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Abstract 
In this paper we examine the application of the classical conjugate gradient method to 

queue theory. The parameters of the symmetric definite positive linear operator of a 

quadratic cost functional were obtained from the various characteristic features of a 

multi-channel queue system. The outcome was tested with numerical values and a 

comparison was made for systems with two, three and four service points. The numerical 

computations were carried out in a Maple 14 environment. The results obtained validate 

previous work done with a single-channel system. 

1. Introduction 

The conjugate gradient method (CGM) was first introduced by Hestenes and Stiefel in 

1952 [7]. The whole idea then was to develop a scheme for solving a system of linear 

equations. Later it was extended to nonlinear problems. It has since been a very powerful 

optimization tool for solving both the constrained and unconstrained optimization 

problems whether large or small scaled. Over the years, researchers have resorted to the 

use of CGM due to its flexibility and high rate of convergence. 

In 2005, however, Omolehin et al [12] approached the concept of CGM from a new 

perspective by introducing the parameters of a CGM for quadratic functions from the 

classical queue theory. They considered the parameters of a single channel model to 

analyse the effectiveness of a CGM for a quadratic functional. It was evident that the 

queue system they considered has the following characteristics. 

• Poisson arrival rate distribution 

• Exponential service rate distribution 

• An infinite population 

• “first come, first serve” service rule 

Such queue systems are based on some assumptions which make them work under 

virtually any given condition. It must also be assumed that items in line for service 

behave normally. In other words, they do not renege or balk under any circumstance. 

Also, there must exist a normal behavior in the service machinery. This means the 

service facilities process each customers’ request continuously without a break and only 

one item is permitted to be served at a time. In this work, however, efforts have been 

directed to the multi-system where the number of service point is more than one. 
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As stated above, the classical linear CGM solves a 

quadratic function of the form 

 ���� = ��+< 	, � > + � < �, �� > (1) 

where � is a linear operator defined on a Hilbert space �. As 

we shall later show, � is symmetric and positive definite. The 

parameters of � were constructed from the characteristics of 

a multi-service point system. These parameters were 

carefully chosen so as to preserve the nature of �. If � is not 

positive definite, the descent in gradient of ���� is lost. It is 

also interesting to know that even if �  is not symmetric 

positive definite (SPD), it can easily be amended to a SPD by 

multiplying the system by �� , the transpose of �, to make it 

the required SPD. 

There are several queuing models for which we would 

have constrained work, but we have been motivated to study 

the behavior of a multi-service system because this will give 

us a clue to the behavioral pattern of several service points. A 

comparison was made for a two-, three-, and four-service 

points systems. 

The remainder of this paper is organized as follows. In 

section 2, a brief review of queue theory and it applications 

were presented. In section 3, we investigated the various 

characteristics of a multi-service channel system. It was here 

that we arrived at the system parameters used in this work. 

We introduced the conjugate gradient method for a quadratic 

function in section 4. The conjugate gradient algorithm and 

the generated results were presented under section 5. Finally, 

in section 6, a brief remark was given on this work. 

2. Queuing Theory 

Queues are part of everyday life. Providing too much 

service requires overhead costs. Not doing so means a queue 

becomes excessively long. Thus in a nutshell, queue theory is 

a branch of study which addresses the problems associated 

with queues [11]. Queue models are generally stochastic 

models; although they could occasionally take the form of a 

deterministic model. Queue models ultimately aimed at 

studying the characteristics of a queue in order to achieve an 

economic balance between the cost of service and the cost 

associated with the waiting in line for service. 

The theory on queue, as it were, has been applied to 

various decision making problems. In the health care sector 

for instance, the impact of bed assignment regulations was 

evaluated on time spent in queue, service utilization and the 

effect of balking by McClain [10]. The problems of health 

workers roistering was studied by Cheang et al [2] while 

work on the combined effects of roistering and scheduling of 

staff was carried out by Ernst et al [3]. A brief compilation of 

works on the applications of queue theory in health care can 

be found in [8, 13]. Rafaeli et al [14] of the Technion 

Institute of Technology (TIT), Israel, examined the impacts 

of queue structures on human behavioral attitude. The 

outcome of experiments carried out shows that customers 

nearest to a service facility are more pleased than those 

farther away. Queuing theory was applied to 

telecommunication networks [4] and a combine analysis with 

Markov process was applied to communication networks [1]. 

Newell in 1982 studied the flow of traffic at busy hours using 

queue theory. His proposed model was both efficient and 

effective [9]. 

However, the first work on queuing theory was published 

by A. K. Erlang in 1903 in a work on telephone traffic [5]. 

Generally, a queue has the following features: the length of 

the queue, system length, waiting time in queue, total time 

spent in a queue and the utilization factor. A system 

comprises of all items waiting to be served and those being 

served. 

In a separate work by Kandall in 1903 and Lee in 1966 [5], 

the notations of a well-defined queue model were introduced. 

A typical notation of a queue model is 

�� ∕ � ∕ ��: �� ∕ � ∕ �� 

where �  is the item arrival distribution, �  is item service 

distribution, � is the number of service point, � is the service 

discipline, � is the maximum number of items in a system 

and �  is the source or population from which an item is 

drawn. Whether a system is single-channeled or multi-

channeled depends on the value of �. 

3. Quadratic Conjugate Gradient 

Method 

In what follows, we have resorted to the use of usual 

notation for scalar product <	.		,			. >, ℋ  is a Hilbert space 

and as noted earlier, � is a linear operator. 

Given a quadratic functional of the form in (1) above 

where�, 		�	ℋ, the basic problem which a conjugate gradient 

algorithm solves is to find a �∗ which minimizes (1) such that 

 ���∗� ≤ ���� (2) 

In doing this, two lines of actions are usually considered: 

(i) an initial guess of the minimizer �∗ is made, say ��. (ii) a 

sequence of points [�� , ��,			�,			.		.		. ] is constructed in a way 

that the condition 

 ���!"�� ≤ ���!� (3) 

is satisfied. The sequence continues until no further �!"� can 

be found to satisfy (3). At this point, the sequence approaches 

the minimizing argument of (1). 

The conjugate gradient method is a conjugate descent 

method. By conjugate descent, it is assumed that there exists 

a sequence 

 #$!%!&�' = [$�, $�,			.		.		., $! ,			.		.			. ] (4) 

where each of the numbers of #$!% is conjugate with respect 

to the linear operator � in (1). By this it means 

〈$) , �$!〉#+�	,-)&!&�	,-)+!
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Since � is taken to be positive definite 

〈$) , �$!〉 > 0 

Thus, by conjugate descent, a sequence 

 #�!% = [��, ��,			.		.		., �!,			.		.			. ] (5) 

is constructed by guessing an initial point �� and setting 

 �!"� = �! + /!$! (6) 

where /! is a scalar constant also called the step length, and 

is chosen so that 

 ���! + /!$!� = ��+< 	, �! + /!$! > + � < �! + /!$!, ���! + /!$!� > (7) 

is minimized accordingly. 

With the initial guess of minimizer made, the subsequent 

members of the sequence can be determined using the 

following relations [6]: 

 $� = −1� = −�	 + ���� (8a) 

 �!"� = �! + /!$! (8b) 

 /! = 234,345264,7645 (8c) 

 1!"� = 1! + /!�$! (8d) 

 $!"� = −1!"� + 8!$! (8e) 

 8! = 2349:,349:5234,345  (8f) 

Where  1� is the gradient of ���� at the initial point �� in 

the sequence (5),$! is the initial search direction and 8! is 

the conjugate gradient parameter. 

4. Multi-Channel Service System 

Multi-channel queuing theory treats situations where there 

is several service points in parallel and each customer in the 

waiting line can be served by more than one service station. 

For the purpose of this research, the arrival rate / and the 

sercice rate 8  are both mean values from the Poisson and 

exponential distributions respectively. 

The various assumptions are: ; = Number of customers in the system <) = Probability of ; customers in the system = = Number of service points �= > 1� / = Arrival rate of customers 8 = Service rate of each channel 

When ; > =, there is no queue because all new arrivals are 

serviced instantly, and the rate of servicing will in this case 

be ;8 as only ; channels are working. 

When ; = =, all channels will be busy and when ; > =, 

there will be �; − =� customers in the queue and the rate of 

service for this instance will be =8. 

In general, there are three cases of interest 

I. When ; = 0. 
Considering a steady state 

<� = /8 <� 

II. When 1 ≤ ; ≤ = − 1. 

In this case, for a steady state system 

/<)?� − �/ + ;8�<) + �; + 1�8<)"� = 0 ∶ 1 ≤ ; ≤ = − 1 

i.e., <) = �)! BCDE <� 

III. When ; ≥ = 

from (2) we have 

/<G? − [/ + �= − 1�8]<G?� + =8<G = 0 

This consequently results in 

<) = 1=)?G=! H/8I) <� 

From these the various properties of a multi-channel 

service system can be obtained. 

The utility rate: J = CGD 

Average number of items in the system: K, =
CDBLMEN

�G?��!�GD?C�O <� + CD 

Average number of item in queue: P, = CDBLMEN
�G?��!�GD?C�O <� 

Average time spent in a system: KQ = DBLMEN
�G?��!�GD?C�O <� + �D 

Average queuing time: PQ = DBLMEN
�G?��!�GD?C�O <� 

The probability that an item has to wait: <,�; ≥ =� =
CDBLMEN

�G?��!�GD?C� <� 

The probability that an item enters the service without 

waiting: 

<,?��; ≥ =� = 1 − <,�; ≥ =� 

The multi-channel service system described above which 

we also make use in this work is one that has an infinite item 

population. In the Kendall notation, this we represent as 

�� ∕ � ∕ =�: ��R�K ∕ ∞ ∕ ∞� 

Where �  and �  are Poisson and Exponential distribution 

respectively, while �R�K means First Come First Serve. 

5. Main Results 

Now we are set to present the main findings of this work. 

First, we recall from above that a CGM solves a quadratic 

function of the form ���� = ��+< 	, � > + � < �, �� > , 
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where � is a linear symmetric definite positive operator and 	, � ∈ ℋ. ��, the cost function has been fixed at zero. A fixed 

value of 	�ℋ have also been chosen. With the various multi-

channel service system described above, the operator � have 

been constructed in the following way. 

� = UP, VW K,VW PQ XYK, XY KQ
Z 

The entries in the matrix above as discussed in section 4 

are entered as follows  

� =

[
\\
\\
\]

/8 BCDEG
�= − 1�! �=8 − /� <� /=8

/8 BCDEG
�= − 1�! �=8 − /� <� + /8

/=8
8 BCDEG

�= − 1�! �=8 − /� <� = − /8 BCDEG
�= − 1�! �=8 − /� <� + 2/8

/8 BCDEG
�= − 1�! �=8 − /� <� + /8 = − /8 BCDEG

�= − 1�! �=8 − /� <� + 2/8
8 BCDEG

�= − 1�! �=8 − /� <� + 18 _
`̀
`̀
à

 

This reduces to 

� =
[
\\\
]

/8b <� /=8 /8b <� + /8/=8 8b <� = − /8b <� + 2/8/8b <� + /8 = − /8b <� + 2/8 8b <� + 18 _
`̀̀
a

 

where 

b = BCDEG
�= − 1�! �=8 − /� 

This system, being not real comes with incertitude. 

Suppose this incertitude parameter is introduced as  c only in 

the first entry of the matrix, the matrix reduces to 

� =
[
\\\
] c<� /=8 /8b <� + /8/=8 8b <� = − /8b <� + 2/8/8b <� + /8 = − /8b <� + 2/8 8b <� + 18 _

`̀̀
a

 

With this in place, the quadratic function in (1) was solved 

by implementing the following algorithm using a Maple 

code. 

Step 1.Set d = e  and choose ��  and compute 1� = 	 +��� = ∇g����. If 1� = 0, stop. Else set $� = −1�. 

Step 2.Set /! = 234,			345264,			7645 , compute �!"� = �! +/!$! and 1!"� = 1! + /!�$!. If 1!"� = 0, stop. 

Step 3.Set 8! = 2349:,349:5234,345  and compute $!"� =−1!"� + 8!$!. 

Step 4: set d = d + 1 and go to step 2.c 

The results obtained are presented in the following tables. 

The variables used are / = 6, 8 = 4 and <� = 0.2. 

 

 

Table 1a. = = 2 

Incertitude 

Parameter 
j∗ ‖l‖ m∗ 

c = 1 

�� = −2.434513 1.565334e-08 

-0.562630 � = 6.962669 1.087638e-08 

�q = 0.301167 1.005755e-08 

Table 1b. = = 2 

Incertitude 

Parameter 
j∗ ‖l‖ m∗ 

c = 0.5 

�� = −2.220554 9.417628e-10 

-0.832928 � = 6.569801 1.812216e-09 

�q = 0.308263 4.228760e-09 

Table 1c. = = 2 

Incertitude 

Parameter 
j∗ ‖l‖ m∗ 

c = 2 

�� = −3.015654 5.912982e-09 

0.171535 � = 8.029749 4.579172e-09 

�q = 0.281893 7.868555e-09 

Table 2a. = = 3 

Incertitude 

Parameter 
j∗ ‖l‖ m∗ 

c = 1 

�� = −10.426762 5.464351e-09 

15.823238 � = 15.060572 7.547903e-09 

�q = 0.132159 1.271628e-08 

Table 2b. = = 3 

Incertitude 

Parameter 
j∗ ‖l‖ m∗ 

c = 0.5 

�� = −8.075488 1.639970e-08 

11.613178 � = 12.056722 1.125223e-08 

�q = 0.185521 1.090176e-08 
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Table 2c. = = 3 

Incertitude 

Parameter 
j∗ ‖l‖ m∗ 

c = 2 

�� = −24.963744 2.323269e-08 

41.852340 � = 33.632169 2.197065e-08 

�q = −0.197759 2.674142e-08 

Table 3a. = = 4 

Incertitude 

Parameter 
j∗ ‖l‖ m∗ 

c = 1 

�� = −40.094739 1.396615e-08 

80.542416 � = 40.604463 1.357060e-08 

�q = −0.287554 1.159818e-08 

Table 3b. = = 4 

Incertitude 

Parameter 
j∗ ‖l‖ m∗ 

c = 0.5 

�� = −20.351863 2.718575e-09 

39.742283 � = 21.271653 4.537117e-09 

�q = 0.013885 2.819973e-08 

Table 3c. = = 4 

Incertitude 

Parameter 
j∗ ‖l‖ m∗ 

c = 2 

�� = 42.646986 1.278466e-08 

-90.449562 � = −40.418692 1.026607e-08 

�q = 0.975765 6.391723e-08 

6. Remarks 

In this computation, the tolerance was taken as 1.0t − 06. 

In table 1, for a two-channel service system, it was observed 

that there was a successive decrease in the gradient norm 

when the uncertainty parameter, c = 1. However, this was 

not the case when c = 0.5 and c = 2. For the three-channel 

service system, that is, when = = 3, this successive decrease 

only occurs at c = 0.5. For= = 4, it occurs at c = 1. Our 

observation is however that a good approximation as we have 

in table 1a, 2b and 3a will be achievable through a careful 

selection of  c. A good choice will almost likely be 0.5 <c < 1 . This validates the choice of u = 0.999 < 1  in the 

work of Omolehin et al. [12]. 
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