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Abstract 

 

In this study, a simple and Taylor series-based method known as differential 

transformation method (DTM) is used to solve initial-value problems 
involving third-order ordinary differential equations. We introduced briefly 

the concept of DTM and applied it to obtain the solution of three numerical 

examples for demonstration. The results are compared with the existing ones 

in literature and it is concluded that results yielded by DTM converge to the 
analytical solution more rapidly with few terms. 

 

Keywords: Ordinary differential equations, Differential transformation 

method, Initial value problems (IVP) 
 

 

1.0 INTRODUCTION 

Most phenomena in sciences, economics, management, engineering etc. can be 
modelled by differential and integral theories. Interestingly, solutions to most of the 

differential equations arising from such models do not have analytic solutions, 

necessitating the development of numerical techniques. 

However, most of the numerical methods that exist in literature require discretization, 
perturbation, linearization or complex computations. Some of the numerical methods 

used in literature include; Adomian Decomposition method in [1-3], modified 

Adomian decomposition method [4-5], variational Iteration method [6],homotopy 

perturbation method [7-8].Okuboye developed seven-step block method in [9]. 
The differential transform method proposed in this work is easy to apply; it requires 

no linearizationor discretization. It is an iterative technique for obtaining analytic 
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Taylor series solution of differential equations. The method was first introduced by 
Zhou [10] to solve linear and nonlinear initial value problems in electrical circuits. It 

has been widely applied to numerous problems, some of which are; Biazar et al for 

Riccati differential equations in [11], Opanuga et al in [12], Edeki et al in [13]. 
Gbadeyan and Agboola [14] used DTM to solve vibration problem. The three 

examples solved in this present work gave the exact solution and the results are 

presented in tables in comparison with the three-step block method. 

 

 

2.0 FUNDAMENTALS OF DIFFERENTIAL TRANSFORM METHOD 

Consider a function ( )g x whose differential transform can be defined as follows, 
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In equation (1), ( )g x  is the original function and ( )G x  is the transformed function. 

At about 0x , the Taylor series is defined as, 
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The inverse differential transform is expressed as, 
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(3) 

Combining equations (1) and (2), we derive the following mathematical operations: 

(i) If ( ) ( ) ( ),g x p x r x  then ( ) ( ) ( )G k P k R k  

(ii) If ( ) ( ),g x p x  then ( ) ( )G k P k , is a constant. 

(iii) If 
( )

( ) ,
n
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(iv) If ( ) sin( ),g x x then ( ) sin
! 2

k k
G k

k
,  and  are constants 

(v) If ( ) xg x e , then ( )
!

k

G k
k

, where is a constant 

 

 

3.0NUMERICAL EXAMPLES 

We illustrate the method by the following problems 

 

Example1: 

Consider ( )u t u ,[7] (4) 

The initial conditions are: 

(0) 1,   (0) 1,   (0) 1u u u  (5) 

While the theoretical solution of equation (4) is given as 

( ) tu t e  (6) 
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Taking the differential transform of equation (4), we obtain 

( )
( 3)

( 3)!

U k
U k

k   

(7) 

andthe transformation of the initial conditions yield 

1
(0) 1,   (1) 1,   (2)

2
U U U

 
(8) 

Substitutingequation (8) in (7), we obtain the following values 

1 1 1
(3) ,       (4) ,          (5) ,

6 24 120

1 1 1
(6) ,    (7) ,    (8) ,

720 5040 40320

U U U

U U U
 

(9) 

The series solution up to 
80( )t is obtained as 

2 3 4 5 6 7
8( ) 1 0( )

2 6 24 120 720 5040

t t t t t t
u t t t

 
(10) 

 

Table 1: Numerical result for example 1 

 

t  

DTM 

 

EXACT 

DTM 

ERROR 

ERROR IN 

KUBOYE [3] 

0.1 0.904837418035960 0.904837418035960 0.000000000000000 2.138401E-12 

0.2 0.818730753077982 0.818730753077982 0.000000000000000 6.055156E-13 

0.3 0.740818220681718 0.740818220681718 0.000000000000000 7.395751E-12 

0.4 0.670320046035639 0.670320046035639 0.000000000000000 2.158163E-12 

0.5 0.606530659712633 0.606530659712633 0.000000000000000 1.484579E-11 

0.6 0.548811636094026 0.548811636094026 0.000000000000000 1.098521E-11 

0.7 0.496585303791410 0.496585303791410 0.000000000000000 3.142886E-11 

0.8 0.449328964117222 0.449328964117222 0.000000000000000 2.309530E-11 

0.9 0.406569659740599 0.406569659740599 0.000000000000000 5.154149E-11 

1 0.367879441171442 0.367879441171442 0.000000000000000 8.200535E-11 

 

 

Example 2: 

Next, we solve ( ) tu t e , 0 t 1 , [7] (11) 

Subject to the boundary conditions 

(0) 3,   (0) 1,   (0) 5u u u  (12) 

The exact solution of (11) is 
2( ) 2 2 tu t t e  (13) 

Transforming equation (11) we obtain 

1 1
( 3) .

( 3)! !
U k

k k  

(14) 

and the differential transform of the initial conditions give 
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5
(0) 3,   (1) 1,   (2)

2
U U U

 
(15) 

Applying the transformed initial conditions (15) in equation (14), we obtain the 

following 

1 1 1
(3) ,       (4) ,       (5) ,

6 24 120

1 1 1
(6) ,   (7) ,   (8)

720 5040 40320

U U U

U U U
 

 

(16) 

We finally obtain the series solution up to 
80( )t  as 

2 3 4 5 6 7
8( ) 1 ( )

2 6 24 120 720 5040

t t t t t t
u t t t

 
(17) 

 

Table 2: Numerical result for example 2 

 

t  

DTM 

 

EXACT 

DTM 

ERROR 

ERROR IN 

OKUBOYE[13] 

0.1 3.125170918075650 3.125170918075650 0.000000000000000 2.531308E-14 

0.2 3.301402758160170 3.301402758160170 0.000000000000000 1.612044E-13 

0.3 3.529858807576000 3.529858807576000 0.000000000000000 4.023448E-13 

0.4 3.811824697641270 3.811824697641270 0.000000000000000 7.536194E-13 

0.5 4.148721270700130 4.148721270700130 0.000000000000000 1.212364E-12 

0.6 4.542118800390510 4.542118800390510 0.000000000000000 1.780798E-12 

0.7 4.993752707470480 4.993752707470480 0.000000000000000 2.456702E-12 

0.8 5.505540928492470 5.505540928492470 0.000000000000000 2.212097E-11 

0.9 6.079603111156950 6.079603111156950 0.000000000000000 5.231993E-11 

1.0 6.718281828459050 6.718281828459040 0.000000000000000 8.860113E-11 

 

 

Example3: 

( ) 3sinu t t , 0 1t  [7] (18) 

With the initial conditions given as 

(0) 2,   (0) 0,   (0) 2u u u  (19) 

Theoretical solution is given as 
2

( ) 3cos 2
2

t
u t t

 
(20) 

Transforming equations (18) and (19) we have 

1 3
( 3) sin

( 3)! ! 2

k
U k

k k  

(21) 

and 

(0) 1,   (1) 0,   (2) 2U U U  (22) 

Substituting equation (22) in (21) yields 
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Table 3: Numerical result for example3 

 

t DTM EXACT DTM 

ERROR 

ERROR IN 

OKUBOYE[3] 

0.1 0.990012495834077 0.990012495834077 0.000000000000000 1.743050E-14 

0.2 0.960199733523725 0.960199733523725 0.000000000000000 1.082467E-13 

0.3 0.911009467376818 0.911009467376818 0.000000000000000 2.711165E-13 

0.4 0.843182982008654 0.843182982008655 0.000000000000001 5.079270E-13 

0.5 0.757747685671099 0.757747685671118 0.000000000000019 8.164580E-13 

0.6 0.656006844728792 0.656006844729035 0.000000000000243 1.199707E-12 

0.7 0.539526561851364 0.539526561853465 0.000000000002101 1.654343E-12 

0.8 0.410120128027871 0.410120128041497 0.000000000013626 1.674639E-10 

0.9 0.269829904741115 0.269829904811993 0.000000000070878 3.336392E-10 

1.0 0.120906917294566 0.120906917604419 0.000000000309854 5.001723E-10 

 

 

1 1
(3) 0,    (4) ,         (5) 0,     (6) ,

8 240

1 1
(7) 0,   (8) ,  (9) 0,    (10) ,

13440 1209600

U U U U

U U U U

 (23) 

The series solution up to
140( )t is obtained as 

4 6 8 10 12
2 14( ) 1 ( )

8 240 13440 1209600 159667200

t t t t t
u t t t

 
(24) 

 

 

4.0 CONCLUSION 

In this work, we applied DTM for the solution of initial value problems in the third-

order ordinary differential equation. Three examples are provided to illustrate the 
method. The obtained results agree with the conclusion made by several researchers 

that DTM is easy and simple to apply, it reduces the computational difficulties of 

other traditional methods. We then conclude that DTM is an excellent method for the 

solution initial value problem in the third-order. 
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