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ABSTRACT
The pyrimidine moiety is one of the most widespread heterocycles in biologically occurring

compounds, such as nucleic acids components (uracil, thymine and cytosine) and vitamin B1. Due
to its prebiotic nature to living cells in biodiversity, it is an highly privileged motif for the
development of molecules of biological and pharmaceutical interest. This present work deals with
the exploration of chemistry and medicinal diversity of pyrimidine which might pave way to long
await discovery in therapeutic medicine for future drug design. 

Key words: Nitrogen heterocycle, biological activity, pyrimidine, anticancer, drug design

INTRODUCTION
Over the years, the heterocyclic compounds have attracted numerous attentions due to their

wide applications in medicinal chemistry research. Nitrogen-containing heterocyclic compounds
have been prominent even in early studies of chemistry. Heterocyclic compounds are cyclic
compounds with at least two different elements as ring members’ atoms, the commonest atoms
include nitrogen, oxygen and sulphur (Lagoja, 2005). Heterocycles are in abundance in nature and
are very significant in our lives because of their existence in many naturally occurring molecules
such as hormones, antibiotics, caffeine etc. (Nagaraj and Reddy, 2007). The pyrimidine ring is a
heterocyclic aromatic compound that occurs widely in nature. Pyrimidines are one of the two most
important biological families of nitrogen containing molecules called nitrogen bases. Pyrimidines
have been known since their early days as essential components of nucleic acid to their current
usage in the chemotherapy of AIDS (Jain et al., 2006).

Furthermore, the prebiotic synthesis of nucleic acid bases is a central issue in the RNA-world
hypothesis, one of the main proposals for the origin of life, based on the self-assembly of nucleic acid
monomers (Ruiz-Mirazo et al., 2014). Possible scenarios for the synthesis of nucleic acids are still
under debate and despite the abiotic synthesis of several nucleobases, the relevance of these
syntheses to the origin of life is not well established (Kakiya et al., 2002). Pyrimidine core is found
as the inner skeleton in the nucleic acid components; uracil, thymine and cytosine. Pyrimidine
template and its heterofused derivatives exhibit promising anticoagulant (Saif, 2005),
antitubercular (Trivedi et al., 2008), antileukemic (Liu et al., 2003), antimicrobial (Moustafa et al.,
2007), anti-inflammatory (Panda and Chowdary, 2008), anti-HIV (Meng et al., 2014), analgesic
(Abdelazeem et al., 2014), anticancer (Antonelli et al., 2014), antitumoral (Barlaam et al., 2014),
anticonvulsant   (Paronikyan   et   al.,  2007),   antiplatelet   (Giordanetto   et  al.,  2014),  antifungal
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(Faty et al., 2015), antiviral (Danesh et al., 2015), antibacterial (Andrews and Ahmed, 2015),
antimalarial (Manohar et al., 2012) and antinociceptive (Bookser et al., 2005) activities. The group
of pyrido[1,2-a] pyrimidin-4-ones is a well-known class of aza-bridgehead fused heterocyclic
compounds which have miscellaneous pharmaceutical applications (Katritzky et al., 2004).

The successful application of pyrimidine derivatives in many ways, their utility in applied
chemistry and in more fundamental and theoretical studies has made the literature of the subject
to be correspondingly vast (Katzung, 1995). In view of the occurrence of microorganisms resistance
to drugs currently in use and the continuous outbreak of new infectious diseases every time, there
is a continuous need for the exploration of new heterocyclic compounds which are pyrimidine-based
as potential agents of wide therapeutic implications for effective drug design. This study was
undertaken to provide recent advances in the general assessment of pyrimidine and its wide range
of uses both in chemistry and pharmacy. The specific objectives are to: Expound on the historical
review into the world of pyrimidine, highlight major synthetic pathways of valuable pyrimidine
derivatives, explore recent advances in chemistry of pyrimidine for effective drug design, critically
review various biological activities of pyrimidine in recent time and draw attention of researchers
into the beneficial role of pyrimidine in fighting diseases.

Natural occurrence: Pyrimidine is a core skeleton which serves as constituent of natural
biologically active compounds (Lagoja, 2005). Pyrimidine occurs naturally in substances such as
vitamins like thiamine, riboflavin (found in milk, egg and liver), folic acid (from liver and yeast),
barbituric acid (2,4,6-trihydroxy pyrimidine), nucleic acids components (uracil, cytosine and
thymine), coenzymes, purines, pterins, nucleotides, alkaloids obtained from tea, coffee, cocoa and
essential  components  of  many  drug  molecules  (Gupta et al., 2010). Vicine may be the first
simple pyrimidine derivative found to occur in nature. It was discovered in 1870 in Vetch seeds
(Vicia sativa, Vicia faba L.) by Ritthausen. Of the nucleic acid pyrimidines, uracil and
dihydrouracil, isolated from beef spleen, have been found in free form (Lagoja, 2005). A number of
related pyrimidines also occur in lesser amounts in certain nucleic acids (Wade, 1999). Other
pyrimidines of general natural occurrence are orotic acid and thiamine (vitamin B1) (Farlex Inc.,
2015). 

Physical properties: Pyrimidine is a colorless compound. It is a crystalline solid with melting
point of 22°C which dissolves in water to give a neutral solution and reacts with mineral acids to
form  salts.  It’s  molecular formula is C4H4N2 with molar mass 80.088 g cmG³ and boiling point of
123-124°C. By X-ray diffraction, pyrimidine  dimensions  of  the  carbon-carbon  distances  are
(1.35-1.40D), they are similar to benzene with the bond length of 1.40D (Verma et al., 2012).

CHEMISTRY
Chemical properties: Six membered heterocyclic compounds are π-deficient when substituted by
electronegative groups or additional nitrogen atom. The 2-, 4- and 6- positions on the pyrimidine
ring are naturally electron deficient because of the strong electron-pulling effect of the ring nitrogen
atoms which are much more electronegative than carbon. The 5-position is not as electron-deficient
as 2-, 4- or 6- position, though it can be made so by the general inductive effect. On the 5-position,
electrophilic reagents attack under certain conditions. For example nitration, nitrosation and
halogenation can easily take place here (Brown, 2009).
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Structure of pyrimidine: Pyrimidine has one axis of symmetry along  2,  5-axis  as  shown  in
Fig. 1, but the symmetry is lost upon unequal substitution at 4- and 6-positions. It is π-deficient
because  of  the  presence  of  electronegative  N-atoms.  Consequently,  the electron densities at
2-  and 4/6-positions are depleted and these positions become strongly electron loving and are
herein  referred  to  as  the  electrophilic  positions. The electron density at 5-position is only
slightly  depleted;  hence  the  ring  therefore  retains  benzenoid  properties  at  this  position,
which herein referred to as the benzenoid position (Woodgate et al., 1987). However, the electron
density at the N-atoms is greatly enhanced and the N-atoms constitute the basic and the
nucleophilic centers in pyrimidine. It has three difference pairs of bond length and four different
bond angles.

Dipole moments of pyrimidine: Pyrimidine is considered to be polar in nature with an
experimentally determined dipole moment ranging between 2.1 and 2.4 D. The theoretically
calculated value lied between 2.13 and 2.25 D. This showed a good correlation with the
experimentally determined values (Undheim and Benneche, 1996). 

Ionization properties: Pyrimidine in its monoprotonated and diprotonated state has basic pKa

of 1.3 and -6.9, respectively, which compares with value of 5.2 for pyridine. The very marked
lowering of basicity observed in pyrimidine is attributed to the electronegativity of the second ring
nitrogen. Electron-releasing substituents will counteract the electron deficiency of the ring and
thereby increase the basicity (Undheim and Benneche, 1996). The pKa values of pyrimidine
derivatives  had  also  been documented in both basic and acidic media. The basic pKa values for
2 (1H)-pyrimidinone, 4 (3H)-pyrimidinone and 5-hydroxypyrimidine, which structures are shown
in Fig. 2, are 2.2, 1.7, 1.8, while their acidic pKa values were 9.2, 8.6 and 6.8, respectively. An
extensive compilation and tabulation of acidic  and  basic  pKa  values  for  simple  pyrimidines in
water at 20-25°C has been published (Undheim and Benneche, 1996; Kappe, 1994). 

Synthesis of pyrimidine
Synthesis via [3+3] cycloaddition: Preparation of pyrimidines is done generally by condensation
reaction between a three-carbon compound and compounds having the amidine structure with
sodium  hydroxide  or  ethoxide as a catalyst (Rao et al., 2013). The  reaction  can  be  illustrated
by   the  condensation  of  acetamidine  with  ethyl  acetoacetate,  as  shown  in  Fig.  3,  to  form
2,6-dimethylpyrimidin-4-ol (Rao et al., 2013).

Fig. 1: Structure of un-substituted pyrimidine showing its one plane of symmetry

Fig. 2: Structural attribute showing pKa of protonated and non-protonated pyrimidines
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Fig. 3: Cycloadditive synthesis of 4-hydroxy-2,6-dimethylpyrimidine

Fig. 4: Synthesis of 2,4,5-trisubstituted pyrimidine via 1,3-dielectrophilic strategy

Fig. 5: Intramolecular cyclization to afford non-substituted pyrimidine

Synthesis by reaction of 1,3-dielectrophilic component: Preparation of pyrimidine derivative
by the reaction of 1,3-dielectrophilic component with urea derivative in the presence of K2CO3 was
achieved under reflux as shown in Fig. 4. Tert-butanol was reported as the suitable solvent for this
reaction (Kim et al., 2007).

Synthesis via intramolecular cyclization initiated by decarboxylation: Decarboxylation of
malic acid with concentrated sulfuric acid formed β-ketoacid which subsequently reacted with urea
to produces uracil which was easily converted to pyrimidine via chlorination and hydrogenation
processes. This involves an initial decarboxylation of malic acid under the influence of concentrated
H2SO4 to afford a β-ketoacid intermediate which upon reaction with urea gave  a 2,4-dione (Fig. 5).
This was treated with PdCl3 to produce 4-chloropyrimidine (uracil) which finally undergoes
reduction with H2/Pd to eventually give the unsubstituted pyrimidine in good yield as shown  in
Fig. 5 (Rao et al., 2013).

Synthesis from condensation of amidine-containing substrate: A common method for the
preparation of the fully aromatized pyrimidine skeleton is the condensation of amidine-containing
substrates with suitable carbonyl compounds. Among these protocols, α, β-unsaturated carbonyl and
1,3-dicarbonyl compounds are often used. For example, in the search for COX-2-selective inhibitors,
Almansa  and  co-workers  synthesized  a  variety  of  pyrazolo[1,5-a] pyrimidines  by condensing
4,5-disubstituted pyrazole with an array of enones or with 1,3-dicarbonyl derivatives with the
pathway shown in Fig. 6 (Almansa et al., 2001).
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Fig. 6: Synthesis of pyrazolo[1,5-a] pyrimidines from amidine

Fig. 7: Synthesis of 4-amino-5-cyano-2-methyl pyrimidine

Fig. 8: Synthesis of pyrimido[1,2-a] benzimidazole from allenic nitrile

Fig. 9: Solvent-free green approach to dihydropyrimido[4,5-d] pyrimidine

Synthesis through condensation of malononitrile: According to a review by Gupta et al.
(2010), condensation of malononitrile with amide-bearing group such as formamide or benzamidine
has been reported to result in the formation of 4-amino-5-cyano pyrimidine via a versatile
intermediate which was presented in the Fig. 7.

Synthesis from benzimidazole derivatives: Asobo and co-workers reported a novel synthesis
of biologically active pyrimido[1,2-a] benzimidazole from 2-aminobenzimidazole and allenic nitrile
in good yields according to equimolar stoichiometry shown in Fig. 8. Some of these heterocycles
showed modest antibiotic and antiarrhythmic properties (Asobo et al., 2001).

Green synthetic approach to pyrimidine: Based on Fig. 9, a green and solvent-free three-
component condensation of 6-[(dimethylamino)methylene amino] uracil, an aldehyde and NH4OAc
in the presence of HOAc afforded a one-pot synthesis of dihydropyrimido[4,5-d] pyrimidine when
heated under reflux (Prajapati et al., 2007).
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Preparation from chalcone precursor: Reaction of chalcone with thiourea and guanidine
hydrochloride in the presence of sodium hydroxide formed the 4,6-disubstituted pyrimidin-2-thiol
and 2 amino-4,6-disubstituted pyrimidines respectively as shown in Fig. 10 (Udupi et al., 2005).

Pyrimidine synthesis by cyclo-condensation from dithioacetal: Pyrimidine-5-
carboxaldehydes were obtained from cyclo-condensation reaction of α-formylaroylketene
dithioacetal with guanidine or benzamidine (Scheme 9), which in turn was obtained from
formylation of α-oxoketene dithioacetal with DMF in the presence of POCl3 in basic medium
(Mathews and Asokan, 2007). The detail is as pictorially described in Fig. 11. 

Synthesis from heterogeneous catalytic approach: Silica Supported Sulfuric Acid (SSA) was
used as an efficient heterogeneous catalyst in the research efforts of Ajani et al. (2011), for the
reaction of α, β-unsaturated carbonyl (chalcones) with urea to afford substituted mono and bicyclic
pyrimidin-2(1H)-ones in good to excellent yields as shown in the Fig. 12. They established the
efficiency of SSA through its re-usability and higher yields with short reaction times than those
obtained from conventional refluxing in concentrated hydrochloric acid (HCl). 

Synthesis of monastrol via utilization of Lewis acid promoter, Yb(OTf)3: There has been
some interest in monastrol, a potentially important chemotherapeutic for cancer which acts as an
inhibitor of mitotic kinesin. For instance, Kappe (1994) successfully synthesized racemic monastrol
using microwave mediation in 60% yield from 3-hydroxybenzaldehyde, ethyl acetoacetate and
thiourea in the presence of PPE. However, Dondoni et al. (2002) improved the synthesis by using
Yb(OTf)3 as the Lewis acid promoter in THF under conventional heating by reflux, as  shown  in
Fig. 13, to produce monatrol in 95% yield.

Glycosidic residual synthesis of pyrimidine: Sugar residue can be a subunit in the aldehyde,
1,3-dicarbonyl, or urea; consequently, substitution of the dihydropyrimidine (DHPM) ring may
occur  in  one  of  three  places  depending  on  which  component  originally contains  the  glycosidic 

Fig. 10: Preparation of 4,6-diphenylpyrimidine from chalcone

Fig. 11: Preparation of pyrimidine-5-carboxaldehydes from dithioacetal

153



Int. J. Biol. Chem., 9 (4): 148-177, 2015

NH2H N2

Urea

O

i(e)

(d)

(c) (b)

(a)

i

ii

i

NHN

O

8-benzylidene-4-phenyl-4,4a,5,6,7,8-
hexahydroquinazolin-2(3H)-one

HN N

O
O

NHN

CH3

4-(4-ethylphenyl)-6-phenyl-5,6-
dihydropyrimidin-2 (1H)-one

4-(furan-2-yl)-3,4,4a,5,6,7-hexahydro-2H-
cyclopenta[d]pyrimidin-2-one

O
O

HN N

7-benzylidene-4-phenyl-3,4,4a,5,6,7-hexa
hydro-2H-cyclopenta[d]pyrimidin-2-one

4-phenyl-3,4,4a,5,6,7-hexahydro-2H-
cyclopental[d]pyrimidin-2-one

HN N

O

3-hydroxy
benzaldehyde

Ethy aceto
acetae

EtO

O O
+

H O

+

Thiourea

H N2 NH2

S

THF, 95%

Yb (OTf)3

SN
H

NH
EtO C2

Monastrol

OH OH

O O

EtO

++

Ethy aceto
acetae

O

H N2 NH2

Urea

Hydropyran
carbaldehyde

H O

O

OBn OBn
BnO

BnO
CuCl, AcOH, BF , OEt3 2

THF, 65% yield, O

OBn

OBn
BnO

BnO

NH

O

EtO C2

H C3 N
H

1,2,3,4-tetrahydropyrimidine
-5-carboxylate derivative

Fig. 12: SSA-assisted catalytic synthesis of pyrimidine derivatives

Fig. 13: Microwave-assisted synthesis of monastrol in excellent yield

Fig. 14: Lewis acid synthesis of 1,2,3,4-tetrahydropyrimidine-5-carboxylate

residue (Dondoni et al., 2001). From the example presented in Fig. 14, hydropyran carbaldehyde
was utilized to deliver 1,2,3,4-tetrahydropyrimidine-5-carboxylate derivative as the major product
with moderate diastereo-selection (Dondoni et al., 2001).

Synthesis of pyrimidine by Biginelli reaction: In addition to modification of the catalyst,
several variants of the Biginelli reaction have emerged as viable alternatives. However, each
method  requires  pre-formation  of  intermediates  that are normally formed in the one-pot
Biginelli  reaction.  First,  Atwal  et al. (1989) reported the reaction between aldol adducts with
urea  or  thiourea  in  the presence of sodium bicarbonate in dimethyl formamide at 70°C to give
1,4-dihydro  pyrimidines.  1,2,3,4-tetrahydropyrimidine  was  then  produced  by deprotection of
1,4-dihydropyrimidines (Fig. 15). In some other cases, the reaction can be catalyzed by Lewis acids
such as boron trifluoride (Selvam et al., 2012).
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Fig. 15: 1,2,3,4-tetrahydropyrimidine from aldol-mediated Biginelli reaction

Fig. 16: Synthesis of benzofused-2-phenylpyrimidine from amide activation

Fig. 17: 2,5,6-trisubstituted pyrimidine via SmCl3-catalyzed cyclization

Fig. 18: 2,4,6-trisubstituted pyrimidine via cross coupling initiation

Synthesis by electrophilic activation of amide: According to Fig. 16, benzo-fused pyrimidine
derivative, 4-cyclohexyl-6-methoxy-2-phenylquinazoline was prepared by the reaction of certain
amides, N-(4-methoxyphenyl) benzamide with carbonitriles (cyclohexanecarbonitrile), under
electrophilic activation of the amide with 2-chloropyridine and trifluoromethanesulfonic. For the
quantitative yield to be obtained, the reaction must be carried out at a controlled temperature of
between -78°C and >45°C in the presence of dichloromethane (Movassaghi and Hill, 2006).

Synthesis by catalytic cyclization of β-formyl enamide: A novel and efficient synthesis of
pyrimidine from β-formyl enamide involved samarium chloride catalysed cyclisation of β-formyl
enamides using urea as source of ammonia under microwave irradiation (Fig. 17). This procedure
is highly efficient for the synthesis of 2,5,6-trisubstituted pyrimidine (Barthakur et al., 2007). 

Synthesis by cross coupling reaction: Karpov and Muller (2003) reported the coupling of acid
chlorides with terminal alkynes using one equivalent of triethylamine under Sonogashira
conditions. They expatiated that subsequent addition of amines or amidinium salts to the
intermediate alkynones formed, allowed a straightforward access to enaminones and pyrimidines
under mild conditions shown in Fig. 18 and in excellent yields (Karpov and Muller, 2003). 
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Preparation  via  sodium  salt   of   propanol   derivatives:   Reaction   of   sodium   salt  of
3,3-dimethoxy-2-methoxycarbonylpropen-1-ol   with   different   amidinium   salts    resulted   in
2-substituted pyrimidine-5-carboxylic esters by heating under reflux for 1 h in the presence of
dimethylformamide (DMF) at a carefully controlled temperature of 100°C as shown in Fig. 19
(Gupta et al., 2010).

Prebiotic synthesis of pyrimidine: The isolation of purine and pyrimidine from Murchison
meterorite was cited as evidence that these substances might have been present in a prebiotic
environment. The first prebiotic synthesis of pyrimidine was the synthesis of cytosine from prop-2-
ynenitrile (cyanoacetylene) and cyanate as shown in the Fig. 20 (Lagoja, 2005).

Microwave-assisted synthesis: An efficient one-pot synthetic method for the highly substituted
5H-[1,3,4]thiadiazolo [3,2-a]pyrimidine-6-carboxylate derivatives was accomplished via microwave
irradiation. Microwave-assisted Multi-Component Reaction (MCR) of benzaldehyde, 5-phenyl-1,3,4-
thiadiazole-2-amine and ethyl acetoacetate in acetic acid without any catalyst afforded ethyl7-
methyl-2,5-diphenyl-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidine-6-carboxylate in 85% yield (Fig. 21)
(Zhao et al., 2014). 

Synthesis via 1-benzotriazolyl-2-propynones: A novel 1-benzotriazolyl-2-propynones provided
access to the fused ring systems of pyrido[1,2-α]pyrimidin-2-ones and  2H-quinolizin-2-ones,  known

Fig. 19: Synthesis of 2-substitutedpyrimidine-5-carboxylic esters

Fig. 20: Prebiotic synthesis of cytosine, a core pyrimidine in DNA

Fig. 21: Microwave-assisted synthesis of thiadiazolo-fused pyrimidine derivatives
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for their diverse biological activities. Reactions of N-(phenylpropioyl)benzotriazole with substituted
2-aminopyridines afforded pyrido[1,2-α] pyrimidin-2-ones in good yields (71-73%) and the by-
product yield was drastically reduced when the reaction was carried out in sealed tube for 12 h as
shown in Fig. 22 (Katritzky et al., 2004).

Synthesis via steroidal ketone: The preparation of steroid/nonsteroid fused 7-substituted
pyrazolo[1,5-a]pyrimidines is described by a one-pot reaction of steroidal/nonsteroidal ketones,
aromatic aldehydes and 3-amino-1H-pyrazoles/5-amino-1H-pyrazoles in the presence of potassium
tert-butoxide. When anisaldehyde and 3-aminopyrazole were used, steroidal fused 7-substituted
pyrazolo[1,5-α]pyrimidine was obtained in 76% as shown in Fig. 23 (Saikia et al., 2014). 

Synthesis via ring transformation of pyran-3-carbonitrile derivatives: Synthesis of tricyclic
pyrimidine chemosensor, BTP-1 was achieved by using a mild base through ring transformation
of suitably functionalized 4-(methylthio)-2-oxo-6-naphthyl-2H-pyran-3-carbonitriles with 2-amino-
benzothiazole in DMF using DBU as the base as shown in Fig. 24 (Nandre et al., 2014).

Ice bath synthesis of pyrimidine: Recent discovery showed that the synthesis of pyrimidines
under a methane/nitrogen atmosphere is possible with high yields if a urea source is present. In
this process, the presence of frozen water or ice is a decisive factor. With water subjected to freeze-
thaw cycles, the synthesis of pyrimidines and triazines is strongly favored in ice cold condition. The
ice  matrix  plays  the  role  of  a  protective  medium  that  avoids the degradation of molecules
such  as  the  pyrimidines,  enhances  the  yields and diminishes the side reactions, which
constitute the constraints for the actual prebiotic relevance of cyanoacetylene, acetylene, or urea
(Menor-Salvan et al., 2009).

Fig. 22: Synthesis of pyrido[1,2-α] pyrimidin-2-ones from 2-propynone synthon

Fig. 23: Synthesis of steroid-fused 7-substituted pyrazolo[1,5-α]pyrimidines
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Fig. 24: Synthesis of tricyclic pyrimidine chemosensor, BTP-1

Fig. 25: Acylation reaction of pyrimidine derivatives at the nitrogen

Reactions of pyrimidine derivatives
Acylation reaction at nitrogen: Acylation of the ring nitrogen in fully conjugated pyrimidine
derivatives led to a pyridimium salt as reported by Cruickshank et al. (1984). This is achieved by
treatment of pyrimidine with ethanoyl chloride in the presence of mineral acid (Fig. 25). In similar
manner, benzoylation of uracil in the presence of pyridine gives 1-benzoyluracil provided there is
limited supply of benzoyl chloride and 1,3-dibenzoyluracil in excess of benzoylating agent as shown
in Fig. 25 (Cruickshank et al., 1984). Selective removal of 1-benzoyl group can be effected under
mild basic condition to furnish the 3-benzoyl derivatives (Cruickshank et al., 1984).

Alkylation reaction at nitrogen: Reactions of electrophiles with annular nitrogen have been
reported. Simple alkylations of pyrimidines with non-tautomerizable substituents were largely
controlled by steric factors. For instance, 4-t-butyl-6-methylpyrimidin with benzyl chloride in
toluene formed exclusively 1-benzylated product as presented in Fig. 26 (Curphey and Prasad,
1972).

Oxidation at nitrogen: Pyrimidines and methylpyrimidines are susceptible to decomposition,
ring-carbon oxidation and ring-opening reactions on direct N-oxidation, resulting in low yields of
N-oxides. Activating substituents are required. According to Fig. 27, with m-chloroper benzoic acid
in chloroform, pyrimidine afforded pyrimidine N-oxides in 48% yield whereas when 2-methyl
pyrimidine was used as the starting material 2-methyl pyrimidine N-oxides product was obtained
in 55% yield as reported by Undheim and Benneche (1996).
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Fig. 26: Alkylation reaction of pyrimidine derivatives at the nitrogen

Fig. 27: Oxidation reaction of 2-substituted pyrimidine at the nitrogen

Fig. 28: Nitration reaction of pyrimidine derivatives at the carbon

Nitration at the carbon: Pyrimidine and its cation are highly π-deficient and resist nitration. The
π-system in the 5-nitro derivative is further electron-depleted. Presumably adducts are formed
which either are oxidized or ring-opened. Nitration of pyrimidine is a very difficult task. However,
aryl substituted pyrimidine are often nitrated preferentially at the aryl. According to Fig. 28,
nitration of 4-phenyl pyrimidine in the presence of a mixture of concentrated nitric and sulphuric
acids yielded 40 and 60% of 4-o-nitrophenylpyrimidine and 4-m-nitrophenyl pyrimidine,
respectively (Bourguignon et al., 1982).

Nitrosation at carbon: Nitrosation takes place in the benzenoid 5-position in pyrimidines with
three strongly electron-donating groups e.g. oxo, thioxo, or amino groups. In disubstituted
pyrimidines, the relative positions of the substituents are decisive for any reaction. According to
Fig. 29a-b, 4,6-diamino- and 4,6-dihydroxypyrimidines are 5-nitrosated to give 5-nitrosopyrimidine-
4,6-diamine  and  5-nitrosopyrimidine-4,6-diol  respectively  whereas  their  2,4-isomers  fail to
react as shown in Fig. 29c-d. Nitrosation is brought about by nitrous acid or by nitrite esters
(Brown et al., 1994). 

Alkoxylation and aryloxylation at carbon: Nucleophilic displacement of 2- and 4/6-halo
substituents by alkoxyl or aryloxy ions occurred readily except in the presence of strongly electron-
releasing substituents in the ring (Undheim and Benneche, 1996). In 2-bromo-4-chloro-5-
ethoxypyrimidine,  the  chlorine  in  the  more  reactive 4-position was selectively substituted
during ethanolysis to give 2-bromo-4,5-diethoxypyrimidine as shown in Fig. 30a. Whereas, in  the
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Fig. 29(a-d): Nitrosation reaction of pyrimidine derivatives at the carbon

Fig. 30(a-b): Alkoxylation and aryloxylation reactions of pyrimidine derivatives at the carbon

Fig. 31: Diazo coupling reaction of 4-amino-2-hydroxypyrimidine

2,4,5-trifluoro-6-iodopyrimidine, it was the fluorine in the 4-position which suffered preferential
methanolysis  to  form  the  2,5-difluoro-4-iodo-6-methoxypyrimidine  as  given in Fig. 30b
(Undheim and Benneche, 1996).

Diazo coupling reaction of pyrimidine: The diazonium electrophile is weak and requires highly
nucleophilic counterparts for reaction. At least, two strong electron-releasing substituents at C2
and C4 (or C6) are needed for pyrimidines to couple at C5. For example, according to Fig. 31,
reaction of 4-amino-2-hydroxypyrimidine with diazonium salt afforded azo dye, 4-amino-5-
(phenyldiazenyl) pyrimidin-2-ol in good yield as reported by Brown et al. (1994). 

Halogenation reaction of pyrimidine: Pyrimidines are halogenated directly by electrophilic
reagents in the 5-position. Halogenations in the electrophilic positions are by nucleophilic exchange
reactions. Pyrimidine needs to be activated, for example by electron donating group such as a
hydroxyl or amino group or 2-tertbutyl, for chlorination to occur in the 5-position. Some of the
suitable chlorinating agents that have been used include chlorine in the presence of base; phenyl
iododichloride,  sulfuryl chloride or thionyl chloride with ferric chloride as catalyst. According to
Fig. 31a, the treatment of 4-amino-2-hydroxypyrimidine with sulfuryl chloride in the presence of
ferric chloride afforded 4-amino-5-chloro-2-hydroxypyrimidine (Undheim and Benneche, 1996).
However, 4-amino-5-bromo-2-hydroxypyrimidine is formed in 71-78% yield using bromine in
solvents like benzene or nitrobenzene (Undheim and Benneche, 1996) as shown in Fig. 32b.
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Fig. 33: Reduction reaction of un-substituted pyrimidine

Fig. 34: Oxidation reaction of 2-substituted pyrimidine

Reduction of pyrimidine: The reduction of pyrimidine by NaB(CN)H3 in methanol, with
concurrent trapping of the reduced forms by benzyl chloroformate, was reported to give the dibenzyl
pyrimidine-1,3(2H,4H)-dicarboxylate called the pyrimidine enamine (Undheim and Benneche,
1996) as shown in Fig. 33.

Oxidation of pyrimidine: The 2-methylgroup side chain of pyrimidine was oxidized to carboxyl
group by oxidizing agents such as potassium permanganate in order to obtain pyrimidine-2-
carboxylic acid as shown in Fig. 34. A 5-methyl group was difficult to oxidize and an N-methyl
group was resistant. Under mild oxidizing conditions, pyrimidine carbaldehydes were formed
(Undheim and Benneche, 1996). 

Synthetic applications of pyrimidine derivatives: Some interesting non-medical applications
were found once again for pyrimidines. The first successful prebiotic-related synthesis of a
pyrimidine nucleoside from a free base and a non-activated sugar was reported when it was found
that drying and heating 2-pyrimidinone and ribose gave the corresponding β-furanosyl
ribonucleoside, which structure is shown in Fig. 35, in about a 12% yield (Bean et al., 2007). The
synthesis and spectroluminescent properties of new 4-oxo-4,6,7,8-tetrahydropyrrolo[1,2-
a]thieno[2,3-d]pyrimidinium styryls as fluorescent dyes for bimolecular detection were reported
(Balanda et al., 2007). In the presence of RNA, these dyes significantly enhanced emission intensity
and might become RNA-specific fluorescent probes. 

The nucleophilic substitution reaction of manganocene, Cp2Mn, with an equimolar amount of
the Li+ salt of 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-α]pyrimidine (hppH), with the structure
presented in Fig. 35, affords the neutral dimer [CpMn(hpp)]2, further substitution of the Cp ligands
has been found to give the unusual dimeric manganate cage compound [LiMn(hpp)3]2 via
dimerization  of  a  trisorganomanganate  monomer.  A  series of biodegradable polymers containing
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Fig. 35: Valuable products obtained from synthetic application of pyrimidine derivatives

Fig. 36: Other reported synthetic modification of pyrimidine in new compounds design

the anticancer prodrug 5-fluorouracil and 4-amino-N-(2-pyrimidinyl) benzenesulfonamide, shown
in Fig. 35, were prepared by first condensing chlorinated poly (lactic acid)  or  chlorinated
poly(lactic acid-coglycolic acid) with potassium sulfadiazine and then with 1,3-dihydroxymethyl-5-
fluorouracil (Chang et al., 2007). A one-pot synthesis of 1-benzoyl-2(S)-substituted-5-iodo-2,3-
dihydro pyrimidin-4(1H)-ones was developed, based on the tandem decarboxylation b-iodination
of 6-carboxyhexahydropyrimidin-4-one and these were processed further to give α-substituted b-
amino acids with high enantioselectivity like (a-c) (Diaz-Sanchez et al., 2007).

1,3-Dimethyl-5-{(thien-2-yl)-[4-(1-piperidyl)phenyl]methylidene}-(1H,3H)-pyrimidine-2,4,6-
trione, shown in Fig. 36 which is a new merocyanine dye, was synthesized from 1,3-
dimethylbarbituric acid and its solvatochromic response in 26 solvents of different polarity was
measured (El-Sayed and Spange, 2007). The adsorption of α-amino acid/5-nitroso-6-oxopyrimidine
conjugates onto activated carbon increased its adsorption capacity for Cu2+ as established by
Gutierrez-Valero et al. (2007). Furthermore, the 2-oxo- and 2-thioxopyrimidines (Fig. 36) were
prepared in a one-pot cyclocondensation of β-ketoester, aldehyde and urea/thiourea using BnNEt3Cl
as catalyst and under solvent-free conditions (Mobinikhaledi et al., 2007). Similarly, a successful
protocol for the hydrogenation of 4,6-diamino-1H-pyrimidine-2-thione to 4,6-diamino-3,4-dihydro-
1H-pyrimidine-2-thione has been reported in zinc dust in the presence of adequate amount of
glacial acetic acid (Sayed et al., 2006).

BIOLOGICAL ACTIVITIES
Antibacterial activity: Andrews and Ahmed (2015) reported 5-(5-amino-1,3,4-thiadiazol-2-yl)-4-
(4-hydroxy phenyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-one to be the most promising antibacterial
among the series screened by them. 2-(1,3-benzothiazol-2-ylimino)-1,2-dihydro pyrimidine-4,6-
diamine  excellent  activity  on  both gram positive and negative isolate (Soliman et al., 2014). Other
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Fig. 38: Selected pyrimidine moieties with antifungal activity

pyrimidines harvested in literatures as probable antibacterial agents include 5-benzoyl-6-
phenylpyrimidin-2-one (Gulcan et al., 2014), pyrimidine-nucleotide (cGMP-AM) (Beckert et al.,
2014),  pyrrolidinyl-pyrimidine  (Nguyen  et  al.,  2014)  and 5-amino-thiazolo[4,5-d]pyrimidine
(Jang et al., 2011) as shown in Fig. 37.

Antifungal activity: Flucytosine is a pyrimidine-based drug used as an antifungal agent for the
treatment of extreme infections like candida and cryptococcus while hexitidine is used to treat
primarily aphthous ulceration (Jain et al., 2006). Efficient antifungal activity of 2-amino-4-
methoxy-6-substituted thiazolyl pyrimidine reported (Rindhe et al., 2005). Pyrimidine has largest
zones of inhibition against Aspergillus niger (10 mm) and Penicillium sp. (9 mm) among the
compounds  screened  by  Faty  et  al.  (2015).  Benzothiazole-pyrimidine  was the most active
among those tested by Maddila et al. (2013). According to the structure shown in Fig. 38,
pyrrolo[2,3-d]pyrimidines   possessed  excellent  activity  against  Candida  albicans  with MIC
0.31-0.62 mg mLG1 (Hilmy et al., 2010) (Fig. 2).
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Antiviral activity: Recently, pyrimidine-based compounds and derivatives have a wide interest
due to their useful antiviral properties. 5-iododeoxyuridine is pyrimidine-based heterocyclic
antiviral agents that have been used extensively for the treatment of viral infections (Jain et al.,
2006). 2-(4-methyl-5-nitro-6-(pyrrolidin-1-yl)-pyrimidin-2-ylamino)-3-phenylpropanoic acid (Fig. 39)
exhibited antiviral activity with IC50 of 73 μg mLG1 (Danesh et al., 2015) while 2,4-
diaminopyrimidine derivative (IC50 = 13 μg mLG1) was the most effective among the series screened
by Fernandez-Cureses et al. (2015). Other recently reported pyrimidines with promising antiviral
activities in Fig. 39, were 7-(4-methylphenyl)-8,9-diphenyl-7H-pyrrolo[3,2-e] [1,2,4]-triazolo[1,5-
c]pyrimidine-2-thione (Mohamed et al., 2015a) and 5-(5-(sec-butythio)-1,3,4-thiadiazol-2yl)-2-
methylpyrimidin-4-amine (Wu et al., 2015) (Fig. 3).

Anticancer activity: Tarceva is a pyrimidine-based cancer drug available in the market. 1,2,3,4-
tetra hydropyrimidine analogue was found to be potent against various human cancer cell lines
(Bari et al., 2015). Triazolo-pyrimidinone (Mohamed et al., 2015b) and pyrazolo-pyrimidine
(Pogorelcnik  et  al.,  2015)  with  the  structures  shown  in  Fig.  40,  revealed  promising
anticancer activities compared to the activity  of  the  commonly  used  anticancer  drug,
doxorubicin in both MCF-7 and A549 cell lines. 4-(2-chlorophenyl)-6-(2,4-dichlorophenyl)pyrimidin-
2-amine  exhibited  remarkable growth inhibition at single dose (10 μM) against lung cancer cell
line HOP-92 (Rashid et al., 2014). 2-[(5-anilino-1,3,4-thiadiazol-2-yl)methyl]-5,6,7,8-
tetrahydro[1]benzothieno[2,3-d]pyrimidin-4(3H)-one was reported to show improved activity
against lung and breast cancer (Mavrova et al., 2014) (Fig. 40).

Antitubercular activity: Tuberculosis is an infectious disease that is caused by the bacterium
Mycobacterium tuberculosis. Capreomycin and viomycin, shown in Fig. 41, are commercially
available pyrimidine-containing antitubercular drugs (Jain et al., 2006). Deazapurine nucleoside
(IC50  =  0.0012±0.0001 μM) was  reported  to  be  highly  potent  antitubercular  pyrimidine
(Malnuit et al., 2015). Imidazo[1,2-c]pyrimidin-4-ol emerged as  the  most  potent  among  the series
screened  by  Barot  et  al.  (2014) against  M. tuberculosis H37Rv. According to Shakya  et al. (2012),

Fig. 39: Selected pyrimidine moieties with antiviral activity
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Fig. 40: Selected pyrimidine moieties with anticancer activity

Fig. 41: Selected pyrimidine moieties with antitubercular activity

1-(β-D-arabinofuranosyl)-4-thio-5-hydroxylmethyluracil,  showed in Fig. 41. was the most active
with MIC50 = 0.5 μg mLG1. N-(2-fluoro-4-(furan-2-yl)-6-(4-methoxybenzyl amino)pyrimi din-5-yl)form
amide inhibited the growth of M. tb H37Rv at IC90 <0.2 μg mLG1 and also exhibited low toxicity
towards mammalian cells as reported by Read et al. (2010).

Antitumor activity: Pyrrolo[2,3-d]pyrimidines with folate receptor was identified by Wang et al.
(2015) as potential antitumor compound. Abbas et al. (2015) reported 4-(4-fluorophenyl)-6-oxo-2-[(1-
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henyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl)thio]-1,6-dihydropyrimidine-5-carbonitrile,   showed   in
Fig. 42,  to  be  promising  antitumor  because  it exhibited also high inhibition (91%) against
EGFR-TK. 2-(5-cyano-2-(prop-2-yn-1-ylthio)-6-(3,4,5-trimethoxyphenyl) -pyrimidin-4-yl) hydrazine
carbothioamide showed marked inhibition of cell migration and in vivo tumor suppressing and
antimetastasis (Ma et al., 2015). 1-(4-chlorophenyl)-3-(4-(4-((3-(diethylamino)propyl)amino)
thieno[3,2-d]pyrimidin-2-yl)phenyl)urea showed antitumor activities with IC50 values of 0.081 μM,
0.058 μM, 0.18 μM and 0.23 μM  against  H460,  HT-29,  MKN-45  and  MDA-MB-231  cell  lines
(Liu et al., 2014a) (Fig. 42).

Analgesic and anti-inflammatory activity: 2-[Chloro-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-
yl]acetohydrazide, screened via acetic acid induced writhing test, showed good analgesic activity
(Raj et al., 2006). 1-((5-(4-nitrophenyl)-1,3,4-oxadiazol-2-yl)methyl)-2-((pyrimidin-2-ylthio)methyl)-
1H-benzo[d] imidazole showed in Fig. 43, was a selective COX-2 inhibitor with IC50 8.2 mM as well
as promising anti-inflammatory agent (68.4%) while 1-((5-ethyl-1,3,4-oxadiazol-2-yl)methyl)-2-
(pyrimidin -2-ylthio)methyl)-1H-benzo[d]imidazole has dual action as anticancer and anti-inflamm
atory pyrimidine (Rathore et al., 2014). According to Sharma et al. (2014), N-(4-hydroxy -6-tosyl-
5,6,7,8-tetrahydropyrido[4,3-d]pyrimidin-2-yl)-4-nitrobenzamide (IC50 = 254 μM) and N-(4-hydroxy-
6-tosyl-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidin-2-yl)isonicotin amide (IC50 = 231 μM) exhibited
good analgesic and anti-inflammatory profiles and proved effective in the treatment of neuropathic
pain. 5-(2-(Azepan-1-yl)ethyl)-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H) -one showed in Fig. 43,
was reported to be more active than ketorolac standard drug,  hence,  cloud  be  developed  into
anti-inflammatory/analgesic drug with the probability of fewer side effects (Abdelazeem et al., 2014)
(Fig. 7).

Antimalarial  activity:  N,N' - (4,4 ' - (Furan-2,5-diyl)bis(3,5-di isopropoxy-4,1-
phenylene))dipyrimidine-2-carboxim idamide with structure in Fig. 44, showed good activity
against P. falciparum at IC50 of 8.5 nM (Liu et al., 2014b). Pyrimidine-based anti-malarial drugs
available in the market include perimethamine, sulfadiazine and trimethoprim. However, more
efforts have been developed in antimalarial drug research because of drug resistance problem.Thus,
hybrids of 4-aminoquinoline, N1-(7-chloroquinolin-4-yl)-N3-(4-(piperidin-1-yl)pyrimidin-2-
yl)propane-1,3-diamine  screened by Singh et al. (2014) and N1-(7-chloroquinolin-4-yl)-N2-(6-methyl-
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Fig. 43: Selected pyrimidine moieties with analgesic and anti-inflammatory activity

Fig. 44: Selected pyrimidine moieties with antimalarial activity

2-(4-methylpiperazin-1-yl)pyrimidin-4-yl)ethane-1,2-diamine reported by Manohar et al. (2012)
showed antiplasmodial activity in nM range against chloroquine-resistant and chloroquine-
sensitive strains of Plasmodium falciparum (Fig. 44).

Anti-HIV activity: The Human Immunodeficiency Virus (HIV) is a virus that attacks the immune
system. 4-((4-((4-(2,6-dichlorobenzyl)-5-methyl-6-oxo-1,6-dihydropyrimidin-2-ylthio)methyl)-1H-
1,2,3-triazol-1-yl)methyl)   benzenesulfonamide    (Fang   et    al.,    2015)    and   3,4-dihydro-2H,6H-
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Fig. 45: Selected pyrimidine moieties with anti-HIV activity

pyrimido[1,2-c][1,3]benzothiazin-6-imine (Ghebremariam et al., 2014) as well as 3,4-dihydro-2H-
benzo[4,5]isothiazolo[2,3-a]pyrimidine (Okazaki et al., 2015a), shown in Fig. 45, exhibited strong
HIV-1 inhibitory potency at EC50 of 3.22, 0.30 and 0.29 μM, respectively. Chemical transformation
of this isothiazolo- was achieved later to produce 2-(2-mercaptophenyl)-1,4,5,6-
tetrahydropyrimidine (Fig. 45) which was un veiled as an active anti-HIV moiety with promising
feature (Okazaki et al., 2015b). 4-((7-(Mesitylamino)-[1,2,4]triazolo[1,5-a]pyrimidin-5-yl)amino)
benzonitrilewas discovery as potent HIV-1 NNRTIs using a structure-guided core-refining approach
(Wang et al., 2014). Other promising anti-HIV pyrimidine established through research efforts
include 2-(4-cyanophenylamino)-4-(2-cyanovinylphenylhydrazonomethyl)pyrimidine (Meng et al.,
2014) and 4-(7-(mesityloxy)pyrazolo[1,5-α]pyrimidin-5-ylamino)benzonitrile (Tian et al., 2014) which
structures were shown in Fig. 45.

Antiplatelet activity: Current  anti-platelet drugs are important for the prevention and
treatment of acute ischemic syndromes. Discovery of N-(2-hydroxyethyl)-N-methyl-2-morpholino-4-
oxo-9-(1-phenoxyethyl)-4H-pyrido[1,2-a]pyrimidine-7-carboxamide shown in Fig. 46, as oral PI3Kb
inhibitors which was useful as antiplatelet agent was reported by Giordanetto et al. (2014). Efforts
by Okuda et al. (2014a, b) on collagen-induced platelet aggregation revealed 2-(4-methoxy phenyl)-
4-chloro-5,6-dihydro[1]benzothiepino[5,4-d]pyrimidine (Okuda et al., 2014a) and 2-phenyl-4-
ethylamino-5,6-dihydro[1]benzoxepino[5,4-d]pyrimidine (Okuda et al., 2014b) presented in Fig. 46,
as promising anti-platelet candidates with potencies superior to aspirin.

Kinase  inhibitory  activity: 2-(4-methoxyphenyl)-5-methyl-N-(4-methylphenyl)[1,3]oxazolo[5,4-
d]pyrimidin-7-amine strongly inhibited VEGFR-2 kinase and HUVEC with IC50 values of 0.33 and 
0.29 μM (Deng et al., 2015). (R)-5-chloro-N2-[4-(4-methylpiperazin-1-yl)phenyl]-N4-[(tetra
hydrofuran-2-yl)methyl]pyrimidine-2,4-diamine presented in Fig. 47, was developed as novel
ACK1/TNK2  inhibitors  using   a   fragment-based   approach  (Lawrence et al., 2015). 1-(2-(4-
bromo  phenyl)-2-chloroethyl)-N-(2-chlorobenzyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine  showed in
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Fig. 46: Selected pyrimidine moieties with antiplatelet activity

Fig. 47: Selected pyrimidine moieties with kinase inhibitory activity

Fig. 48: Selected pyrimidine moieties with antitamoebic activity
 
Fig. 47, was reported as a SRC family kinase inhibitor which could be a feasible approach for
glioblastoma treatment (Ceccherini et al., 2015).

Antiamoebic activity: Amoebiasis, the most aggressive disease of the human intestine, is caused
by the anaerobic protozoan parasite Entamoeba histolytica (Lejeune et al., 2009). Out of sixteen
compounds evaluated against HM1: IMSS strain of Entamoeba histolytica by Parveen et al. (2010),
4-(4-chlorophenyl)-6-ferrocenyl-2-piperidin-1-yl-pyrimidine with the structure showed in Fig. 48,
was  found  most  active  and  least  toxic  among  all  the  compounds.  From  the in silico molecular
docking   simulation   investigated   by Yadava et al. (2015), 1-(4-amino-3-phenyl-1H-pyrazolo[3,4-
d]pyrimidin-1-ylsulfonyl)-N-p-tolylme  thanamide  (IC50  =  0.68  μg  mLG1), represented in Fig. 48,
was found to be more efficient than the metronidazole drug standard (IC50 = 1.80 μg mLG1) against
the same Entamoeba histolytica.
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Central nervous system depressant activity: Chronic anxiety and epilepsy are common and
serious disorder of Central Nervous System (CNS). The CNS depressant agents are an important
class of drugs, which are useful in the treatment of anxiety and related emotional disorders. A
series  of  tetracyclic  pyrimidi  nes  were screened for CNS depressant, skeletal muscle relaxant
and  anticonvulsant  activities  in  Swiss albino mice (Thore et al., 2015). The result showed that
1-isopropyl-4-(4-methylphenyl)-6,7,8,9-tetrahydro[1,2,4]triazolo[4,3-a]benzo(b)thieno[3,2-
e]pyrimidin e-5(4H)-one, 4-(4-methylphenyl)-1-pyrrolidin-1-ylmethyl-6,7,8,9-tetrahydro[1,2,4]triazo
lo[4,3-a]benzo(b)thieno[3,2-e]pyrimidine-5(4H)-one and 4-(4-methylphenyl)-1-piperidin-1-ylmethyl-
6,7,8,9-tetrahydro[1,2,4]triazolo[4,3-a]benzo(b)thieno[3,2-e]pyrimidine-5-(4 H)-one with the
presented structures  in  Fig. 49, exhibited  promising  activities, which are comparable to the
standard (Thore et al., 2015).

Herbicidal activity: Assay of a series of pyrimidine scaffolds designed by Cheng et al. (2015) for
herbicidal activities revealed that 5-(4-chloro-2-fluoro-5-(prop-2-yn-1-yloxy)phenyl)-1,7-dimethyl-
1H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione, with the structure shown in Fig. 50, exhibited
significant herbicidal efficacy. 2-methyl-4-[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]-6-(prop-2-
yn-1-yloxy)py rimidine exhibited excellent inhibition activities against weed root growth (Ma et al.,
2014a). Most of the pyrimidines synthesized by Ma et al. (2014b) expressed bleaching  activities
with 4-(5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl)-6-(prop-2-ynyloxy)pyrimidine, presented in
Fig. 50, showing the best bleaching activity to gramineous weeds. It produced the highest inhibition
of chlorophyll level in seedlings of Pennisetum alopecuroides L.

Fig. 49: Selected pyrimidine moieties with CSN depressant activity

Fig. 50: Selected pyrimidine moieties with herbicidal activity
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CONCLUSION
The synthetic utility of pyrimidines as precursors and valuable intermediates for the successful

design of diverse biologically active compounds has given impetus to these studies. Owing to
widespread application of pyrimidine in medicinal chemistry research and its occurrence in many
biological entities valuable to life, tremendous amount of literature have be accumulated and
documented over the years. We have herein reviewed recent advances in the chemistry and biology
of pyrimidine in order to provide valuable information on how this scaffold could be used to develop
new drugs and bioactive motifs for effective fight against drug resistance which is an emerging
bottleneck in pharmaceutical research.
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