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Abstract

Let E be a real Banach space, C be a nonempty closed convex subset
of E and T : C → C be a continuous generalized Φ-pseudocontractive
mapping, Xiang [Chang He Xiang, Fixed point theorem for general-
ized Φ-pseudocontractive mappings, Nonlinear Analysis 70 (2009) 2277-
2279] proved that T has a unique fixed point in C. It is our purpose in
this study to extend the results of Xiang [11] to the class of asymptoti-
cally generalized Φ-hemicontractive mappings in the intermediate sense,
recently introduced by Okeke, Olaleru and Akewe [6].
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1 Introduction and Preliminaries

Let E be an arbitrary real normed linear space with dual space E∗ and C be a
nonempty subset of E. We denote by J the normalized duality mapping from
E to 2E∗

defined by

J(x) =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
, ∀x ∈ E, (1.1)

where 〈., .〉 denotes the generalized duality pairing.
The following definitions will be needed in this study.

Definition 1.1. [11]. A mapping T : C → E is called strongly pseudocontrac-
tive if there exists a constant k ∈ (0, 1) such that, for all x, y ∈ C, there exists
j(x− y) ∈ J(x− y) satisfying

〈Tx− Ty, j(x− y)〉 ≤ (1 − k)‖x− y‖2. (1.2)

T is called φ-strongly pseudocontractive if there exists a strictly increasing
function φ : [0,∞) → [0,∞) with φ(0) = 0 such that, for all x, y ∈ C, there
exists j(x− y) ∈ J(x− y) satisfying

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 − φ(‖x− y‖)‖x− y‖. (1.3)

T is called generalized Φ-pseudocontractive [2] if there exists a strictly increas-
ing function Φ : [0,∞) → [0,∞) with Φ(0) = 0 such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 − Φ(‖x− y‖). (1.4)

The class of generalized Φ-pseudocontractive mappings is also called uniformly
pseudocontractive mappings (see [2]). It is well known that these kinds of
mappings play crucial roles in nonlinear functional analysis.

It has been proved (see [8]) that the class of φ-strongly pseudocontractive
mappings properly contains the class of strongly pseudocontractive mappings.
By taking Φ(s) = sφ(s), where φ : [0,∞) → [0,∞) is a strictly increasing
function with φ(0) = 0, Clearly, the class of generalized Φ-pseudocontractive
mappings properly contains the class of φ-strongly pseudocontractive map-
pings.

Bruck et al. [1] in 1993 introduced the class of asymptotically nonexpansive
mappings in the intermediate sense as follows.
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The mapping T : C → C is said to be asymptotically nonexpansive in the
intermediate sense provided T is uniformly continuous and

lim sup
n→∞

sup
x,y∈C

(‖T nx− T ny‖ − ‖x− y‖) ≤ 0. (1.5)

Recently, Qin et al. [10] introduced the following class of nonlinear map-
pings.
Definition 1.2. [10]. A mapping T : C → C is said to be asymptotically
pseudocontractive mapping in the intermediate sense if

lim sup
n→∞

sup
x,y∈C

(〈T nx− T ny, x− y〉 − kn‖x− y‖2
) ≤ 0, (1.6)

where {kn} is a sequence in [1,∞) such that kn → 1 as n → ∞. This is
equivalent to

〈T nx− T ny, x− y〉 ≤ kn‖x− y‖2 + νn, ∀n ≥ 1, x, y ∈ C, (1.7)

where

νn = max

{
0, sup

x,y∈C

(〈T nx− T ny, x− y〉 − kn‖x− y‖2
)}

. (1.8)

Qin et al. [10] proved some weak convergence theorems for the class of
asymptotically pseudocontractive mappings in the intermediate sense. They
also established some strong convergence results without any compact assump-
tion by considering the hybrid projection methods. Olaleru and Okeke [7] in
2012 proved a strong convergence of Noor type scheme for a uniformly L-
Lipschitzian and asymptotically pseudocontractive mappings in the interme-
diate sense.

The following classes of nonlinear mappings was introduced by Okeke et
al. [6] as a generalization of those introduced by Kim et al. [4].

Definition 1.3. [6]. A mapping T : C → C is called asymptotically generalized
Φ-pseudocontractive mapping in the intermediate sense if there exists a strictly
increasing function Φ : [0,∞) → [0,∞) with Φ(0) = 0 and a sequence {kn} ⊂
[1,∞) such that kn → 1 as n→ ∞ satisfying

lim sup
n→∞

sup
x,y∈C

(〈T nx− T ny, j(x− y)〉 − kn‖x− y‖2 + Φ(‖x− y‖)) ≤ 0, (1.9)

for all x, y ∈ C and for some j(x− y) ∈ J(x− y). Put

ξn = max

{
0, sup

x,y∈C

(〈T nx− T ny, j(x− y)〉 − kn‖x− y‖2 + Φ(‖x− y‖))} ,

(1.10)
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we observe that ξn −→ 0 as n→ ∞. Hence (1.9) reduces to

〈T nx− T ny, j(x− y)〉 ≤ kn‖x− y‖2 + ξn − Φ(‖x− y‖). (1.11)

Clearly, the class of asymptotically generalized Φ-pseudocontractive map-
pings in the intermediate sense is a generalization of the class of asymptotically
generalized Φ-pseudocontractive mappings, introduced by Kim et al. [4].

Definition 1.4. [6]. A mapping T : C → C is called asymptotically gen-
eralized Φ-hemicontractive mapping in the intermediate sense if there exists a
strictly increasing function Φ : [0,∞) → [0,∞) with Φ(0) = 0 and a sequence
{kn} ⊂ [1,∞) such that kn → 1 as n→ ∞ satisfying

lim sup
n→∞

sup
x∈C,p∈F (T )

(〈T nx− T np, j(x− p)〉 − kn‖x− p‖2 + Φ(‖x− p‖)) ≤ 0,

(1.12)
for all x ∈ C, p ∈ F (T ) := {x ∈ C : Tx = x} = ∅ and for some j(x − p) ∈
J(x− p). Put

τn = max

{
0, sup

x∈C,p∈F (T )

(〈T nx− T np, j(x− p)〉 − kn‖x− p‖2 + Φ(‖x− p‖))
}
,

(1.13)
we observe that τn −→ 0 as n→ ∞. Hence (1.12) reduces to

〈T nx− T np, j(x− p)〉 ≤ kn‖x− p‖2 + τn − Φ(‖x− p‖). (1.14)

The class of asymptotically generalized Φ-hemicontractive mapping in the inter-
mediate sense was introduced by Okeke et al. [6]. Clearly, the class of asymp-
totically generalized Φ-hemicontractive mappings in the intermediate sense is
the most general among those defined above.

Xiang [11] in 2009 obtained the following existence results for the class of
generalized Φ-pseudocontractive mappings.

Theorem X. [11]. Let E be a real Banach space, C be a nonempty closed con-
vex subset ofE, and T : C → C be a continuous generalized Φ-pseudocontractive
mapping. Then T has a unique fixed point in C.

It is our purpose in this study to extend the results of Xiang [11] to the class
of asymptotically generalized Φ-hemicontractive mappings in the intermediate
sense. Our results extends and generalizes the results of Xiang [11] among
others.

The following lemmas will be needed in this study.
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Lemma 1.1. [2]. Let E be a real normed linear space. Then for all x, y ∈ E,
we have

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉, ∀ j(x+ y) ∈ J(x+ y).

Lemma 1.2. [5]. Let ψ : [0,∞) → [0,∞) be a strictly increasing function
with ψ(0) = 0 and let {θn}, {σn} and {νn} be nonnegative real sequences such
that σn = o(νn),

∑
n≥0 νn = ∞, limn→∞ νn = 0. Suppose that

θ2
n+1 ≤ θ2

n − νnψ(θn+1) + σn, n ≥ 0.

Then θn −→ 0 as n→ ∞.

2 Main Results

Theorem 2.1. Let E be a real Banach space, C be a nonempty closed convex
subset of E, and T : C → C be a continuous asymptotically generalized Φ-
hemicontractive mapping in the intermediate sense. Then T has a unique fixed
point in C.

Proof. For each u ∈ C, the mapping S : C → C defined by Sx = 1
2
u+ 1

2
T nx for

each x ∈ C is a continuous strongly pseudocontractive mapping. By Corollary
2 of [3], we know that S has a unique fixed point in C. Meaning that given
x0 ∈ C, the sequence {xn} defined by xn+1 = 1

2
xn + 1

2
T nxn+1 (∀n ≥ 0) is well

defined.
For each n ≥ 1, we have

xn+1 = xn − xn+1 + T nxn+1, xn = xn−1 − xn + T nxn. (2.1)

Using Lemma 1.1 and (1.14), it follows that there exists j(xn+1−xn) ∈ J(xn+1−
xn) such that

‖xn+1 − xn‖2 = ‖(xn − xn−1) − (xn+1 − xn) + (T nxn+1 − T nxn)‖2

≤ ‖xn − xn−1‖2 − 2〈xn+1 − xn, j(xn+1 − xn)〉
+2〈T nxn+1 − T nxn, j(xn+1 − xn)〉

≤ ‖xn − xn−1‖2 − 2‖xn+1 − xn‖2

+2 {kn‖xn+1 − xn‖2 + ξn − Φ(‖xn+1 − xn‖)}
= ‖xn − xn−1‖2 − 2‖xn+1 − xn‖2 + 2kn‖xn+1 − xn‖2

+2ξn − 2Φ(‖xn+1 − xn‖). (2.2)

From (2.2), we obtain

‖xn+1 − xn‖2 ≤ 1
3−2kn

‖xn − xn−1‖2 − 2
3−2kn

Φ(‖xn+1 − xn‖) + 2ξn

3−2kn

≤ 1
3−2kn

‖xn − xn−1‖2 − 2ξn

3−2kn
Φ(‖xn+1 − xn‖) + 2ξn

3−2kn
(2.3)
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where Φ : [0,∞) → [0,∞) is a strictly increasing function with Φ(0) = 0 and
limn→∞ kn = 1. Let θn = ‖xn − xn−1‖ (∀ n ≥ 1), νn = 2ξn

3−2kn
, σn = 2ξn

3−2kn
and

ψ(s) = Φ(
√
s). Then θ2

n+1 ≤ θ2
n − νnψ(θn+1)+σn for all n ≥ 1. By Lemma 1.2,

we obtain limn→∞ ‖xn − xn−1‖2 = limn→∞ θ2
n = 0. Hence,

lim
n→∞

‖xn − xn−1‖ = 0. (2.4)

Observe that xn − xn−1 = T nxn − xn for each n ≥ 1, we obtain

lim
n→∞

‖T nxn − xn‖ = 0. (2.5)

For each ε > 0, we take δ = Φ(ε)
2ε

> 0, it follows from (2.4) and (2.5) that there
exists a natural number N such that ‖xn+1 − xn‖ < ε for every n ≥ N and
‖(T nxm−xm)−(T nxn−xn)‖ < δ for each m > n. Next, we prove by induction
that

‖xm − xn‖ < ε, ∀ m > n ≥ N. (2.6)

For each natural number n ≥ N, if we take m = n + 1, then we observe that
(2.6) holds for some m ≥ n+ 1. Then

‖xm+1 − xn‖ ≤ ‖xm+1 − xm‖ + ‖xm − xn‖ < 2ε. (2.7)

Using (1.11), we obtain

〈T nxm+1−T nxn, j(xm+1−xn)〉 ≤ kn‖xm+1−xn‖2+ξn−Φ(‖xm+1−xn‖). (2.8)

From (2.8), we obtain

Φ(‖xm+1 − xn‖) ≤ kn‖xm+1 − xn‖2 + ξn − 〈T nxm+1 − T nxn, j(xm+1 − xn)〉
≤ kn〈(xm+1 − T nxm+1) − (xn − T nxn), j(xm+1 − xn)〉 + ξn
≤ kn‖(xm+1 − T nxm+1) − (xn − T nxn)‖‖xm+1 − xn‖ + ξn
< δ.2ε+ ξn
= Φ(ε) + ξn. (2.9)

Since Φ is a strictly increasing function and ξn −→ 0 as n→ ∞, we have that
‖xm+1−xn‖ < ε, meaning that (2.6) holds for m+1. By induction, (2.6) holds
for all m > n ≥ N, which implies that {xn} ⊂ C is a Cauchy sequence. But
E is a Banach space and C is closed, hence {xn} converges to some p ∈ C.
Since T : C → C is continuous, we conclude that Tp = p using (2.5). From
(1.14), we see that the fixed point of T is unique. The proof of Theorem 2.1
is completed. �

Remark 2.2. Theorem 2.1 improves, extends and generalizes Theorem 2.1 of
Xiang [11] and the references therein.
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