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Abstract 

 

Various transport structures, ranging from railways, roads and bridges to space vehicles and 

submarines, are usually subjected to moving loads which vary in both space and time.  All branches of 

transport have experienced great advances, characterised by increasing high speed and weights of 

railway vehicles. Structures and media on which the railway vehicles move have, therefore, been 

subjected to vibration and dynamic stress more than ever before. The motivation for this paper is from 

the observation that most of the works available in the literature are concerned with plates for which 

the effects of both rotatory inertia and shear deformation are neglected. Also the plates are assumed not 

resting on any foundation. In this paper, the dynamic response of Mindlin plate, continuously supported 

by Pasternak foundation and traversed by moving load is investigated. Finite difference method is used 

to transform the set of coupled partial differential equations to a set of algebraic equations. The desired 

solutions are obtained with the aid of computer programs developed in conjunction with MATLAB. 

This shows that the elastic foundation, rotatory inertia and shear deformation have significant effect on 

the dynamic response of the plate, to the moving load. In particular, it is observed that the deflection of 

the plate decreases as the foundation moduli increase. 

 

Keywords: Mindlin plate, finite difference method, dynamic response, Pasternak foundation, moving 

load. 

 

1. Introduction 

 

The dynamic analysis of an elastic system (plate) which supports moving loads is fundamental in the 

design of highway and railway bridges. A few studies concerning dynamic analysis of rectangular 

Mindlin plates on elastic foundation have been carried out. The problem of assessing the response of 

elastic structures neglecting the effects of Shear deformation and rotatory inertia, with or without, 

elastic foundation has continued to motivate a considerable number of researches [1-7]. However, such 

assumption does not realistically model the physical situations. In an attempt to model such physical 

situations in realistic manner, one has to consider the effects of Shear deformation and rotatory inertia 

on the response of the plate to a moving load. Gborashi [8] has investigated many cases of moving load 

problems. The vibration of an Euler Bernoulli beam traversed by uniform partially distributed moving 

mass has, also, been studied. In addition, Gbadeyan and Dada [10] studied the dynamic response of 

elastic plate on Pasternak type of foundation under distributed loads. The same authors extended the 

work by considering the dynamic response of a Mindlin elastic rectangular plate subjected to 

distributed moving load. Most of the publications [1-4] on moving load dynamic response of isotopic 

plate to the best knowledge of the authors, involved either non – Mindlin or plates that are not resting 

on any elastic foundation. The present paper consider  the dynamic response of Mindlin elastic type of 

plates under the influence of a partially uniform distributed moving load and supported by a Pasternak 

foundation. A set of partial differential equations satisfying the Mindlin elastic rectangular plate, resting 

on Pasternak foundation and subjected to a partially distributed moving load was transformed into its 

equivalent non – dimensional form. Using the finite difference technique, a new set of linear algebraic 
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equations was obtained and subsequently solved in order to present the results. Numerical discussions 

of bending and Shear deformations are also given. 

 

2. Problem Definition 

 

A rectangular Mindlin plate supported by Pasternak foundation, and traversed by a partially distributed 

moving load is considered. U is the velocity of a load (ML) of rectangular dimensions 𝜺 by 𝝁 with one 

of its lines of symmetry moving along y = y1, the plate is Lx by Ly in dimensions and 𝝃 = UT + 𝜺 𝟐⁄  as 

shown in fig. 1. 

 

2.1  Assumptions  

 

W(x,y,t) = W = deflection of the Mindlin plate  

No damping in the system 

Uniform gravitational field, g. 

M = constant mass moving on the plate 

 

 
 

Figure 1.  A moving  rectangular load on a Mindlin  plate supported by pasternak foundation 

 

2.2. Initial Conditions 

 

W (x, y, o) = 0 = 
  

  
 (x, y, 0) 

 

2.3. Boundary Conditions 

 

W(x,y,t) = Mx (x,y,t) = 𝝋y(x,y,t) = 0, 

for x=0 and x=a 

W(x,y,t) = My (x,y,t) = 𝝋x(x,y,t) = 0, 

for y=0 and y=b 

 

The non – dimensional boundary conditions: 

dt = mx = 𝝋yt = 0 (at x=0 and x = 1) 

dt = my = 𝝋yt = 0 (at y=0 and y = 𝑳𝒙 𝑳𝒚⁄ ) 

 

3. Problem Solution 

 

The set of dynamic equilibrium equations which governs behaviour of Mindlin plate supported by 

Pasternak foundation, and traversed by a partially distributed moving load can be written as [10, 11]: 

 

Qx - 
𝝏𝑴𝒙

𝝏𝒙
 - 
𝝏𝑴𝒙𝒚

𝝏𝒚
 = 

𝝆𝒉𝟑

𝟏𝟐
 
𝝏𝟐𝝋𝒙

𝝏𝑻𝟐
 + 

𝝆𝑳𝒉𝟏
𝟑

𝟏𝟐
 0
𝝏𝟐𝝋𝒙

𝝏𝑻𝟐
+  𝐔

𝝏𝟐𝝋𝒙

𝝏𝒙𝝏𝑻
𝟐 + 

𝐔

𝑫(𝝊𝟐−𝟏)
 2
𝝏𝑴𝒙

𝝏𝑻
+ 𝐔

𝝏𝑴𝒙

𝝏𝒙
3 −  

𝐔𝛖

𝑫(𝝊𝟐−𝟏)
*
𝝏𝑴𝒚

𝝏𝑻
+ 𝐔

𝝏𝑴𝒚

𝝏𝒚
+1B                                               

(1) 

 

Qy - 
𝝏𝑴𝒙𝒚

𝝏𝒙
 - 

𝝏𝑴𝒚

𝝏𝒚
 = 

𝝆𝒉𝟑

𝟏𝟐
 
𝝏𝟐𝝋𝒙

𝝏𝑻𝟐
 + 

𝝆𝑳𝒉𝟏
𝟑

𝟏𝟐
 0

𝝏𝟐𝝋𝒙

𝝏𝑻𝟐
+  𝐔

𝝏𝟐𝝋𝒙

𝝏𝒙𝝏𝑻
𝟐 + 

𝐔

𝑫(𝝊𝟐−𝟏)
 2
𝝏𝑴𝒙

𝝏𝑻
+ 𝐔

𝝏𝑴𝒙

𝝏𝒙
3 −  

𝐔𝛖

𝑫(𝝊𝟐−𝟏)
*
𝝏𝑴𝒙

𝝏𝑻
+

𝐔
𝝏𝑴𝒙

𝝏𝒙
+1B                                                   (2)                                                                                                
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𝝏𝐐𝒙

𝝏𝒙
 + 

𝝏𝐐𝒚

𝝏𝒚
 + kW + (Mf –𝝆𝒉 ) 

𝝏𝐃𝐓

𝝏𝑻
 + 

𝐌𝑳

𝐀
 [𝒈 + 

𝝏𝐃𝐓

𝝏𝐓
+  𝐔

𝝏𝐃𝐓

𝝏𝐓
+ 𝐆𝟏 .

𝝏𝐃𝒙

𝝏𝒙
+

𝝏𝐃𝒚

𝝏𝒚
/ + *

𝝏𝛙𝒙

𝝏𝑻
+

𝐔

𝑫(𝝊𝟐−𝟏)
𝐌𝒙 −

  
𝐔𝛖

𝑫(𝝊𝟐−𝟏)
𝐌𝒚+ − 

𝐔

∝𝑮𝒉
*
𝝏𝐐𝒙

𝝏𝑻
+ 𝐔

𝝏𝐐𝒙

𝝏𝒙
+]B = 𝝆h

𝝏𝟐𝝋𝒙

𝝏𝑻𝟐
                                            (3) 

 

where 𝝍x and 𝝍y are local rotations in the x – and y – directions respectively. Mx and My bending 

moments in the x- and y- directions respectively, Mxy is the twitting moments, Qx and Qy are the 

traversed Shearing forces in x – and y – directions respectively, h and h1 are thickness of the plate  and 

load respectively, 𝝆 and 𝝆L are the densities of the plate and the load per unit volume respectively 

W(x,y,T) is the traverse displacement of the plate at time T, P(x,y,T) is the applied dynamic load (force) 

and the last terms in equation (1) and (2) account for inertia effects of the load in x – and y – directions 

respectively. It is the velocity of a load (ML) of rectangular dimensions E by U with one of its lines of 

symmetry moving along Y=Y1 .The plate is LX and LY in dimensions and ξ= UT + 𝜺 𝟐⁄  as shown in 

figure1, also B = BX BY, where  𝐵𝑥 = 

 

 

 1 − 𝐻 .𝑥 − 𝜉 +
𝜀

2
/………0 < 1 <

𝜀

2
 

𝐻 .𝑥 − 𝜉 +
𝜀

2
/ − 𝐻 .𝑥 − 𝜉 −

𝜀

2
/…… . .

𝜀

2
< 1 <

𝐿𝑥
𝑢

 

𝐻 .𝜉 +
𝜀

2
/…… .

𝐿𝑥
𝑢
≤ 𝑇 < (𝐿𝑥 + 𝜀)/𝑈 

0…… . (𝐿𝑥 + 𝜀)/𝑈 ≤ 𝑇 

 

 

𝐵𝑦 = 𝐻 .𝑦 − 𝑦1 +
𝜇

2
/ − 𝐻(𝑦 − 𝑦1 −

𝜇

2
) 

 

H (x) is the Heaviside function defined as  

 

      1     x>0 

H(x) =      0.5     x=0 

0       x<0 

 

 

K is the foundation stiffness, G1 is the foundation Shear modulus and Mf is the mass of the foundation. 

The equations for the bending moments, twisting moments and Shear force are given as follows [5]: 

 

Mx = -D (
𝝏𝛙𝒙

𝝏𝒙
 + 𝝊

𝝏𝛙𝒚

𝝏𝒚
)                                                                (4) 

My = -D (
𝝏𝛙𝒚

𝝏𝒚
 + 𝝊

𝝏𝛙𝒙

𝝏𝒙
)                                                                (5) 

Mxy = (
𝟏−𝝊

𝟐
) D (

𝝏𝛙𝒙

𝝏𝒙
 + 𝝊

𝝏𝛙𝒚

𝝏𝒚
)                                                           (6) 

Qx = - K
2
Gh (𝛙𝒙 - 

𝝏𝐖

𝝏𝒙
)                                                                  (7) 

Qy = - K
2
Gh (𝛙𝒚 - 

𝝏𝐖

𝝏𝒚
)                                                               (8) 

 
𝝏𝐖

𝝏𝐓
 = DT                                                                       (9) 

 
𝝏𝐖

𝝏𝐱
 = Dx                                                                     (10) 

 
𝝏𝐖

𝝏𝐲
 = Dy                                                                     (11) 

 

Where G is the modulus of rigidity of the plate, D is the flexural rigidity of the plate defined by D = 
𝟏

𝟏𝟐
Eh

3
 (1-𝝊𝟐) = Gh

3
/6(1-𝝊) for isotopic plate K

2
 is the Shear correction factor and 𝝊 is the Poisson’s 

ratio of the plate. 

 

3.1 Non – Dimensional Form  

 

The dimensional forms of the first order partial differential equations version of the above system of 

dynamic equilibrium second order partial differential equation which governs behaviour of Mindlin 
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plate supported by Pasternak foundation, and traverse by a partially distributed moving load can be 

written as: 

 

(𝜶Gh)qx + (-𝜶ghr - 
𝛒𝐋𝐡𝟏

𝟑𝐫𝟑𝐜𝟐𝐔𝟐𝛂𝐆𝐡

𝟏𝟐𝐋𝐱𝐃(𝛖
𝟐−𝟏)

 Bn) 
𝝏𝐌𝒙

𝝏𝒙
 - (𝜶Ghr) 

𝝏𝐌𝒙𝒚

𝝏𝒚
 - (

𝛒𝐋𝐡𝟏
𝟑𝐫𝟑𝐜𝟐

𝟏𝟐𝐋𝐱
𝟐  Bn + 

𝛒𝐋𝐡𝟏
𝟑𝐫𝟒𝐜𝟑𝐔 𝐁𝐧

𝟏𝟐𝐋𝐱
𝟐  + 

𝛒𝐋𝐡𝟏
𝟑𝐫𝟑𝐜𝟐

𝟏𝟐𝐋𝐱
𝟐 ) 

𝝏𝛙𝒙𝒕

𝝏𝒕
 - 

(
𝐁𝐧𝛒𝐋𝐡𝟏

𝟑𝐫𝟑𝐜𝟐𝐔𝛂𝐆𝐡

𝟏𝟐𝐋𝐱𝐃(𝛖
𝟐−𝟏)

) 
𝝏𝐌𝒙

𝝏𝒕
 + (

𝛒𝐋𝐡𝟏
𝟑𝐫𝟑𝐜𝟐𝐔𝛂𝐆𝐡 𝐁𝐧

𝟏𝟐𝐃(𝛖𝟐−𝟏)
) 
𝝏𝐌𝒚

𝝏𝒕
 + (

𝛒𝐋𝐡𝟏
𝟑𝐫𝟑𝐜𝟐𝐔𝛂𝐆𝐡 𝐁𝐧

𝟏𝟐𝐃(𝛖𝟐−𝟏)
) 
𝝏𝐌𝒙𝒚

𝝏𝒙
 = 0          (12) 

 

(𝜶Gh)qy - (𝜶Ghr) 
𝝏𝐌𝒙𝒚

𝝏𝒙
 + (-𝜶Ghr - 

𝛒𝐋𝐡𝟏
𝟑𝐫𝟑𝐜𝟐𝐔𝟐𝛂𝐆𝐡 𝐁𝐧

𝟏𝟐𝐃(𝛖𝟐−𝟏)
) 
𝝏𝐌𝒙𝒚

𝝏𝒚
 – (

𝐫𝟑𝐡𝟐𝐜𝟐𝛒

𝟏𝟐𝐋𝐱
𝟐  + 

𝐁𝐧 𝛒𝐋𝐡𝟏
𝟑𝐫𝟑𝐜𝟐

𝟏𝟐𝐋𝐱
𝟐 ) 

𝝏𝛙𝒚𝒕

𝝏𝒕
 (
𝛒𝐋𝐡𝟏

𝟑𝐫𝟑𝐜𝟐𝐔

𝟏𝟐𝐋𝐱
𝟐 Bn) 

𝝏𝛙𝒚

𝝏𝒚
  

- (
𝛒𝐋𝐡𝟏

𝟑𝐫𝟑𝐜𝟐𝐔𝛂𝐆𝐡

𝟏𝟐𝐋𝐱𝐃(𝛖
𝟐−𝟏)

) 
𝝏𝐌𝒚

𝝏𝒕
 + (

𝛒𝐋𝐡𝟏
𝟑𝐫𝟑𝐜𝟐𝐔𝛖𝛂𝐆𝐡 

𝟏𝟐𝐃(𝛖𝟐−𝟏)
Bn) 

𝝏𝐌𝒙

𝝏𝒕
 + 

𝛒𝐋𝐡𝟏
𝟑𝐫𝟑𝐜𝟐𝐔𝟐𝛖𝛂𝐆𝐡

𝟏𝟐𝐃(𝛖𝟐−𝟏)
Bn) 

𝝏𝐌𝒙

𝝏𝒚
 = 0   (13) 

 

(
𝜶𝐆𝐡

𝐋𝐱
 – 

𝝆𝐡𝐦𝐫𝟐𝐜𝟐𝐮𝟐

𝐋𝐱𝛂
Bn) 

𝝏𝐪𝒙

𝝏𝒙
 + (

𝜶𝐆𝐡

𝐋𝐱
) 
𝝏𝐪𝒚

𝝏𝒚
  + (kh) w + (

𝛒𝐡𝟐𝐫𝟐𝐜𝟐

𝐋𝐱
𝟐  + 

𝝆𝐡𝟐𝐦𝐫𝟐𝐜𝟐

𝛂𝐋𝐱
𝟐 Bn + 

𝝆𝐡𝟐𝐦𝐫𝟑𝐜𝟑𝐮

𝛂𝐋𝐱
𝟐 Bn) 

𝝏𝐝𝒕

𝝏𝒕
 + (G1

𝐋𝐱

𝒉
) 
𝝏𝐝𝒙

𝝏𝒙
 + 

(G1

𝐋𝐱

𝒉
) 
𝝏𝐝𝒚

𝝏𝒚
 +

𝝆𝐡𝐦𝐫𝟑𝐜𝟐

𝛂𝐋𝐱
𝐁𝐧 ) gn + (

𝝆𝐡𝐦𝐫𝟑𝐜𝟐𝐮

𝛂𝐋𝐱
𝐁𝐧 )𝝍𝒙𝒕+ (

𝝆𝐡𝟐𝐦𝐫𝟐𝐜𝐮𝛂𝐆𝐋𝐱𝐁𝐧

𝛂𝐃(𝛖𝟐−𝟏)
)  𝐌𝒙  - (

𝝆𝐡𝟐𝐫𝟑𝐜𝟐𝐮𝟐𝛖𝛂𝐆𝐋𝐱

𝛂𝐃(𝛖𝟐−𝟏)
Bn)  𝐌𝒚 –

(
𝝆𝐡𝐦𝐫𝟑𝐜𝟐𝐮

𝛂𝐋𝐱
) 
𝝏𝐪𝒙

𝝏𝒕
=0                                    (14)  

 
𝝏𝐦𝒙

𝝏𝒕
=-N1

𝝏𝛙𝒙𝒕

𝝏𝒕
- 𝝊N1 

𝝏𝛙𝒚𝒕

𝝏𝒚
                                                               (15) 

 
𝝏𝐦𝒚

𝝏𝒕
=-N1

𝝏𝛙𝒚𝒕

𝝏𝒚
- 𝝊N1 

𝝏𝛙𝒙𝒕

𝝏𝒙
                                                               (16) 

 
𝝏𝐦𝒙𝒚

𝝏𝒕
=-N1(

𝟏−𝝊

𝟐
)(
𝝏𝛙𝒙𝒕

𝝏𝒚
 + 

𝝏𝛙𝒚𝒕

𝝏𝒙
)                                                          (17) 

 
𝝏𝒒𝒙

𝝏𝒕
=r(𝛙xt

𝝏𝐝𝒕

𝝏𝒙
)                                                                       (18) 

 
𝝏𝒒𝒚

𝝏𝒕
=r(𝛙xt

𝝏𝐝𝒕

𝝏𝒚
)                                                                       (19) 

 

dt=
𝝏𝒘

𝝏𝒕
                                                                             (20) 

 

dx=
𝝏𝒘

𝝏𝒙
                                                                             (21) 

 

dy=
𝝏𝒘

𝝏𝒚
                                                                             (22) 

 

The set of first order partial differential equations (12) - (22), where 

N1 = 
𝐃

𝜶𝐆𝐡𝐋𝒙
𝟐  

are the simplified partial differential equations to be solved for the following eleven dependent 

variables Mx, My, Mxy, qx, qy, 𝛙xt, 𝛙xt, w, dt, dx and dy. A numerical procedure, finite difference 

method, can be used to solve the system of equations (12) - (22) [10] Rearranging them in matrix form 

results in 

 Ri, j+1 S`i, j+1 + Pi+1, j+1, S`i+1, j+1 = - Ti,j S`i,j – Yi+1, j Si+1,j + Zk       (23) 

i=1, 2, 3… N-1;       j = 1, 2, 3… M -1 

Where N and M are the number of the nodal points along x and y axes respectively, Zk is a matrix 

representing the right hand side of equation (12) – (22) defined by 

 

Zk=Ai,jS°I,j+Pi,j+1S
o
i,j+1+Gi+1,jS

o
i+1,j+Di+1,j+1S

o
i+1,j+1+E1               (24) 

 

Each term in equations (23) and (24) is an 11 x 11 matrix 

 

4. Kirchhoff, Shear and rotating plate resting on Pasternak foundation. 

 

In order to compare the effects of Shear deformation and rotatory inertia on the deflection of plate 

under a moving load supported by Pasternak foundation, the following types of plates are considered; 
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the Shear plate (no rotatory inertia effect), the rotatory plate (no Shear deformation effect), and 

Kirchhoff plate (non – Mindlin plate) [5,10] 

 

5. Results Discussion: 

 

The numerical calculations were carried out for a simply supported rectangular plate resting on a 

Pasternak foundation and subject to a moving load. Damping effect was neglected. 

 

In figure 2, the dimensionless time history of the mid – plate deflections for the Mindlin, Shear, 

rotatory and Kirchhoff plate cases for K =100, G = 0.09, Arp = 0.02, Up = 1.5 are presented. It is 

observed that the shear plate produces the maximum deflection for fixed values of K, G, U and Arp. It 

is also observed that there is no clear cut difference between the deflection of non – Mindlin and 

rotatory plates. In other words, the effect of rotatory inertia is minimal when compared with the effect 

of shear deformation.  

 

In figure 3, the deflection of the plate for different values of K and G, keeping the contact area, Arp, 

constant, is plotted as a function of time. Evidently, it can be noticed that the response amplitude of the 

plate continuously supported by a subgrade is less than that of the plate not resting on any elastic 

subgrade (i:e. K=0, G=0). It can also be seen that as K and G increase the response amplitude 

decreases. Deflection profiles of the Mindlin plate for various values of the contact area Arp 

(Arp=0.02, 0.125 and 0.5)  are shown in figures 4, 5 and 6 respectively. In figure 4, the response curves 

of the plate is shown for K=0 and with the contact area Arp, as a parameter. The corresponding profiles 

for K=100 and K=200 are depicted in figures 5 and figure 6 respectively. It is found from these figures 

that as Arp increases, the response maximum amplitude increases for fixed values of K and G. For 

various values of the foundation reaction modulus K, the deflection of the plate for the various values 

of the subgrade’s shear modulus G (i.e G=0, G=0.09 and G=0.9), considered were calculated and are 

plotted in figures 7, 8 and 9 as function of time. Specifically in figure 7, the deflection profile of the  

Mindlin plate is depicted  for K=0 and with the subgrade’s shear modulus G as a parameter, The 

corresponding curves for K=100 and 200 are shown in figures 8 and 9 respectively. Clearly, from the 

figures, the response maximum amplitude decreases with an increase in the value of G for fixed values 

of K, Arp and Up.  

 

 

 
 

Fig. 2: Deflection of Mindlin, Non-Mindlin, Rotatory and Shear Plates for 

𝑲 = 𝟏𝟎𝟎, 𝑮 = 𝟎. 𝟎𝟗, 𝑨𝒓𝒑 = 𝟎. 𝟎𝟐 and  𝒗 = 𝟏. 𝟓 at various values of time. 
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Fig.3: Deflection of the plates at 𝑨𝒓𝒑 = 𝟎. 𝟓 and different values of 𝑲, 𝑮 at 

various values of time. 

 

 

 

 

 

 

 

 
Fig. 4: Deflection of the Plates at 𝑲 = 𝟎, 𝑮 = 𝟎. 𝟎𝟗 for various values of 𝑨𝒓𝒑 

and time. 
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Fig. 5: Deflection of the plates at 𝑲 = 𝟏𝟎𝟎, 𝑮 = 𝟎. 𝟎𝟗 for various values of 𝑨𝒓𝒑 and time. 

 

 
Fig. 6: Deflection of the plates at 𝑲 = 𝟐𝟎𝟎, 𝑮 = 𝟎. 𝟎𝟗 for various values of 𝑨𝒓𝒑 and tim 
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Fig. 7: Deflection of the plates at 𝑲 = 𝟎, 𝑨𝒓𝒑 = 𝟎. 𝟓 for various values of 𝑮and time. 

 

 

 
Fig. 8: Deflection of the plates at 𝑲 = 𝟏𝟎𝟎, 𝑨𝒓𝒑 = 𝟎. 𝟓 for various values of 𝑮and time. 
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Fig. 9: Deflection of the plates at 𝑲 = 𝟐𝟎𝟎, 𝑨𝒓𝒑 = 𝟎. 𝟓 for various values of 𝑮and time. 

 

6. Conclusion 

 

The dynamic behaviour of a Mindlin plate carrying a uniform partially distributed moving load, 

supported by a Pasternak foundation, has been analysed. The non-dimensionalized equations of motion 

were transformed into equivalent finite difference ones, and then solved. Results have been have been 

presented not only for the deflection but also for the velocity, bending and twisting moments, shearing 

force for all instants of time and at selected space nodes. Hence all the components composing the 

dynamic response of the system have been obtained. The formulation for the Kirchoff plate is deduced 

by neglecting both effects of rotatory inertia and shear deformation, A numerical example of simply 

supported rectangular plate is presented. It is shown that the elastic subgrade, on which the Mindlin 

plate rests has a significant effect on the dynamic response of the plate to a partially distributed load. 

The effect of rotatory inertia and shear deformation on the dynamic response of the Mindlin plate to the 

moving load give a more realistic results for practical application, especially when such plate is 

considered to rest on a foundation.  
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