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Abstract

In this paper, we prove some fixed point results for some classes of
nonlinear mappings recently introduced by Okeke and Olaleru [5]. Our
results improves several other known results in literature, including the
results of Sahu et al. [8] and Sahu [7].
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1 Introduction and Preliminaries

Let C be a nonempty subset of a Banach spaceX and S : C → C a Lipschitzian
mapping, we use the symbol σ(S) to denote the exact Lipschitz constant of S,
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i.e.,

σ(S) = inf{k ∈ [0,∞] : ‖Sx− Sy‖ ≤ k‖x− y‖ for all x, y ∈ C}. (1.1)

A mapping T : C → C is said to be
(a) nonexpansive if σ(T ) = 1,
(b) asymptotically nonexpansive if σ(T n) ≥ 1 for all n ∈ N and limn→∞ σ(T n) =
1,
(c) uniformly L-Lipschitzian if σ(T n) = L for all n ∈ N and for some L ∈
(0,∞).

Sahu [7] recently introduced the following classes of nonlinear mappings as
intermediate classes between the class of asymptotically nonexpansive map-
pings and that of mappings of asymptotically nonexpansive type (see, Goebel
and Kirk [3], Kirk [4]).

Definition 1.1 [7] Let C be a nonempty subset of a Banach space E and
fix a sequence {an} in [0,∞) with an → 0. A mapping T : C → C will be
called nearly Lipschitzian with respect to {an} if for each n ∈ N, there exists
a constant kn ≥ 0 such that

‖T nx− T ny‖ ≤ kn(‖x− y‖+ an) ∀ x, y ∈ C. (1.2)

The infimum of constants kn for which (2.18) holds will be denoted by η(T n)
and called nearly Lipschitz constant. Notice that

η(T n) = sup

{
‖T nx− T ny‖
‖x− y‖+ an

: x, y ∈ C, x 6= y

}
. (1.3)

A nearly Lipschitzian mapping T with sequence {(an, η(T n))} is said to be
(i) nearly contraction if η(T n) < 1 for all n ∈ N,
(ii) nearly nonexpansive if η(T n) ≤ 1 for all n ∈ N,
(iii) nearly asymptotically nonexpansive if η(T n) ≥ 1 for all n ∈ N and

limn→∞ η(T n) ≤ 1,
(iv) nearly uniformly k-Lipschitzian if η(T n) ≤ k for all n ∈ N,
(v) nearly uniformly k-contraction if η(T n) ≤ k < 1 for all n ∈ N.
Inspired by the facts above, Okeke and Olaleru [5] introduced the following

classes of nonlinear mappings.

Definition 1.2 Let C be a nonempty subset of a Banach space E, φ : R+ =
[0,∞) → R+ be a continuous strictly increasing function such that φ(0) = 0,
limt→∞ φ(t) = ∞ and fix a sequence {an} in [0,∞) with an → 0. A mapping
T : C → C will be called φ-nearly Lipschitzian with respect to {an} if for each
n ∈ N, there exists a constant kn ≥ 0 such that

‖T nx− T ny‖ ≤ kn.φ(‖x− y‖+ an) ∀ x, y ∈ C. (1.4)
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The infimum of constants kn for which (1.6) holds will be denoted by η(T n)
and called φ-nearly Lipschitz constant. Notice that

η(T n) = sup

{
‖T nx− T ny‖
φ(‖x− y‖+ an)

: x, y ∈ C, x 6= y

}
. (1.5)

A φ-nearly Lipschitzian mapping T with sequence {(an, η(T n))} is said to be
(i) φ-nearly contraction if η(T n) < 1 for all n ∈ N,
(ii) φ-nearly nonexpansive if η(T n) ≤ 1 for all n ∈ N,
(iii) φ-nearly asymptotically nonexpansive if η(T n) ≥ 1 for all n ∈ N and

limn→∞ η(T n) ≤ 1,
(iv) φ-nearly uniformly k-Lipschitzian if η(T n) ≤ k for all n ∈ N,
(v) φ-nearly uniformly k-contraction if η(T n) ≤ k < 1 for all n ∈ N.
Observe that if φ is identity in Definition 1.2, then we obtain the concepts

introduced by Sahu [7] (see Definition 1.1 above).
Our purpose in this paper is to prove some fixed point results for the classes

of nonlinear mappings defined by Okeke and Olaleru [5], as given in Definition
1.2 above.
The following definitions and lemma will be needed in this study.

Definition 1.3 [7] Let C be a nonempty subset of a Banach space E and
T : C → C a mapping. T is said to be demicontinuous if whenever a sequence
{xn} in C converges strongly to x ∈ C, then {Txn} converges weakly to Tx.

Definition 1.4 [2] The normal structure coefficient N(E) of a Banach space
E is defined by

N(E) = inf{diam(C)
rC(C)

: C is nonempty bounded convex subset of E with

diam C > 0},

where rC(C) = infx∈C{supy∈C ‖x − y‖} is the Chebyshev radius of C relative
to itself and diam (C) = supx,y∈C ‖x − y‖ is diameter of C. The space E is
said to have the uniform normal structure if N(E) > 1. A weakly convergent
sequence coefficient of E is defined by

WCS(E) = sup{k : k lim supn→∞ ‖xn‖ < diama({xn}) for all {xn} in E with
xn ⇀ 0}.

The space E is said to have the weak uniform normal structure ifWCS(E) > 1.

Definition 1.5 [1] Let C be a nonempty subset of a Banach space E. A
nonempty closed convex subset D of C is said to satisfy property (ω) with
respect to a mapping T : C → C if

ωT (x) ⊂ D for every x ∈ D, (1.6)
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where ωT (x) denotes the set of all weak subsequential limits of {T nx : n ∈ N}.
Moreover, T is said to satisfy the (ω)-fixed point property if T has a fixed point
in every nonempty closed convex subset D of C which satisfies property (ω).

Lemma 1.6 [8] Let C be a nonempty closed convex subset of a Banach space
and T : C → C a mapping such that T nu → v as n → ∞ for some u, v ∈ C.
Suppose that T is demicontinuous at v. Then v is a fixed point of T in C.

2 Main Results

Theorem 2.1 Let E be a Banach space with weak uniform normal structure, C
a nonempty weakly compact convex subset of E and T : C → C a φ-nearly Lip-
schitzian mapping with sequence {(an, η(T n))} such that lim supn→∞ η(T n) <√
WCS(E). Also suppose that there exists a nonempty closed convex subset

M of C which satisfies property (ω) with respect to T. Then

(a) for an arbitrary x0 ∈ M, there exists an iterative sequence {xm} in M
defined by

xm = w − lim
n→∞

T nxm−1 ∀m ∈ N, (2.1)

(b) if T is asymptotically regular on C, then there exists an element v ∈M
such that

{xm} converges strongly to v ∈ M. Further, if T is demicontinuous at
v, then

v ∈ F (T ).
Proof. (a) We can easily construct a nonempty closed convex separable subset
C0 of C which is invariant under each T n (i.e. T n(C0) ⊂ C0 for n = 1, 2, · · · ),
we suppose that C itself is separable.

Due to the separability of C0, we can select a subsequence {T nx} such
that {T nx} is weakly convergent for each x ∈ C. For every x0 ∈ M ⊂ C, we
consider a sequence {T nx0} in C. Suppose that w − limn→∞ T

nx0 = x1 ∈ C.
Using property (ω) we have that x1 ∈ M. By induction, we can construct a
sequence {xm} in M defined by (2.1).

(b) Suppose that T is asymptotically regular on C. The weak asymp-
totic regularity of T ensures that xm = w − limn→∞ T

n+rxm−1 for each r ∈
N. We are to show that {xm} converges strongly to a fixed point T. We
set L := lim supn→∞ η(T n), Dm := lim supn→∞ ‖xm − T nxm‖ and Rm :=
lim supn→∞ ‖xm+1 − T nxm‖ for all m = 0, 1, 2, · · · Using the property of
WCS(E), we obtain

Rm = lim sup
n→∞

‖xm+1 − T nxm‖ ≤
1

WCS(E)
D[{T nxm}]. (2.2)
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Using the asymptotic regularity of T and the w-l.s.c. of the norm ‖.‖, we obtain

D[{T nxm}] = lim supn→∞ (lim supr→∞ ‖T nxm − T rxm‖)
≤ lim supn→∞(lim supr→∞(‖T nxm − T n+rxm‖

+‖T n+rxm − T rxm‖))
≤ lim supn→∞ (lim supr→∞(η(T n).φ(‖xm − T rxm‖+ an)))
= L lim supr→∞ (φ(‖xm − T rxm‖))
≤ L lim supr→∞ (φ(lim sups→∞(‖T sxm−1 − T rxm‖)))
≤ L lim supr→∞(φ(lim sups→∞(‖T sxm−1 − T r+sxm−1‖

+‖T r+sxm−1 − T rxm‖)))
≤ L lim supr→∞(φ(lim sups→∞(‖T sxm−1 − T r+sxm−1‖

+η(T r)(‖T sxm−1 − xm‖+ ar))))
≤ L2 lim sups→∞(φ(‖T sxm−1 − xm‖)) = L2 × φ(Rm−1). (2.3)

We set λ := L2

WCS(E)
< 1. Using (2.2), we have

φ(Rm) ≤ λ× φ(Rm−1) ≤ λ2 × φ(Rm−2) ≤ · · · ≤ λm × φ(R0)→ 0 (2.4)

as m→∞. For each m ∈ N, we obtain

‖xm+1 − xm‖ ≤ lim supn→∞(‖xm+1 − T nxm‖+ ‖T nxm − xm‖)
≤ Rm + lim supn→∞(lim supr→∞ ‖T nxm − T rxm−1‖)
≤ Rm + lim supn→∞(lim supr→∞ ‖T nxm − T n+rxm−1‖

+‖T n+rxm−1 − T rxm−1‖))
≤ Rm + lim supn→∞(φ(lim supr→∞(η(T n)×

(‖xm − T rxm−1‖+ an))))
≤ (λ+ L).φ(Rm−1)
· · ·

≤ (λ+ L)λm−1 × φ(R0). (2.5)

We see that {xm} is a Cauchy sequence in M and hence there exists an element
v ∈M such that limm→∞ xm = v. Clearly,

‖v − T nv‖ ≤ ‖v − xm+1‖+ ‖xm+1 − T nxm‖+ ‖T nxm − T nv‖
≤ ‖v − xm+1‖+ ‖xm+1 − T nxm‖+ η(T n)×

φ(‖xm − v‖+ an). (2.6)

Taking limit superior as n→∞ on both sides, we obtain

lim sup
n→∞

‖v − T nv‖ ≤ ‖v − xm+1‖+ φ(Rm) + L‖xm − v‖ → 0,

as m → ∞. Hence, we have that T nv → v as n → ∞. Furthermore, we as-
sume that T is demicontinuous at v. Therefore, using Lemma 1.6, we obtain
v ∈ F (T ). �

Remark 2.2 The results of Theorem 2.1 improves and generalizes several
other known results in literature, including the results of Sahu et al. [8] and
Sahu [7].
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