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INTRODUCTION 
 
In this paper, we shall discuss the solvability of the three 
point boundary value problem of the form 
 

' ( ) ( , , ', ' )x '' t f t x x x '                                               (1)  

 

(1) (0) 0, (1) ( )x' x'' x ax                           (2) 

 

Where 1a   and  is continuous and 

(0,1) . 

Multipoint boundary value problems arise in a variety of 
different areas of Applied Mathematics, Physics and 
Engineering. For example, in solving partial differential 
equations by the method of separation of variables, one 
comes across differential equations whose solutions must 
satisfy boundary conditions at several points. Similarly 
bridges of various sizes are sometimes contrived with 
multipoint supports which correspond to a multipoint 
boundary condition. Boundary value Problem (1) to (2) is 

called a problem at resonance if ( ) 0Lx x''' t   has 

non-trivial solutions under the boundary Conditions (2) 

that is, when dimker 1L  . On the interval [0,1]  

second order and third order multipoint boundary value 
problems have been studied by Aftabizadeh et al. (1989); 
Constantin (1996); Feng and Webb (2001); Gregus et al. 
(1971); Gupta and Lakshmikantham (1991); Gupta et al. 
(1995); Liu and Yu (1995) and Ma (1997, 1998). Our 
method of proof consists of imposing a decomposition 

condition on f  of the form 

 
( , , ) ( , , ) ( , , )f t x y g t x y h t x y                          (3) 

 
We shall then employ coincidence degree arguments to 
obtain our existence results. In what follows, we shall use 

the norm [0,1]max ( )tx x t
  . We denote the norm in 

1[0,1]L  by 
1
 and on 

2[0,1]L  by
2

. 

Examples are the vibrations of a guy wire of a uniform 
cross composed of N parts of different densities 
(Moshiasky, 1981) and some problems in the theory of 
elastic stability (Timoshenko, 1961). 
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PRELIMINARIES 
 
Consider the linear equation 
 

( ) 0Lx x''' t                                                   (4) 

    

(1) (0) 0, (1) ( )x' x'' x ax                            (5) 

 
If we assume a solution of the form 
 

3

0

( ) i

i

i

x t a t


   

 
Then this solution exists if and only if 
 

3 (1 ) 0a a                                                               (6) 

 

The case where 1a   which corresponds to the non-

resonance case was discussed in Iyase (2005) 

When 1a  , Equations (4) to (5) has non-trivial 

solutions. Therefore, problem (1) to (2) is at resonance. 
We shall prove existence results for the boundary value 

problem (1) to (2) under the Condition (6) when 1a  . 

In our proof we shall need the following Continuation 
Theorem based on Mawhin’s coincidence degree. 
 
 
Theorem 1  
 

Mawhin (1979) Let L  be a Fred Holm operator of index 

zero and let N  be compactL  on  . Assume that the 

following conditions are satisfied: 
 

(1) Lx Nx  for any ( , ) (dom ) (0,1)x L       

(2) 0QNx   for kerx L    

(3) The Brower degree 
kerdeg (( ) , ker ,0) 0B JQN L    

 

Where : Im kerJ Q L  is some isomorphism. 

Then there exists domx L  such that 

 

Lx Nx                                                               (7) 

 

Let 
2 1[0,1], [0,1]X C Z L    

Let : domL L X Z    be defined by 

 

( )Lx x''' t                                                             (8) 

  
Where  

 3,1dom (0,1), (1) (0) 0, (1) ( )L x W x' x'' x x      . 

We define :N X Z  by setting 
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( , ( ), ( ), ( ))Nx f t x t x' t x'' t                                      (9) 

 
Then the boundary value Problem (1) to (2) can be put in 
the form 
 

Lx Nx                                                              (10) 

 
 
Lemma 1 
 

If L  and N  are defined as in Equations (8) and (9), then 

 

 
1 1

0
Im : ( ) 0

r

t
L y Z y s dsdrdt


        

 

: domL L X Z   is a Fred Holm operator of index 

zero. 
 
 
Proof  
 
We will show that the problem 
 

( ) for  x''' t y y Z                                                 (11) 

 

has a solution ( )x t  satisfying 

 

(1) (0) 0, (1) ( )x' x'' x x                          (12) 

 
If and only if 
 

1 1

0
( ) 0

r

t
y s dsdrdt


                                     (13) 

 

Suppose Equation (11) has a solution ( )x t satisfying 

Equation (12) then from Equation (11) we have 
1 1 1 1

0
0 ( ) ( )

r r

t t
x''' s dsdrdt y s dsdrdt

 
        

Now suppose
1 1

0
( ) 0

r

t
y d drdt


     . 

Let  
 

1

0 0 0 0 0
( ) ( ) ( )

1

r w t r wt
x t c y d dwdr y d dwdr


   


  

          (14) 

  

Then ( )x t  is a solution of Equation (11) with 

1 1

0
( ) 0

r

t
y s dsdrdt


   . 

For y Z  we define the projection :Q Z Z  by 

 

1 1

2 0

6
( ) ,

( 2)( 1)

r

t
Qy y s dsdrdt y Z

 
 

            (15) 
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Let 1y y Qy  , that is 1 kery Q . Then by direct 

calculations we have 
   

1 1 1 1 1 1

1 20 0 0

6
( ) ( ) 1 0

( 2)( 1)

r r r

t t t
y d drdt y d drdt d drdt

  
    

 

 
   

  
        

  

 

So 1 Imy L . Hence Im ImZ L Q  . 

Since  Im Im 0L Q  we obtain 

Im ImZ L Q    

Now
 .

 

Hence dimker dimIm 1L Q  . 

Therefore, L  is a Fred Holm operator of index zero. 

Let P : X X  be defined by 

 ( ) (0), 0,1Px t x t    

Let 
 

dom kerp L p
L L


                                                 (16) 

 

The operator 1 : Im dom kerppK L L L   is the linear 

operator defined by 
 

2

0

1
(K )( ) ( ) ( )

2

t

y t t s y s ds    

  
By the Azela-Ascoli Theorem it can be shown that K is 

compact. Hence N  is compactL  .We recall that a 

linear mapping  
 

  :L DomLCX Z   

 
With 
 

 1(0)KerL L   

 
And                               
 

Im (DomL)L L   

 
Will be called a Fred Holm mapping if the following two 
conditions hold: 
 
(i) KerL has a finite dimension 
(ii) ImL is closed and has a finite codimension 
 
We also recall that the codimension of ImL is the 
dimension of Z/ImL that is, the dimension of the cokernol 
of L. When L is a Fred Holm mapping, its Fred Holm 
index is the integer. 
 
IndL = dimKorh – CodimImL 

 
 
 
 

We say that a mapping N is L-compact on   if the 

mapping QN: Z  is continuous, QN( ) is bounded, 

and Kp(I-Q)N: X  is compact, that is, it is 

continuous and Kp(I-Q)N( ) is relatively compact, 
where Kp: ImL   DomL  KorP is the inverse of 

restriction Lp to DomL  KerP, so that LKp = I and KpL = 
I – P. 
 
 
MAIN RESULTS 
 
Theorem 2   
 
Assume that 

 
 is continuous and has the 

decomposition 
 

( , , , ) ( , , , ) ( , , , )f t x y z g t x y z h t x y z           (17) 

 
such that 
 

(i) ( , , , ) 0xf t x y z   for  . 0,1a e t  and  

(ii) ( , , , ) 0yg t x y z    

(iii)  ( , , , )h t x y z M x y z


    for 0 1    

(iv) 

2
( , , , ) ( 1)( ( , , , ) ( )zf t x y z z D t x y z t   ) 

 

Where ( , , , )D t x y z  is bounded on bounded sets and 

 1 0,1L   

Then the boundary value Problem (1) to (2) has at least 

one solution in  2 0,1C  provided 

 
3

216 4
M







                                                (18) 

 
 
Proof 

 
Let L  be defined as in Equation (8). Then

  

We shall prove that the conditions of Theorem 1 are 

satisfied. To do this, we shall show that for (0,1) the 

set of solutions of the family of equations 

 
( ) ( , , , )x''' t f t x x' x''                                    (19) 

  
(1) (0) 0, (1) ( )x' x'' x x                          (20) 

  
is a priori bounded and then construct   accordingly. 



 
 
 
 

Let  2 0,1x C  satisfy Equation (19) to (20). Since 

(1) ( )x x   there exists ( ,1)   such that ( ) 0x'    

and from (1) ( ) 0x' x'    there exists 1 ( ,1)t  such 

that 1( ) 0x'' t  . Hence from condition (i) of Theorem 2 

we derive that if ( ) 0x t   then 

 

1 1

0 0
0 ( ) ( , ( ), ( ), ( )) 0

t t

x''' s ds f s x s x' s x'' s ds      

 

Which is a contradiction. If ( ) 0x t  we derive a similar 

contradiction. Hence there exists 0 1(0, )t t  such that 

0( ) 0x t  . Therefore for each  0,1t  we have 

 

2 2

22 2

4
x x'


                                                            (21) 

 

Multiplying Equation (19) by ( )x' t  and using the relation 

 

(1) (0) 0x' x''    

  
yields 
 

1 1 2

0 0
( ) ( )x' t x''' t dt x'' dt   . 

 
Hence 
  

1 1 12

0 0 0
( ) ( , , , ) ( ) ( , , , )x'' dt x' t g t x x' x'' dt x' t h t x x' x'' dt        

 
Using the Cauchy inequality 
 

2 2

2 2

a b
ab




    for 0    

 
we have 
 

1 1 12 2

0 0 0

1
( ) ( , , , ) ( , , , )

2 2
x' t h t x x' x'' dt x' dt h t x x' x'' dt




      

 
From condition (iii) we obtain the estimate 
 

 2 2 2 22( , , , ) 4h t x y z M x y z


     

 
Therefore from Holder’s inequality we get 
 

 
2

2 2 2 2 2

2 2 2 2 2

2

2

M
x'' x' x x' x''




      
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since (1) 0x'   we obtain 

 

 
2 2

2 2 2 2 2

2 2 2 2 2

1 2

2 8 2

M
x'' x' x x' x''

 



 
     
 

  (22) 

 
Using Equation (21) in (22) we get 
 

2 2 2
2 2 2

22 2 2

1 8 2 2

2 8 2

M M M
x'' x' x''

 

 

 
     
 

        (23) 

 

Since 0 1   we infer the existence of a constant 

1M  such that  

 

12 2
x' x'' M                                                  (24) 

 
Provided  
  

4 2 2 2 28 2

8 2

M M  

 
                                   (25) 

 

The choice 
22 4M    minimizes the right hand 

side of Equation (25) and the minimum value is 

22 4M  . Therefore Equation (25) holds provided 

 
3

216 4
M







                                              (26) 

 

Furthermore, since 0( ) (1) 0x t x'    for 0 ( ,1)t  , we 

get from Equation (24) that 
  

2 2, 0x x' M M
 
                                     (27) 

 
From condition (iv) of Theorem 2 we obtain 
  

2
( , , ) ( )

1

x"x'''
D t x x' t

x"
 


                                  (28) 

 

Integrating Equation (28) from 0 to t  we get 

  

 2

02 10
0

( ) ( ) 1
( ) 1

2( ) 1

t
t

e e

x" s x''' s
log x" ds log x" s D N

x" s


 
      

 


  (29) 

 

Where the constant D  depends only on 2M . 

Furthermore since (0) 0x"   we get from Equation (29) 

that 
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0

3

N
x" e M


                                                 (30) 

 
Let 
 

2 3max( , , ) max( , )x x x' x" M M A
  

     

It follows that x A . 

We take  :x X x A    then if 

domx L   then Lx Nx ,  0 1  . 

If kerx L   then x A  .   

Now if x A  we derive from condition (i) of Theorem 2 

that 
1 1

2 0

6
( , ,0,0) 0

( 2)( 1)

r

t
QNx f s A dsdrdt

 
 

       

and if x A   we get  0QNx    

Thus 0QNx   for kerx L  . 

Verifying Condition (2) of Theorem 1 
It is easily verified that 
 

( , ) (1 ) , 0 1H x x QNx          

 

is a homotopy from the identity I  to QN  on   and is 

such that ( , ) 0H x   on  0,1 ( ker )L   

Hence taking J  in Condition (3) of Theorem 1 to be the 

identity we get 
 

 
ker

deg , ker ,0 deg I, ker ,0 1
L

QN L L 
        

 
This completes the proof of Theorem 2. 
 
 
Remark 1 
 
The results of Theorem 2 still hold if condition (i) is 
replaced by 
 

( , , , ) 0xf t x y z  . 

 
Remark 2  
 
The results of Theorem 2 remain valid if assumption (i) is 
replaced by any of the following assumptions: 
 

(1) 
( , , , ) ( )h t x y z M x y z


    for 0 1    

provided 
48 16

M






 

  

(2) 
( , , , ) ( )h t x y z M x y z


    for 0 1    

 
 
 
 

provided 
1

M


  

(3) 
( , , , ) ( )

r p
h t x y z M x y z


    for 0 , , 1r p    

for some constant M . 
 
 
CONCLUSION 
 
In this paper, by using a continuation theorem based on 
coincidence degree theory, we obtained the existence of 
solution for a third order boundary value problem at 
resonance. For the research on the existence of solution 
of linear and non-linear boundary value problem. 
Coincidence degree theory plays an important role.  
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