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 An investigation into the dynamical behaviour of an inclined railway bridge traversed 

by uniform partially distributed moving railway vehicle, and supported by an elastic 

foundation is carried out. The effects of shear deformation and rotatory inertia are taken 
into consideration. The resulting coupled partially differential equations are solved 

using finite difference method. It was found that the foundation moduli and angle of 

inclination of the bridge have significant effect on the deflection of the bridge. 
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INTRODUCTION 

 

 An inclined railway bridge is a railway bridge set 

at an angle, not perpendicular to a horizontal plane. 

However, the work done is the same: Work = Force × 

Distance, and the distance is increased, whereas the 

force is decreased [Molinear et al (2012), Gbadeyan 

and Agarana (2014)]. In Elementary Physics, an object 

placed on a tilted surface (inclined plane) will often 

slide down the surface. The greater the tilt of the 

surface (i.e. the angle of inclination), the faster the rate 

at which the object will slide down it (Sofi, 2013). 

According to Newton’s laws of motion, a Railway 

vehicle on an inclined plane will continue to slide 

down the plane if there is no applied force to balance 

the forces acting on it, especially if the surface is 

frictionless or with minimal friction. There are always, 

at least, two forces namely: the force of gravity and 

the normal force, acting upon the railway vehicle 

positioned on an inclined bridge (Gerg and  Dukkipati, 

1984). The force of gravity acts in a downward 

direction, while the normal force acts in a direction 

perpendicular to the surface [Molinear et al (2012), 

Gbadeyan and Dada (2006)]. An inclined plane 

problem is in every way like any other net force 

problem with the sole exception that the surface has 

been tilted. An inclined plane therefore can be 

transformed into the form with which we are more 

comfortable, as illustrated in Figure 2. After this 

transformation, we can ignore the force of gravity 

since it has been replaced by its two components 

[Molinear (2012), Sofi (2013)]. We can now solve for 

the net force and the acceleration. For a railway 

vehicle mowing up the inclined bridge, the applied 

force must be greater than the component of its weight 

( 11F ) moving down the inclined bridge, to avoid 

sliding down. 

 

Problem Formulation: 

 A rectangular inclined railway bridge, modelled as 

rectangular inclined Mindlin plate, supported by 

Winkler foundation and traversed by a partially 

distributed moving railway vehicle is considered. M  

is the mass of the railway vehicle of rectangular 

dimension   and  ,  and , with one of its lines of 

symmetry moving along 
1y y  the plate is 

xL  by 
yL  

in dimension and let 
2

ut    , where u  is the 

velocity of the load.   is the angle of inclination, 
11F  

is the component of the weight of the railway vehicle 

parallel to the inclined plane and 
1F  is the component 

perpendicular to the inclined plane. 

 

Assumptions: 

 (i) The inclined bridge is of constant cross – 

section, (ii) the moving railway vehcile moves with a 

constant speed, (iii) The moving railway vehicle is 

guided in such a way that it keeps contact with the 

inclined bridge throughout the motion, (iv) The 

inclined bridge is continuously supported by a Winkler 

foundation, (v). The moving railway vehicle is 

uniformly partially distributed, (vi) The rectangular 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Covenant University Repository

https://core.ac.uk/display/32226468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


56                                                                 M.C. Agarana et al, 2015 

Australian Journal of Basic and Applied Sciences, 9(11) May 2015, Pages: 355-361 

Mindlin railway bridge is elastic, (vii) No damping in 

the system, (viii) Uniform gravitational field; (ix) 

Constant mass ( LM ) of the railway vehicle moving 

up the inclined plane. (x) Constant angle of inclination 

 

 

Initial Conditions: 

( , , 0) 0 ( , , 0)
W

W x y x y
t


 


 

 

Boundary Conditions: 
( , , t) ( , , ) ( , , ) 0,

for 0 and
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for 0 and
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  

 

  

 





 

 
 

Fig. 1: A moving railway vehicle on an inclined plane supported by Winkler foundation. 

 

 
 

Fig. 2: Transformed inclined plane to a flat plane. 

 

Problem Solution: 

 The set of dynamic equilibrium equations which 

govern the behaviour of rectangular inclined railway 

bridge supported by Winkler foundation and traversed 

by a partially distributed moving Railway vehicle can 

be written as [Gbadeyan and Dada (2006), Shadnam, 

(2001)]; 

 
2 2

2 2
( , , )

yx

f

QQ W W
h KW M P x y t

x y y f


  
    

   

                                                                               (3) 

2 23

3 1

2 212

xyx x x

x

MM dLh
Q h B

x y t dt

 


 
    

  

                                     (4) 

2 23

3 1

2 212

xy y y y

y

M M dLh
Q h B

y y t dt

 


  
    

  

                      (5) 

 where 
x  and y  are local rotations in the x   

and y directions respectively, 
xM and yM  are 

bending moments in the x   and y  directions 

respectively , xyM  is the twisting moment, 
xQ  and 

yQ  are the traversed shearing forces in x   and y  

directions respectively,  h  and 
1h  are thickness of the 

plate and load respectively,    and 
L  are the 

densities of the plate and the load per unit volume 

respectively. ( , , )W x y t  is the traverse displacement of 

the plate at time t , g  is acceleration due to gravity, 

 is the angle of inclination of the plate. The last terms 

in equations (4) and (5) account for inertia effects of 

the load in x   and y  directions respectively. 

Also, x yB B B , where 

2

2 2

( )

2

( )

1 ( ), for 0

( ) ( ), for

( ), for

0, for

x

x x

x

L

x L L

L

H x t

H x H x t
B

H x t

t

 


  
 


 







 






    


      
 

   




                          (6) 

1 12 2
( ) ( )yB H y y H y y     

 
             (7) 

 

( )H x  is the Heaviside function defined as: 
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1, 0

( ) 0.5, 0

0, 0

x

H x x

x




 
 

                                                                                                                                                         (8) 

 K  is the foundation of stiffness and 
fM  is the 

mass of the foundation. D is the flexural rigidity of 

the plane. The bending moments, shearing forces and 

twisting moment can be written as (Gbadeyan and 

Dada, 2006) 

yx

xM D
x y

 
   

  


                   (9) 

y x

yM D
y x

 
   

  

 


                (10) 

(1 )

2

yx

xy

D
M

y x

  
  

  


             (11) 

2

x x

W
Q K Gh

x

 
   

 
                (12) 

2

y y

W
Q K Gh

y

 
   

 


                    (13) 

and  

t

W
D

x





                         (14) 

 From equation (3), the moving load ( , , )P x y t  can 

be expressed as follows [Gbadeyan and Dada (2006), 

Gbadeyan and Agarana (2014)]: 

 From equation (4), the straight derivative 

2

2

xd

dt


  

can be expressed as follows [Gbadeyan and Dada 

(2006), Gbadeyan and Agarana (2014)]: 

 By virtue of the inclined plane, the weight of the 

railway vehicle (
LM ) has been resolved into its 

components. The component parallel to the plane is 

sinLM g  . Therefore, equation (12) becomes: 

 

 Application of the boundary conditions to the non-

dimensional form of equations (9) – (14) and (22) – 

(24) yields nine equations with nine unknown 

variables: 
xQ , 

yQ , 
xM , 

yM , xyM , 
,x t ,  

,y t , 
tD  

and W , from where the solutions are obtained. 

 A simply supported rectangular inclined plane 

(plate) has been taken as an illustrative example. If the 

edge 0y   of the railway bridge (modelled as a plate) 

is simply supported, the deflection W  along this edge 

must be zero. At the same time this edge rotate freely 

with respect to the x  axis, that is, there are no 

bending moments (
yM ) along this edge [Gbadeyan 

and Dada (2006), Gbadeyan and Agarana (2014)]. A 

numerical procedure, the finite difference method, can 

be used to solve the system of equations (7) – (12) and 

(20) – (22) (Gbadeyan and Agarana, 2014) 

 The resulting set of algebraic equations to be 

solved for the nine dependent variables may be written 

in matrix form as: 

 
2

2

1
( , , ) L L

W
P x y t M g M B

t

 
   

 

                                 (15) 

2 2 2

2 2 2 2D( 1) D( 1)

y yx x x x x x
M Md M M Mu uv

u u u u
x t t t y t xdt t v v

            
         

             

                                                 (16)     

 From equation (5), the straight derivative 

2

2

yd

dt


 can be expressed as follows (Gbadeyan and Agarana, 2014): 

2 2 2

2 2 2 2D( 1) D( 1)

y y y y y y x x
d M M M M Mu uv

u u u u
x t t t y t ydt t v v

           
         

            

                                                   (17) 

2

2

1
( , , ) cos sinL L L

W
P x y t M g M B M g

t
 



 
    
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                                                     (18) 

 Substituting equations (16), (17) and (18) into equations (3), (4) and (5) respectively, we have

1
cos sin

yx x

f L L L

QQ QW W W u
h KW M M g M M g B

x y y t t KGh T
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
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                        (19) 
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 
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                                                              (20) 

2 2 23
3

12 2 2 2 212 ( 1) ( 1)

xy y y y yx x x x x

y L

M M M M M M Mh u u
Q h u u u B

x y t x y t yt t y D D

   


 

             
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      (21) 

 Equations (19), (20) and (21) can be written as first order partial differential equations as follows
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, 2 2
cos sin

( 1) ( 1)

y yx t t t x xL T

f x t x L

dQ u MdQ D D D Q QM Du u
KW M g u u M u B h M g

dx dy t A t t Gh t x TD D


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 
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                                                                     (24) 

where 
,

x

x t
t









 and  
,

y

y t
t









. 

, 1 , 1 1, 1 1, 1 , , , 1 1, , 1, 2,3, , 1; 1, 2,3, , 1i j i j i j i j i i j i j i j kA S B S C S D S L i N j M                ' ' ' '                                                                    (25) 

 where  N  and M  are the number of the nodal points along x  and y  axes respectively, 

0 0 0 0

, , , 1, , 1 1 1, 1, 1 1, 1 1k i j i j i j i j i i j i j i jL K S L S M S N S P                                                                                                                   (26) 

 Each term in equations (25) and (26) is a 9 9  matrix. 

        

Effects Of The Angle Of Inclination On The Deflection Of The Bridge: 

 From equation (18), we have 

 
2

2

1
( , , ) cos sinL L L

W
P x y t M g M B M g

t
 



 
    

 
 

 For free vibration, ( , , ) 0P x y t  , which implies 

2

2

1
cos sin 0L L L

W
M g M B M g

t
 



 
    

 
                      (27)   

2

2

1
cos sinL L L

W
M g M B M g

t
 



 
   

 
                     (28)    

2

2
cos sin 0L L L

W
M g M B AM g

t
 

 
    

 
                     (29)    

2

2
sin cos

W A
g g

Bt
 

  
   

  
                                         (30) 

 For very small  , sin   and cos 1  . 

 Considering small inclination, (i.e., 0  ), equation (30) becomes: 
2

2

L

L

M W
g B M g

A t


 
   

 
                                              (31) 

where A  . 

 For numerical illustration purpose, let 10LM kg , 22A m , 9.81g  . If 1B  , then     

2

2
9.81

W

t


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
                (32) 

 That is, if   tends to 0, the acceleration of the deflection is approximately the acceleration due to gravity in 

the opposite direction. 

Integrating both sides of equation (32) twice, we have 
29.81t ct k W                                                                                                                                                (33)     

where c  and k  are constants. 

 Considering when   is not small, 
2

2
cos sinL

L

M W
g B M g

A t
 

 
   

 
                               (34)           

 which can be written as 
2

2
sin cos , 1

A W
g g B

B t
 


   


                               (35)           

 Specifically, for 90   , equation (35) becomes 
2

2

A W
g

B t


 


                                                                          (36)        

 So for 90    and for free vibration and letting 1B  , 90 , 2A   , we obtain 
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2

1 12gt c t k W                                                        (37)        

 where 
1c  and 

1k  are constants. 

 Now, for 90   , equation (35) can be written as 
2

2
(2sin cos )

W
g

t
 


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
                                         (38)         

 For forced vibration, we have 
2

2
cos sinL

L

M W
P g B M g

A t
 

 
    

 
                (39)        

where P is the applied force. 
2

2
( sin ) cosL

L

A W
P M g g

BM t
 


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
                                (40)      

 For numerical illustration purpose, let 10LM kg , 22A m , 
29.81g ms , 1B  , 0 90   , equation 

(40) becomes 

1
( 98.1sin ) 9.81cos

5
P                               (41)             

where 
2

2

W

t






 is the acceleration of the deflection. 

From equation (27), tank  , where  
1

2

Lk M B


 , is a constant. 

 

RESULTS AND DISCUSSION 

 

 The numerical calculations were carried out for a 

simply supported rectangular inclined plate (inclined 

railway bridge) resting on a Winkler foundation and 

subjected to a moving railway vehicle (load.).    

Damping effect was neglected. For specific values of 

other parameters, deflection of the bridge is calculated 

and plotted (in Figure 3) as a function of time. It 

shows the deflection of the railway bridge for various 

values of velocity u . It can be seen that the response 

maximum amplitude of the bridge decreases as 

velocity decreases. In Figure 4, acceleration of the 

deflection of the bridge,  , without an applied force, 

is plotted against time. We can see that  increases 

gently, then later sharply with time, at a given value of 

angle of inclination,  , as 
1k increases. Figure 5 

shows that deflection of the railway bridge decreases 

with time if there is no applied load. In Figure 6 we 

plotted the deflection of the bridge under an applied 

load against time. It is clear that deflection increases as 

the applied load increases. Similarly, Figure 7 shows 

that the acceleration of the deflection of the bridge at 

different values of applied load decreases as with an 

increase in the applied load. Also, Figures 8 and 9 

represent instantaneous dynamic response of the 

railway bridge, at any instant of time and at a given 

angle of inclination, for both forced and free vibration 

cases. The figures show, respectively, that deflection 

of the bridge decreases with an increase in time for 

forced vibration case, while the deflection increases 

with an increase in time for the free vibration case, at a 

given angle of inclination. 

 

 
 

Fig. 3: Deflection of the bridge at different values of velocity and time. 
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Fig. 4: Acceleration of deflection of inclined plate at various values of k . 

 

 
 

Fig. 5: Deflection of the bridge without applied load at given inclination angles. 

 

 
 

Fig. 6: Deflection of bridge at various values of applied load and different time. 

 

 
 

Fig. 7: Acceleration of deflection of the bridge at different values of applied load and different angles of      

      inclination. 
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Fig. 8: Deflection of the railway bridge for forced vibration, at any instant of time and at a given angle of      

      inclination. 

 

 
 

Fig. 9: Deflection of the railway bridge for free vibration, at any instant of time and at a given angle of inclination. 

 

Conclusions: 

 The structure of interest was an inclined railway 

bridge on Winkler elastic foundation, under the 

influence of a uniform partially distributed moving 

railway vehicle). The problem was to determine the 

dynamic response of the whole system. Finite 

difference technique was adopted in solving the 

resulting first order coupled partial differential 

equations obtained from governing equations for the 

simply supported bridge. The study has contributed to 

scientific knowledge by showing that the angle of 

inclination of an incline railway bridge in addition to 

the elastic subgrade on which the bridge rests, have a 

significance effect on the dynamic response of the 

bridge to a partially distributed moving railway 

vehicle. Also, the influences of the moving railway 

vehicle speed and total mass of the moving railway 

vehicle on the dynamic response of the inclined bridge 

are significant in most cases. 
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