all sizes of input. However, the difference in performance is marginal. The simulation
results also show that Improved Introsort is especially efficient when the items to be sorted are in
reverse order and as the size of the list to be sorted increases. In comparison with other
enhancements of quicksort like Median-of-Three, Small Sub-list, Improved Median-of-Three and
Introsort, Improved Introsort enhances the performance of quicksort in the worst case significantly
better than Introsort and marginally better than Introsort in the best case scenario. Median-of-
Three improves the performance of quicksort when the list to be sorted is partially sorted. Small
Sub-list enhances the performance of quicksort when the list to be sorted is small and Improved
Median-of-Three enhances the performance of quicksort for special types of average case
scenario.

5. CONCLUSION
Quicksort has been identified to be a very good sorting technique that is very efficient on all
classes of sorting problems. However, it is inefficient in the worst case situation. Introsort solves
the problem of the inefficiency of Quicksort for the worst case scenario through the concept of
introspection. This makes it a practical choice for all classes of sorting problems. In an attempt to
beat the performance of Introsort for the worst case scenario, this paper presented an improved
Introsort. The algorithm is efficient on inputs of large size. The different sorting methods have
features that make them suitable for different classes of sorting problems and since it has been
observed that “there is no known “best” way to sort; there are many best methods, depending on
what is to be sorted, on what machine and for what purpose” [16], the algorithm presented in this
paper is therefore recommended for sorting data when the size of the list to be sorted is large,
especially from 10,000 upward.

Oyelami Olufemi Moses

International Journal of Experimental Algorithms (IJEA), Volume (4) : Issue (2) : 2013 23

6. FUTURE WORK
It is the intention of the author to implement the algorithm as a generic algorithm and measure its
performance in the framework of C++ Standard Template Library.

7. ACKNOWLEDGMENT
The author would like to thank the writer of A guide to Introsort (see:
http://debugjung.tistory.com/entry/intro-sortintrospective-sort-????.) whose implementation of
Introsort in Java served as a guide in implementing Introsort in C++.

8. REFERENCES

[1] S. Robert. Algorithms in C. USA: Addison‐Wesley, 1998; pp. 1- 4, 267, 303.

[2] A.W. Mark. Data Structures and Algorithm Analysis in C++. USA: Pearson Education.

Inc., 2006, pp. 279.

[3] H.C. Thomas, E.L. Charles, L.R. Ronald and S. Clifford. Introduction to Algorithm. USA:

The Massachusetts Institute of Technology, 2001, pp. 25-26, 145.

[4] A.D. Vladmir. Methods in Algorithmic Analysis. USA: CRC Press, 2010.

[5] P.B. Shola. Data Structures With Implementation in C and Pascal. Nigeria: Reflect

Publishers, 2003, pp. 134.

[6] R.C. Singleton.(1969). “Algorithm 347 (An Efficient Algorithm for Sorting With Minimal
Storage)”. Communications of the ACM, vol. 12, pp. 187‐195, 1969.

[7] M.O. Oyelami and I.O. Akinyemi. (2011, April). “Improving the Performance of Quicksort
for Average Case Through a Modified Diminishing Increment Sorting.” Journal of
Computing, 3(1), pp. 193-197. Available:
http://www.scribd.com/doc/54847050/Improving-the-Performance-of-Quicksort-for-
Average-Case-Through-a-Modified-Diminishing-Increment-Sorting

[8] M. O. Oyelami (2008). “A Modified Diminishing Increment Sort for Overcoming the Search
for Best Sequence of Increment for Shellsort.” Journal of Applied Sciences Research.
[On-line], 4, pp. 760‐766. Available: http://www.aensiweb.com/jasr/jasr/2008/760-766.pdf
[Nov. 12, 2013]

[9] M.O. Oyelami, A.A. Azeta and C.K Ayo. “Improved Shellsort for the Worst‐Case, the
Best‐Case and a Subset of the Average‐Case Scenarios.” Journal of Computer Science
& Its Application. vol. 14, pp. 73 – 84, Dec. 2007.

[10] D. Musser (1997). “Introspective Sorting and Selection Algorithms.” Software: Practice

and Experience (Wiley). [On-line]. 27(8), pp. 983-993. Available: http://www-home.fh-

konstanz.de/~bittel/prog2/Praktikum/musser97introspective.pdf [January 15, 2012].

[11] “A guide to Introsort.” Internet: http://debugjung.tistory.com/entry/intro- sortintrospective-

sort-????, [February 16, 2012].

[12] E.K. Donald. The Art of Computer Programming. Volume 3, Sorting and Searching. USA:

Addison‐Wesley, 1998; pp. 110.

[13] O.M. Oyelami. “Improving the performance of bubble sort using a modified diminishing

increment sorting.” Scientific Research and Essay, vol. 4, pp. 740 -744, 2009.

Oyelami Olufemi Moses

International Journal of Experimental Algorithms (IJEA), Volume (4) : Issue (2) : 2013 24

[14] S. Sartaj. Data Structures, Algorithms and Applications in Java. USA: McGrawHill, 2000,

pp. 65 – 67.

[15] F. William and T. William. Data Structures With C++ Using STL. USA: Prentice Hall,

2002, pp. 131.

[16] E.K. Donald. The Art of Computer Programming. Volume I, Fundamental Algorithms.
USA: Addison‐Wesley, 1997.

