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Abstracts 

 
This paper considers the solution of two-point boundary value problems by the 
application of Differential Transform method. Two examples are solved to illustrate 
the technique and the results are compared with the exact solutions. The numerical 
results obtained show strong agreement with their corresponding exact solutions, and 
as such demonstrate reliability and great accuracy of the method. 
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1. Introduction 
Many linear and nonlinear boundary value problems of ordinary differential equations 
occur frequently in different areas of science and engineering. Various applications of 
these type of problems occur in fluid mechanics, quantum mechanics, optimal control, 
chemical reactor theory, aerodynamics, reaction-diffusion process, geophysics and 
other related fields of applied sciences. 
 Numerical-analytic methods of various types have been proposed by many 
researchers to solve boundary value problems (bvp). EL-Arabawy [1] used Picard 
iterative technique (PIT), Tatari et al [2], applied Adomian Decomposition method 
(ADM), Singh et al [3] also applied Adomian Decomposition method, Adesanya et al 
[4] presented Adomian Decomposition method for Bratu’s problem, Mishra [5] 
employed He-Laplace method. 
 The method (Differential Transform method) adopted in this work was first 
proposed by Zhou (1998) to solve linear and nonlinear differential equations in 
electrical circuits analysis [6]. It has also been widely applied by many researchers in 
scientific literature to solve differential equations [7-10]. 
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2. Analysis of the Method (DTM) 
Taking an arbitrary one dimensional function ( )y v x  in Taylor’s series about a point 
x x   which can be written as:  
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where ( )v x  is the original function and ( )V k is the transformed function. The inverse 
differential transform of ( )V k is defined as:  
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 Substituting (1) into (2) yields the following equation:  
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which gives the Taylor’s series. 
 The following theorems can be deduced from equations (2) and (3):  
Theorem 1: If ( ) ( ) ( ),   ( ) ( ) ( )v x q x r x then V k Q k R k       , where  are    
constants 
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Theorem 3: If ( )( ) ,  then ( ) ( 1) ( 1)dh xv x V k k H k
dx

     

Theorem 4: If 
2

2

( )( ) ,  then ( ) ( 1)( 2) ( 2)d h xv x V k k k H k
dx

      

Theorem 5: If ( ) cos( ),   ( ) cos + ,
! 2

kP kv x px then V k
k

      
 

 where  and p   are 

constants 
 
 
3. Numerical Analysis and Applications 
In this subsection we apply the differential transformation method to solve two 
examples of boundary value problems. 
Problem 1: Consider the following bvp [12] 
 4 0, (0) 0, (1)y y y y e       (4) 
with a theoretical solution:  
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 The differential transform of the boundary value problem (4) yields the 
following recurrence relations:  
 ( 1)( 2) ( 2) 4 ( ) 0k k Y k Y k       (6) 
 And the differential transforms of the boundary conditions in (4) at 0x   are:  
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 Using the recurrence relation in (6) and the boundary conditions (7) at 
0 (for 0)x k   respectively, we obtain the following:  
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 From (7) at 1,x   using (0)A y , we obtain   1.499577A  . Implementing the 
inverse transform rule in (2) yields the following series solution:  

 
3 5 7( ) 1.499577 0.99971836 0.1999436 0.019042247y x x x x x        (9) 

 
Table I: Analysis of Solutions-problem 1 

 
 EXACT DTM ABSOLUTE ERROR 

0.00 0.000000 0.000000 0.000000 
0.01 0.014991 0.014997 6.05E-06 
0.02 0.029987 0.030000 1.21E-05 
0.03 0.044996 0.045014 1.81E-05 
0.04 0.060023 0.060047 2.42E-05 
0.05 0.075074 0.075104 3.03E-05 
0.06 0.090154 0.090191 3.64E-05 
0.07 0.105271 0.105314 4.25E-05 

 

 
 

Fig 1: Radar-view of problem 1 Solutions 
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Problem 2: Consider the following bvp [5]:  
 cos( )  ,  (0) 1,  (1) 1y y x y y       (10) 
with a theoretical solution:  
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 The differential transform of the bvp in (11) gives the following recurrence 
relation:  
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 Also the differential transform of the boundary conditions at 0x   are:  
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 The recurrence relation in (11) together with the boundary conditions (13) at 
0 (for 0)x k   respectively, yield the following:  
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 From (12) and (13) at 1,x   using (0)B y , we obtain   0.888762526B    
 Applying the inverse transform rule in (2), yields the following series solution 
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Table II: Analysis of Solutions-problem 2 

 
 EXACT DTM ABSOLUTE ERROR 

0.0 1.000000 1.000000 0.000000 
0.2 0.861128 0.861127 1.03E-06 
0.4 0.796019 0.796006 1.28E-05 
0.6 0.799699 0.799571 0.000128 
0.8 0.868488 0.867789 0.000699 
1.0 1.000000 0.997371 0.002629 
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Fig 2: 3-D line-view of problem 2 Solutions 
 
 
4. Conclusion 
In this work, Differential Transform Method has been successfully applied to solve 
two-point boundary value problems. The two examples solved revealed that the 
method is fast, accurate and easy to apply. It converges faster to the exact solution. 
The results are presented in Tables I & II and Fig. 1 & 2. This method (DTM) is 
hereby recommended for all forms of differential equations due to the rapidity of its 
convergence and fewer computations. 
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