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ABSTRACT. In this study, we introduce the class of asymptotically generalized Φ­ pseudo­
contractive mappings in the intermediate sense and prove the convergence of Mann type
iterative scheme to their fixed points. Our results improves and generalizes the results of
Kim et al. [J. K. Kim, D. R. Sahu, Y. M. Nam, Convergence theorem for fixed points of nearly
L­Lipschitzian mappings, Nonlinear Analysis 71 (2009) 2833­2838] and several others.
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1. INTRODUCTION

Let E be an arbitrary real normed linear space with dual E∗. We denote by J
the normalized duality mapping from E into 2E

∗
defined by

J(x) :=
{
f∗ ∈ E∗ : ⟨x, f∗⟩ = ∥x∥2 = ∥f∗∥2

}
, (1.1)

where ⟨., .⟩ denotes the generalized duality pairing.
In the sequel, we give the following definitions which will be useful in this study

Definition 1.1. Let C be a nonempty subset of real normed linear space E. A
mapping T : C −→ E is said to be

(1) strongly pseudocontractive [12] if for all x, y ∈ C, there exist constant k ∈ (0, 1)
and

j(x− y) ∈ J(x− y) satisfying

⟨Tx− Ty, j(x− y)⟩ ≤ k∥x− y∥2, (1.2)

(2) ϕ­strongly pseudocontractive [12] if for all x, y ∈ C, there exist strictly increas­
ing
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function ϕ : [0,∞) −→ [0,∞) with ϕ(0) = 0 and j(x− y) ∈ J(x− y) satisfying

⟨Tx− Ty, j(x− y)⟩ ≤ ∥x− y∥2 − ϕ(∥x− y∥)∥x− y∥, (1.3)

The class of ϕ­strongly pseudocontractive mappings includes the class of strongly
pseudocontractive mappings by setting ϕ(s) = ks for all s ∈ [0,∞). However, the
converse is not true (see, e.g. Hirano and Huang [10]).

(3) generalized Φ­pseudocontractive [1, 6] if for all x, y ∈ C, there exist strictly
increasing

function Φ : [0,∞) −→ [0,∞) with Φ(0) = 0 and j(x− y) ∈ J(x− y) satisfying

⟨Tx− Ty, j(x− y)⟩ ≤ ∥x− y∥2 − Φ(∥x− y∥), (1.4)

(4) asymptotically generalized Φ­pseudocontractive [12] with sequence {kn} if for
each n ∈ N and x, y ∈ C, there exist constant kn ≥ 1 with limn−→∞ kn = 1, strictly
increasing function Φ : [0,∞) −→ [0,∞) with Φ(0) = 0 and j(x − y) ∈ J(x − y)
satisfying

⟨Tnx− Tny, j(x− y)⟩ ≤ kn∥x− y∥2 − Φ(∥x− y∥), (1.5)

The class of asymptotically generalized Φ­pseudocontractive was introduced by Kim
et al. [12].

Definition 1.2. [19]. A mapping T : C −→ C is said to be asymptotically pseudo­
contractive mapping in the intermediate sense if

lim sup
n−→∞

sup
x,y∈C

(
⟨Tnx− Tny, x− y⟩ − kn∥x− y∥2

)
≤ 0, (1.6)

where {kn} is a sequence in [1,∞) such that kn −→ 1 as n −→ ∞. Put

νn = max

{
0, sup

x,y∈C

(
⟨Tnx− Tny, x− y⟩ − kn∥x− y∥2

)}
. (1.7)

It follows that νn −→ 0 as n −→ ∞. Then, (1.6) is reduced to the following:

⟨Tnx− Tny, x− y⟩ ≤ kn∥x− y∥2 + νn, ∀n ≥ 1, x, y ∈ C. (1.8)

Qin et al. [19] introduced the class of asymptotically pseudocontractive map­
pings in the intermediate sense. They proved weak convergence theorems for this
class of nonlinear mappings. They also established some strong convergence re­
sults without any compact assumption by considering the hybrid projection meth­
ods. Olaleru and Okeke [17] in 2012 proved a strong convergence of Noor type
scheme for a uniformly L­Lipschitzian and asymptotically pseudocontractive map­
pings in the intermediate sense without assuming any form of compactness.

Motivated by the above facts, we now introduce the following class of nonlinear
mappings

Definition 1.3. Let C be a nonempty subset of real normed linear space E. A map­
ping T : C −→ C is said to be asymptotically generalized Φ­pseudocontractive map­
ping in the intermediate sense with sequence {kn} if for each n ∈ N and x, y ∈ C,
there exists constant kn ≥ 1 with limn−→∞ kn = 1 and strictly increasing function
Φ : [0,∞) −→ [0,∞) with Φ(0) = 0 and j(x− y) ∈ J(x− y) satisfying

lim sup
n−→∞

sup
x,y∈C

(
⟨Tnx− Tny, j(x− y)⟩ − kn∥x− y∥2 +Φ(∥x− y∥)

)
≤ 0. (1.9)

Put

τn = max

{
0, sup

x,y∈C

(
⟨Tnx− Tny, j(x− y)⟩ − kn∥x− y∥2 +Φ(∥x− y∥)

)}
. (1.10)
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It follows that τn −→ 0 as n −→ ∞. Hence (1.9) is reduced to the following

⟨Tnx− Tny, j(x− y)⟩ ≤ kn∥x− y∥2 + τn − Φ(∥x− y∥). (1.11)

We remark that if τn = 0 for all n ∈ N, the class of asymptotically generalized
Φ­pseudocontractive mapping in the intermediate sense is reduced to the class of
asymptotically generalized Φ­pseudocontractive.

Example 1.4. Let E = R1 and C = [c,∞), where c > 0 is any given constant.
Define the mapping T : C −→ 2E by

Tx =


[0, c], if x = c,

k(x−c)2

1+(x−c) , if x > c,

where k ∈ (0, 1).
Clearly, T has a unique fixed point p = c ∈ C. Define Φ : [0,∞) −→ [0,∞) by
Φ(t) = t2

(1+t) . Clearly, Φ is strictly increasing and Φ(0) = 0. Now, for each x ∈ C,

we have
⟨Tnx− Tnp, j(x− p)⟩ = k(x−c)3

1+(x−c)

= kn(|x− c|2 − |x−c|2
1+|x−c| )

≤ kn|x− p|2 − Φ(|x− p|) + kn.
Hence, T is asymptotically generalized Φ­pseudocontractive mapping in the inter­
mediate sense.

Let C be a nonempty of a normed linear space E. A mapping T : C −→ E is said
to be Lipschitzian if there exists a constant L > 0 such that

∥Tx− Ty∥ ≤ L∥x− y∥ (1.12)

for all x, y ∈ C and generalized Lipschitzian [12] if there exists a constant L > 0
such that

∥Tx− Ty∥ ≤ L(∥x− y∥+ 1) (1.13)

for all x, y ∈ C. A mapping T : C −→ C is called uniformly L­Lipschitzian [12] if for
each n ∈ N, there exists a constant L > 0 such that

∥Tnx− Tny∥ ≤ L∥x− y∥ (1.14)

for all x, y ∈ C.
Clearly, every Lipschitzian mapping is a generalized Lipschitzian mapping. Every

mapping with a bounded range is a generalized Lipschitzian mapping. The following
example shows that the class of generalized Lipschitzian mappings properly con­
tains the class of Lipschitzian mappings and that of mappings with bounded range.

Example 1.5. [4]. Let E = (−∞,∞) and T : E −→ E be defined by Tx =
x− 1 if x ∈ (−∞,−1),

x−
√
1− (x+ 1)2 if x ∈ [−1, 0),

x+
√
1− (x− 1)2 if x ∈ [0, 1],

x+ 1 if x ∈ (1,∞).

Then T is a generalized Lipschitzian mapping which is not Lipschitzian and whose
range is not bounded.

Sahu [20] introduced a new class of nonlinear mappings which is more general
than the class of generalized Lipschitzian mappings and the class of uniformly L­
Lipschitzian mappings.
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Definition 1.6. [20]. Let C be a nonempty subset of a Banach space E and
fix a sequence {an} in [0,∞) with an −→ 0.

(1) A mapping T : C −→ C is said to be nearly Lipschitzian with respect to {an}
if for each n ∈ N, there exists a constant kn > 0 such that

∥Tnx− Tny∥ ≤ kn(∥x− y∥+ an) (1.15)

for all x, y ∈ C.
The infimum of constants kn in (1.15) is called nearly Lipschitz constant and is

denoted by η(Tn).
(2) A nearly Lipschitzian mapping T with sequence {(an, η(Tn))} is said to be

nearly uniformly L­Lipschitzian if kn = L for all n ∈ N, i.e.

∥Tnx− Tny∥ ≤ L(∥x− y∥+ an) (1.16)

and nearly asymptotically nonexpansive if kn ≥ 1 for all n ∈ N with limn−→∞ kn = 1.
(3) A mapping T : C −→ E will be called generalized (M,L)­Lipschitzian if there

exist two constants L,M > 0 such that

∥Tx− Ty∥ ≤ L(∥x− y∥+M) (1.17)

for all x, y ∈ C.
Observe that the class of generalized (M,L)­Lipschitzian mappings is a gener­

alization of the class of Lipschitzian mappings. Clearly, the class of nearly uni­
formly L­Lipschitzian mappings properly contains the class of generalized (M,L)­
Lipschitzian mappings and the class of uniformly L­Lipschitzian mappings. We
remark that every nearly asymptotically nonexpansive mapping is nearly uniformly
L­Lipschitzian.

It has been shown by Sahu [20] that the class of nearly uniformly L­Lipschitzian
is not necessarily continuous. Sahu [20] extended the results of Goebel and Kirk
[8] to demicontinuous mappings and proved that if C is a nonempty closed convex
bounded subset of a uniformly convex Banach space, then every demicontinuous
nearly asymptotically nonexpansive self­mapping of C has a fixed point.

It is our purpose in this study to use the concept of nearly uniformly L­ Lip­
schitzian (not necessarily continuous) mappings to prove a strong convergence
result for the class of asymptotically generalized Φ­pseudocontractive mappings in
the intermediate sense in a general Banach space. Our results is an improvement
of several other results in literature.

The following Lemmas will be useful in this study

Lemma 1.1. [3]. Let E be a Banach space. Then for each x, y ∈ E, there ex­
ists j(x+ y) ∈ J(x+ y) such that

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, j(x+ y)⟩.

Lemma 1.2. [18]. Let {δn}, {βn} and {γn} be three sequences of nonnegative
numbers such that

δn+1 ≤ (1 + βn)δn + γn

for all n ∈ N. If
∑∞

n=1 βn < ∞ and
∑∞

n=1 γn < ∞, then limn−→∞ δn exists.

Lemma 1.3. [14]. Let {θn} be a sequence of nonnegative real numbers and {λn} a
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real sequence in [0, 1] such that
∑∞

n=1 λn = ∞. If there exists a strictly increasing
function ϕ : [0,∞) −→ [0,∞) with ϕ(0) = 0 such that

θ2n+1 ≤ θ2n − λnϕ(θn+1) + σn

for all n ≥ n0, where n0 is some nonnegative integer and {σn} is a sequence of
nonnegative numbers such that σn = o(λn), then limn−→∞ θn = 0.

Lemma 1.4. [12]. Let {δn}, {βn}, {γn} and {σn} be four sequences of nonnegative
numbers such that

δ2n+1 ≤ (1 + βn)δ
2
n + γn(δn + σn)

2

for all n ∈ N. If
∑∞

n=1 βn < ∞,
∑∞

n=1 γn < ∞ and {σn} is bounded, then
limn−→∞ δn exists.

2. Main Results

We prove the following Lemma which will be needed in this study.

Lemma 2.1. Let {δn}, {βn}, {γn}, {σn} and {ρn} be five sequences of nonneg­
ative numbers such that

δ2n+1 ≤ (1 + βn)δ
2
n + γn(δn + σn)

2 + ρ2n (2.1)

for all n ∈ N. If
∑∞

n=1 βn < ∞,
∑∞

n=1 γn < ∞,
∑∞

n=1 ρn < ∞ and {σn} is bounded,
then limn−→∞ δn exists.

Proof. Using (2.1), we obtain

δ2n+1 ≤ (1 + βn)δ
2
n + γn(δn + σn)

2 + ρ2n
≤ (1 + βn)δ

2
n + 2γn(δ

2
n + σ2

n) + ρ2n
≤ (1 + βn + 2γn)δ

2
n + 2γnσ

2
n + ρ2n. (2.2)

Since {σn} is bounded and
∑∞

n=1 ρn < ∞, then by Lemma 1.2, it follows that
limn−→∞ δn exists. The proof of Lemma 2.1 is completed. □

Theorem 2.2. Let C be a nonempty convex subset of a real Banach space E and
T : C −→ C a nearly uniformly L­Lipschitzian mapping with sequence {an} and
asymptotically generalized Φ­pseudocontractive mapping in the intermediate sense
with sequences {τn} and {kn} as defined in (1.11) and F (T ) ̸= ∅. Let {αn} be a
sequence in [0, 1] satisfying the conditions:

(i) { an

αn
} is bounded,

(ii)
∑∞

n=1 αn = ∞,
(iii)

∑∞
n=1 α

2
n < ∞ and

∑∞
n=1 αn(kn − 1) < ∞.

Let {xn} be the sequence in E generated from arbitrary x1 ∈ C by

xn+1 = (1− αn)xn + αnT
nxn, n ∈ N. (2.3)

Then the sequence {xn} in C defined by (2.3) converges strongly to a unique fixed
point of T.

Proof. Fix p ∈ F (T ), using (1.16) and (2.3) and set
An := 2αn(kn − 1) + α2

n[1 + L(1 + L)]
and
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Bn := 1− 2αnkn − α2
nL(1 + L).

∥xn+1 − xn∥ = αn∥Tnxn − xn∥
≤ αn(∥Tnxn − p∥+ ∥xn − p∥)
≤ αn(L∥xn − p∥+ an) + ∥xn − p∥)
≤ αn(1 + L)∥xn − p∥+ anL. (2.4)

Using (1.11), (1.16), (2.3), (2.4) and Lemma 1.1, we obtain

∥xn+1 − p∥2 = ∥(1− αn)(xn − p) + αn(T
nxn − p)∥2

≤ (1− αn)
2∥xn − p∥2 + 2αn⟨Tnxn − p, j(xn+1 − p)⟩

≤ (1− αn)
2∥xn − p∥2 + 2αn{⟨Tnxn+1 − p, j(xn+1 − p)⟩

+⟨Tnxn − Tnxn+1, j(xn+1 − p)⟩}
≤ (1− αn)

2∥xn − p∥2 + 2αn{kn∥xn+1 − p∥2 + τn − Φ(∥xn+1 − p∥)
+∥Tnxn − Tnxn+1∥ × ∥xn+1 − p∥}

≤ (1− αn)
2∥xn − p∥2 + 2αn{kn∥xn+1 − p∥2 + τn − Φ(∥xn+1 − p∥)

+L (∥xn+1 − xn∥+ an) ∥xn+1 − p∥}
≤ (1− αn)

2∥xn − p∥2 + 2αn{kn∥xn+1 − p∥2 + τn − Φ(∥xn+1 − p∥)
+L (αn(1 + L)∥xn − p∥+ anL+ an) ∥xn+1 − p∥}

= (1− αn)
2∥xn − p∥2 + 2αn{kn∥xn+1 − p∥2 + τn − Φ(∥xn+1 − p∥)

+αnL(1 + L)
(
∥xn − p∥+ an

αn

)
∥xn+1 − p∥}

≤ (1− αn)
2∥xn − p∥2 + 2αn

{
kn∥xn+1 − p∥2 + τn − Φ(∥xn+1 − p∥)

}
+α2

nL(1 + L)

{(
∥xn − p∥+ an

αn

)2

+ ∥xn+1 − p∥2
}
. (2.5)

From (2.5), we obtain

∥xn+1 − p∥2 ≤
(

(1−αn)
2

1−2αnkn−k2
nL(1+L)

)
∥xn − p∥2 + 2αnτn

1−2αnkn−α2
nL(1+L)

− 2αnΦ(∥xn+1−p∥)
1−2αnkn−α2

nL(1+L) +
α2

nL(1+L)
1−2αnkn−α2

nL(1+L)

(
∥xn − p∥+ an

αn

)2

=
(

(1−αn)
2

Bn

)
∥xn − p∥2 + 2αnτn

Bn
− 2αn

Bn
Φ(∥xn+1 − p∥)

+
α2

nL(1+L)
Bn

(
∥xn − p∥+ an

αn

)2

. (2.6)

From (2.6), we obtain

∥xn+1 − p∥2 ≤
(
1 + An

Bn

)
∥xn − p∥2 + 2αnτn

Bn
− 2 αn

Bn
Φ(∥xn+1 − p∥)

+
2α2

nL(1+L)
Bn

(
∥xn − p∥+ an

αn

)2

. (2.7)

But Bn = 1− 2αnkn − α2
nL(1 + L) −→ 1, there exists a number n0 ∈ N such that

1
2 < Bn ≤ 1 for each n ≥ n0. From (2.7), we have

∥xn+1 − p∥2 ≤ (1 + 2An)∥xn − p∥2 + 4αnτn − 2αnΦ(∥xn+1 − p∥)

+4α2
nL(1 + L)

(
∥xn − p∥+ an

αn

)2

. (2.8)

∥xn+1 − p∥2 ≤ (1 + 2An)∥xn − p∥2 + 4αnτn

+4α2
nL(1 + L)

(
∥xn − p∥+ an

αn

)2

. (2.9)

From the conditions
∑∞

n=1 αn(kn − 1) < ∞ and
∑∞

n=1 α
2
n < ∞, it follows that∑∞

n=1 An < ∞. Since { an

αn
} is bounded, we have from (2.8) and Lemma 2.1 that

limn−→∞ ∥xn−p∥ exists. Hence, {xn} is bounded. Now, we set M1 := sup{∥xn−p∥ :
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n ∈ N}, M2 := sup{ an

αn
: n ∈ N} and M3 := sup{αnτn : n ∈ N}. Then from (2.8),we

have
∥xn+1 − p∥2 ≤ ∥xn − p∥2 + 4M3 − 2αnΦ(∥xn+1 − p∥)

+4α2
nL(1 + L)(M1 +M2)

2 + 2AnM
2
1 . (2.10)

Taking θn = ∥xn−p∥, λn = 2αn and σn = 4α2
nL(1+L)(M1+M2)

2+2AnM
2
1 +4M3,

(2.10) reduces to
θ2n+1 ≤ θ2n − λnϕ(θn+1) + σn.

Hence from Lemma 1.3, it follows that ∥xn − p∥ −→ 0. The proof of Theorem 2.2 is
completed. □

Corollary 2.3. Let C be a nonempty convex subset of a real Banach space E
and T : C −→ C a nearly uniformly L­Lipschitzian mapping with sequence {an}
and asymptotically generalized Φ­pseudocontractive mapping with sequence {kn}
as defined in (1.4) and F (T ) ̸= ∅. Let {αn} be a sequence in [0, 1] satisfying the
conditions:

(i) { an

αn
} is bounded,

(ii)
∑∞

n=1 αn = ∞,
(iii)

∑∞
n=1 α

2
n < ∞ and

∑∞
n=1 αn(kn − 1) < ∞.

Let {xn} be the sequence in E generated from arbitrary x1 ∈ C by

xn+1 = (1− αn)xn + αnT
nxn, n ∈ N. (2.11)

Then the sequence {xn} in C defined by (2.11) converges strongly to a unique fixed
point of T.

Remark 2.4. The results of Theorem 2.2 shows that the class of asymptotically
generalized Φ­pseudocontractive mappings in the intermediate sense includes the
class of asymptotically generalized Φ­pseudocontractive mappings introduced by
Kim et al. [12]. Furthermore, Our results extended the works of Qin et al. [19] and
Zegeye et al. [22] from Hilbert spaces to the general Banach spaces.

Example 2.5. Let E = R and C = [0, 1]. For all x ∈ C, we define T : C −→ C by

Tx =

 (3−
√
x)2 if x ∈ [0, 1)

0 if x = 1

It is easy to see that T is asymptotically generalized Φ­pseudocontractive map­
ping in the intermediate sense with sequence {kn = 1}, Φ(t) = t2

3 , t ∈ [0,∞) and
{τ} = 1

n2 .

Put αn = 1
n . We can see that the conditions (i), (ii) and (iii) of Theorem 2.2 are

satisfied.
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