Rjeas

Research Journal in Engineering and Applied Sciences 2(1) 35-42 © Emerging Academy Resources (2013) (ISSN: 2276-8467) www.emergingresource.org

Rjeas

EVALUATION OF THE MICROBIOLOGICAL STATUS AND ANTIBACTERIAL SUSCEPTIBILITY PATTERN OF SOME HERBAL REMEDIES ADMINISTERED ORALLY IN NIGERIA

¹W.Braide., ¹S. U. Oranusi., ²R.N. Nwaoguikpe., ³I.U. Offor-Emenike., ⁴I.L. Nwosu., ¹C. I. Akobondu ¹C. Chike-Reginald and ⁵L.B. Popgbara

¹Department of Microbiology,

Federal University of Technology, P.M.B. 1526, Owerri, Imo State, Nigeria Department of Biochemistry,

Federal University of Technology, P.M.B. 1526, Owerri, Imo State, Nigeria. ³Department of Biology,

Alvan Ikoku Federal College of Education, Owerri, Imo State, Nigeria.

⁴Department of Medical Laboratory Sciences,
Abia State College of Health Technology.

⁵Department of Science Laboratory Technology,
Rivers State Polytechnic, Bori.

Corresponding Author: W.B raide

ABSTRACT

The use of herbal remedies in preventive and curative medicine dates back to the primitive era and progressively gave birth to the modern day chemotherapy and medicine. Investigation into the microbiological quality of ten well packaged herbal drugs produced and commonly administered in Nigeria was carried out using standard methods. Antibiotic susceptibility test was demonstrated by Kirby- Bauer method and McFarland standard. Aliquot portions of decimally diluted drug suspensions were inoculated onto bacteriological and mycological media. Total counts were determined and expressed as colony forming units per grams /milliliters. Total heterotrophic and coliform bacteria count was 4.3×10^7 - 2.61×10^{11} and 1.0×10^7 - 1.87×10^{10} on respectively. Total heterotrophic fungi count was 3.0×10^7 - 1.55×10^{10} . Five species of bacteria, namely, Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, Corynebacteriun diptheriae and Micrococcus luteus and five species of fungi, namely, Aspergillus flavus, Penicillium notatum, Rhizopus stolonifer, Mucor and Saccharomyces species were isolated from the herbal remedies. Most of the isolates are resident in the soil, water, air and vegetations, and their public health implications had been reported. Staphylococcus aureus produce potent enterotoxins associated with food borne intoxication, toxic shock syndrome and staphylococcal scalded skin syndrome. Bacillus species, an endospore former also produce an exotoxin implicated in food borne infection. The presence of Enterococcus faecalis indicates feacal contamination. Some species of Aspergillus, Penicillium and Rhizopus are known to produce mycotoxins that cause cancer and other mycotoxicoses as well as mycotic infections of the liver, kidney and skin. Staphylococcus aureus, Enterococcus faecalis and Bacillus sp were susceptible to seven of the ten oxoid commercial antibiotics. The high incidence of bacteria and fungi fall short of international standard and portends danger to consumers. Contamination may result from inadequate sanitary measures employed during production, packaging and storage. Good manufacturing practices (GMP) are recommended to ensure products with wholesome quality that meets international safety standards.

©Emerging Academy Resources

KEYWORDS: Herbal Medicinal Products, Microbiological Status, Antibacterial Susceptibility Pattern.

INTRODUCTION

Herbal medicine also called botanical medicine or phytomedicine refers to the use of any plants seed, berries, roots, barks, leaves or flowers for the treatment of illness. Many well established medicine comes from plants. For example morphine comes from poppies, aspirin from willow bark, ephedrine from ephedra and digoxin from foxgloves. Long practiced outside conventional medicine, herbalism is becoming more mainstream as up-to-date analysis and research show their value in the treatment and prevention of diseases. More than 80% of the world's population uses herbal medicines in one form or another, from China to Australia and Europe to

Africa. There is evidence that the Chinese, Persians, Indians and Americans have used medical herbs for centuries. Scientist observed that people in different parts of the globe tended to use the same or similar plants for the same purpose (Castleman, 2001; Sofowara, 1993).

Substances derived from plants remain the basis for a large proportion of the commercial medications used today for the treatment of asthma, premenstrual syndrome, eczema, rheumatoid arthritis, migraine, menopause symptoms, chronic fatigue and irritable bowel syndrome. Herbs had been and still used in the treatment of typhoid fever, malaria, infertility, fever, waist pain, chest pains, pile insomnia, ulcer, carbuncle, dizziness, blood prostration etc (Coon et al., 2002). Tapsel et al. (2006) and Castleman (2001) have independently reported on the in vitro applications of plants extracts in the treatment of diseases associated with Mycobacterium tuberculosis, Staphylococcus aureus and several other gram positive bacteria and fungi. It has been claimed that the active components in some plants act by inhibiting bacterial DNA dependent RNA polymerase inhibition of cell wall synthesis, damage to the cytoplasm membrane, inhibition of nucleic acid and protein synthesis and inhibition of specific enzyme system of microorganisms (Barret et al., 1999).

During preparation, handling and storage of herbs by local herbalist, the chances of the final products being contaminated is very high. The roots, stems, barks and leaves of plants harbour a lot of microorganisms (Adeleye *et al.*, 2005; Braide *et al.*, 2008). In most cases the water used for washing and preparation of the herbs may not be sterile. During drying soil and air microorganisms may recontaminate the final products.

In Nigeria herbal practitioners have capitalized on the poor health conditions of the masses and high cost of synthetic orthodox medicine by organizing herbal trade fare indiscriminately. The probability of a patient on herbal remedies contracting more deadly diseases cannot be totally ruled out considering the unhygienic and crude method of production and storage. This report evaluates the microbiological status of some herbal remedies consumed by vast population of Nigerians. The antibiogram of the bacterial isolates was also determined.

MATERIALS AND METHODS

Description and collection of samples

Ten herbal samples neatly packaged in sachets and bottles were randomly purchased from trade fare centers, herbal stores and motor parks in Owerri, Imo State, Eastern Nigeria. The herbs are used in the treatment of typhoid fever, sexually transmitted diseases, pile, stomach aches, diabetes, headache, skin infection, toothache among others.

Preparation and Inoculation of Samples

Ten grams of finely grind powder and ten milliliters of liquid samples were dispersed in 90mls of peptone water to obtain 10⁻¹ dilution. Further dilutions were made decimally until 10⁻⁸ dilution was obtained (Pelczar and Chan, 1977; Beishir, 1987; Pelczar *et al.*, 1993). Aliquot portion (0.1ml) of the 7th and 8th dilution was inoculated onto MacConkey and Nutrient agar respectively. The same quantity of the 5th dilution was inoculated onto Potato Dextrose Agar (PDA). Inocula were spread evenly and plates incubated at appropriate temperature and time (Beishir, 1987; Cheesbrough, 2000).

Enumeration and Characterization of Isolates

Bacteria count was done using a Gallenkamp colony counter while fungi count was done with the aid of hand lens. Total colony count was expressed as colony forming units per gram/milliliters for powder and liquid sample respectively. Isolates were characterized on the basis of colonial, microscopic and biochemical methods (Harrigan and McCance, 1990; Prescott *et al.*, 1999; Abbey, 2007). The identities of the isolates were determined with reference to standard manuals (Barnett and Hunter, 1987; Buchannan and Gibbon, 1974, Harrigan and McCance, 1990).

Antibiotic Susceptibility Test

This was done by adopting Kirby-Bauer disc diffusion method in accordance with McFarland standard. Oxoid disc impregnated with different concentrations of the antibiotics was placed on a 24h old culture plate of three bacteria isolated from HMP. Zone of inhibition (mm) was recorded after 48h (Cheesbrough, 2000).

Table 1 show the total microbial population obtained from three culture media. The microbial load is high above recommended limit (WHO, 1998, 2000). Colonial and microscopic characteristics of bacterial isolated on nutrient are shown in Table 2. Biochemical characteristics of the bacterial isolates from the herbal products are shown in Table 3.

The cell morphologies and microscopic characteristics as well as biochemical characteristics of bacteria isolated on MacConkey agar is shown on Table 4and Table 5 respectively. Table 6 show the colonial and microscopic characteristics of fungities isolated on the herbal remedies.

Table 7 show the antibacterial susceptibility test of three bacteria isolated from the products. The percentage occurrence of bacteria and fungi species isolated on the herbal products is shown in Fig. 1 and Fig 2.

RESULTS

Table 1: Total microbial population from Herbal materials

Sample codes	Total bacterial counts	Total Bacteria counts	Total Fungal counts
	on nutrient agar	on MacConkey agar	on PDA
HEBA	2.56×10^{11}	1.7×10^9	6.5×10^{9}
HEBB	1.98×10^{11}	2.5×10^{9}	2.9×10^{9}
HEBC	2.01×10^{11}	7.3×10^{9}	3.6×10^{9}
HEBD	4.1×10^{10}	1.87×10^{10}	1.55×10^{10}
HEBE	2.61×10^{11}	4.0×10^{9}	1.27×10^{10}
HEBF	7.6×10^{8}	1.0×10^{7}	6.8×10^{7}
HEBG	4.3×10^{7}	1.0×10^{7}	4.6×10^{7}
HEBH	3.8×10^{8}	7.0×10^{7}	7.2×10^{7}
HEBI	8.0×10^{7}	8.0×10^{7}	9.5×10^{7}
HEBJ	6.0×10^{7}	2.0×10^{7}	3.0×10^{7}

Table 2: Colonial and microscopic characteristics of bacteria isolated on nutrient agar

Colony Code	Colonial Features	N	Mot Gram Stain	Spore	Flagellum	Capsule	Probable Identity
HEBAI	Shiny and smooth goldenyellowcolonies	-	+S	-	-	-	Staphylococcus sp
HEBA2	Shiny and smooth cream colonies	-	+S	-	-	-	Enterococcus sp
HEBB1	Shiny and smooth golden yellow colonies	-	+S	-	-	-	Staphylococcus sp
HEBB2	Shiny and smooth cream colonies	-	+S	-	-	-	Enterococcus sp
НЕВВ3	Small, smooth and shiny yellow colonies	-	+S	-	-	-	Micrococcus sp
HEBB4	Large flat irregular cream colonies	+	+R	`+	+	-	Bacillus sp
HEBC1	Shiny and smooth golden yellow colonies	-	+S	-	-	-	Staphylococcus sp
HEBC2	Large flat irregular cream colonies	+	+R	`+	+	-	Bacillus sp
HEBD1	Shiny and smooth golden yellow colonies	-	+S	-	-	-	Staphylococcus sp
HEBD2	large flat irregular Cream colonies	+	+R	+	+	- Bacillu	s sp
HEBE1	Small umbonate Cream colonies	-	+R	-	-	- Corynebo	
HEBFI	large flat irregular Cream colonies	+	+R	+	+	- Bacillu	
HEBF2	Small smooth and Shiny yellow Colonies	-	+S	-	-	- Microco	eccus sp
HEBF3	Shiny and smooth Cream colonies	-	+S	-	-	- Entero	coccus sp
HEBF4	shiny and smooth Golden yellow colonies	-	+S	-	-	- Staphyloo	eoccus sp
HEBGI	large flat irregular Cream colonies	+	+R	+	+	- Bacillu	s sp
HEBG2	Shiny and smooth Cream colonies	-	+S	-	-	- Enterococ sp	cus
HEBG3	Shiny and smooth Golden yellow Colonies	-	+S	-	-	- Staphyloco sp	ccus
HEBH1	large flat irregular Cream colonies	+	+R +	+	-	Bacillus s	,
HEBH2	Shiny and smooth Cream colonies	-	+S	-	-	- Enterocoo	ecus

Research Journal in Engineering and Applied Sciences (ISSN: 2276-8467) 2(1):35-42 Evaluation of the Microbiological Status and Antibacterial Susceptibility Pattern of Some Herbal Remedies Administered Orally in Nigeria

НЕВН3	Small smooth and Shiny yellow Colonies	-	+S	-	-	- Micrococcus sp
HEBI1	large flat irregular Cream colonies	+	+R	+	+	- Bacillus sp
HEBI2	Small smooth and Shiny yellow Colonies	-	+S	-	-	- Micrococcus sp
HEBI3	Shiny and smooth Cream colonies	-	+S	-	-	- Enterococcus sp
HEBJ1	large flat irregular Cream colonies	+	+R	+	+	- Bacillus sp
HEBJ2	Shiny and smooth Cream colonies	-	+S	-	-	- Enterococcus sp

Mot, motility; R, rod shaped; S, spherical shsped.

Table 3: Biochemical characteristics of bacteria isolated in nutrient agar

Colony Code	CAT		OXI	COAG	IN	MR	VP	CIT	GLU	SUC	MAL	LAC	MANN	IDENTITY OF ISOLATES
HEBAI	+		-	+	-	+	-	-	+	+	+	+	+	Staphylococcus aureus
HEBA2	-		-	-	_	+	_	-	+	+	+	+	+	Enterococcus
HEBB1	+		_	+	_	+	_	_	+	+	+	+	+	faecalis Staphylococus
HEBB2	_		-	-	_	+	_	-	+	+	+	+	+	aureus Enterococcus
HEBB3	+		_	-	_	+	_	+	-	_	_	-	-	faecalis Micrococcus
HEBB4	+		_	_	_	_	+	+	+	+	+	+	_	luteus Bacillus subtilis
HEBC1	+		-	+	-	+	-	-	+	+	+	+	+	Staphylococcus aureus
HEBC2	+		-	-	-	-	+	-	+	+	+	+	-	Bacillus subtilis
HEBD1	+		-	+	-	+	-	-	+	+	+	+	+	Staphylococus aureus
HEBD2 HEBE1	++		-	-	-	-	+	++	++	+	+	++	+	Bacillus subtilis Corynebacterium
HEBF1	+		-	-	-	-	+	+	+	+	+	+	-	sp Bacillus subtilis
HEBF2	+		-	-	-	+	-	+	-	-	-	-	-	Micrococcus
														luteus
HEBF3	-	-	-	-	+	-	+		+	+	+	+	+	Enterococcus faecalis
HEBF4	+	-	+	-	+	-	-		+	+	+	+	+	Staphylococus aureus
HEBG1	+	-	-	-	-	+	+		+	+	+	+	-	Bacillus subtilis
HEBG2	-	-	-	-	+	-	+		+	+	+	+	+	Enterococcus faecalis
HEBG3	+	-	+	-	+	-	-		+	+	+	+	+	Staphylococus aureus
HEBH1	+	-	-	-	-	+	+		+	+	+	+	-	Bacillus subtilis
HEBH2	-	-	-	-	+	-	+		+	+	+	+	+	Enterococcus faecalis
NAH3	+	-	-	-	+	-	+		-	-	-	-	-	Micrococcus luteus
HEBI1	+	-	-	-	-	+	+		+	+	+	+	-	Bacillus subtilis
HEBI2	+	-	-	-	+	-	+		-	-	-	-	-	Micrococcus luteus
HEBI3	-	-	-	-	+	-	+		+	+	+	+	+	Enterococcus faecalis
НЕВЈІ	+	-	-	-	-	+	+		+	+	+	+	-	Bacillus subtilis
HEBJ2	-	-	-	-	+	-	+		+	+	+	+	+	Enterococcus
														faecalis

Cat, catalase; Oxi, oxidase; Coag, coagulase; In, indole; MR, methyl red; VP, Voges Proskaeur; Cit, citrate; Glu, glucose; Suc, sucrose; Mal, maltose; Lac, lactose; Mann, mannitol.

Table 4: Cell Morphology and Microscopic Characteristics of Bacteria Isolated in MacConkey Agar

Colony Code	Colonial features	Motility	Gram Stain	Spore	Flagellum	Capsule	Probable Identity
HEBAX	Round pink colonies	-	+S	-	-	-	Enterococcus sp
HEBAY	Pink umbonate	-	+R	-	_	-	Corynebacterium sp
	colonies						_
HEBBX	Round pink colonies	-	+S	-	_	-	Enterococcus sp
HEBBY	Irregular grey	+	+R	+	+	-	Bacillus sp
	colonies						
HEBCX	Round pink colonies	-	+S	-	-	-	Enterococcus sp
HEBCY	Irregular grey	+	+R	+	+	-	Bacillus sp
	colonies						
HEBDX	Rose pink colonies	-	+R	-	-	-	Staphylococcus sp
HEBDY	Pink umbonate	-	+R	-	-	-	Corynebacterium sp
	colonies						
HEBEX	Round pink colonies	-	+S	-	-	-	Enterococcus sp
HEBEY	Pink umbonate	-	+R	-	-	-	Corynebacterium sp
	colonies						
HEBFX	Pink umbonate	-	+R	-	-	-	Corynebacterium sp
	colonies						
HEBGX	Round pink colonies	-	+S	-	-	-	Enterococcus sp
HEBHX	Irregular grey	+	+R	+	+	-	Bacillus sp
	colonies						
HEBHY	Round ping colonies	-	+S	-	-	-	Enterococcus sp
HEBHZ	Pink umbonate	-	+R	-	-	-	Corynebacterium sp
	colonies						
HEBIX	Irregular grey	+	+R	+	+	-	Bacillus sp
	colonies						
HEBIY	Pink umbonate	-	+R	-	-	-	Corynebacterium sp
	colonies						
HEBJX	Irregular grey	+	+R	+	+	-	Bacillus sp
	colonies						
HEBJY	Rose pink colonies	-	+S	-	-	-	Staphylococcus sp

Table 5: Biochemical characteristics of bacteria isolated in MacConkey Agar

Colony Code	Cat	Oxi	Coag	In	MR	VP	CIt	Glu	Suc	Mal	Lac	Mann	Identity of Isolate
HEBAX	-	-	-	-	+	-	+	+	+	+	+	+	Enterococcus faecalis
HEBAY	+	-	-	-	-	+	+	+	+	-	+	+	Corynebacterium sp
HEBBX	-	-	-	-	+	-	+	+	+	+	+	+	Enterococcus faecalis
HEBBY	+	-	-	-	-	+	+	+	+	+	+	-	Bacillus subtilis
HEBCX	-	-	-	-	+	-	+	+	+	+	+	+	Enterococcus faecalis
HEBCY	+	-	-	-	-	+	+	+	+	+	+	-	Bacillus subtilis
HEBDX	+	-	+	-	+	-	-	+	+	+	+	+	Staphylococcus aureus
HEBDY	+	-	-	-	-	+	+	+	+	-	+	+	Corynebacterium sp
HEBEX	-	-	-	-	+	-	+	+	+	+	+	+	Enterococcus faecalis
HEBEY	+	-	-	-	-	+	+	+	+	-	+	+	Corynebacterium sp
HEBFX	+	-	-	-	-	+	+	+	+	-	+	+	Corynebacterium sp
HEBGX	-	-	-	-	+	-	+	+	+	+	+	+	Enterococcus faecalis
HEBHX	+	-	-	-	-	+	+	+	+	+	+	-	Bacillus subtilis
HEBHY	-	-	-	-	+	-	+	+	+	+	+	+	Enterococcus faecalis
HEBHZ	+	-	-	-	-	+	+	+	+	-	+	+	Corynebacterium sp
HEBIX	+	-	-	-	-	+	+	+	+	+	+	-	Bacillus subtilis
HEBIY													Corynebacterium sp
HEBJX	+	-	-	-	-	+	+	+	+	+	+	-	Bacillus subtilis
LIEDIV													Ctanbul account aureus

Table 6: Colonial and microscopic characteristics of Fungi isolated on Potato Dextrose Agar Medium

Colony Code	Colonial Characteristics	Microscopic Appearance	•
HEBAA	Round flat cream	Gram positive large oval	Saccharomyces cerevisiae
	colonies	budding cells	
HEBAB	Irregular cream colonies	Gram positive ellipsoidal	Saccharomyces ellipsoideus
		budding cells	
HEBBA	Round flat cream colonies	Gram positive large oval	Saccharomyces cerevisiae
		budding cells	
HEBBB	Irregular cream colonies	Gram positive ellipsoidal	Saccharomyces ellipsoideus
		budding cells	
HEBBC	Short white filamentous hyphae	Non-septate hyphae	Mucor sp
HEBCA	Irregular cream colonies	Gram positive ellipsoidal	Saccharomyces ellipsoideus
		budding cells	
HEBCB	Round flat cream colonies	Gram positive large oval	Saccharomyces cerevisiae
		budding cells	
HEBDA	Short white filamentous hyphae	Non- septate hyphae	Mucor sp
HEBDB	Tall white filamentous hyphae	Non- septate hyphae	Rhizopus stolonifer
HEBDC	Black spores on short white	Hyphae septate conidia on	A.flavus
	hyphae	sterigma	

Table 6: Colonial and microscopic characteristics of Fungi isolated on Potato Dextrose Agar Medium (continuation)

HEBEA	Round flat cream colonies	Gram positive large oval	Saccharomyces cerevisiae
		budding cells	
HEBEB	Irregular cream colonies	Gram positive ellipsoidal budding cells	Saccharomyces ellipsoideus
HEBEC	Short white filamentous hyphae	Non-septate hyphae	Mucor sp
HEBED	Green Spores with white hyphae	Hyphae Septate conidia arranged like mop-head	P. notatum
HEBFA	Short white filamentous hyphae	Non-separate hyphae	Mucor sp
HEBFB	Tall white filamentous hyphae	Non-separate hyphae	Rh. stolonifer
HEBFC	Round flat cream colonies	Gram positive large oval budding cells	Saccharomyces cerevisiae
HEBGA	Irregular cream colonies	Gram positive ellipsoidal budding cells	Saccharomyces ellipsoideus
HEBGB	Round flat cream colonies	Gram positive large oval budding cells	Saccharomyces cerevisiae
HEBGC	Green Spores with white hyphae	Hyphae Septate conidia arranged like mop-head	P. notatum

Table 7: Antibiotic susceptibility test of three bacteria isolated on herbal medicinal products

Antibiotics (µg)		zone of inhibition (mm)	
	Staphlocococcus aureus	Bacillus subtilis	Enterococcus faecalis
AMX	-	30	20
OFL	15	18	-
STR	-	10	12
CHF	30	-	10
CEF	20	-	-
GEN	12	14	16
PFX	12	-	10
COT	-	20	-
CPX	16	22	14
ERY	18	10	10

AMX, amoxycilin (25μg); OFL, ofloxacin (5μg); STR, streptomycin (30μg); CHF, chloramphenicol (μg); CEF, ceftriazone (30μg); GEN, gentamycin (10μg); PFX, pefloxacin (5μg); COT, cotrimaxozole (25μg); CPX, ciprofloxacin (10μg); ERY, erythromycin (5μg)

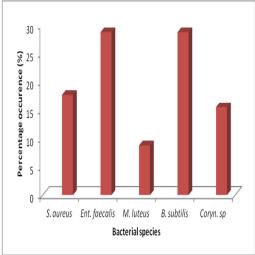


Fig 1: Percentage occurrence of bacteria isolated from herbal samples

DISCUSSION

The herbal medicinal products analyzed showed gross contamination of bacteria and fungi (Table 1). Five genera of bacteria and six genera of fungi were isolated (Tables 2, 3, 4, 5, 6). A total of forty five bacterial species were isolated. Eight (17.7%) were *Staphylococcus aureus*, thirteen (28.8%) were *Enterococcus faecalis*, four (8.8%) were *Micrococcus luteus*, thirteen (28.8%) were *Bacillus subtilis* and

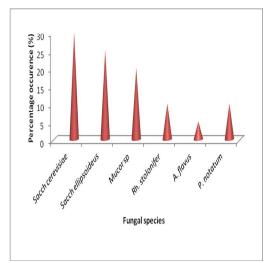


Fig 2: Percentage occurrence of fungi isolated from herbal samples

seven (15.5%) were *Corynebacterium* sp (Fig 1). Out of twenty fungal species isolated from the herbal medicinal product, six (30%) were *Saccharomyces cerevisiae*, five (25%) were *Saccharomyces ellipsoideus*, four (20%) were *Mucor* sp and two (10%) were *Penicillium notatum* (Fig 2). Some of the bacteria and fungi isolated on the herbal medicinal products are normal flora of the soil, water and vegetation (Pelczer *et al.*, 1986; Nester *et al.*, 1998;

Braide *et al.*, 2008); atmosphere, harvesting, poor drying, processing, storage and improper handling influence the microbiological quality of herbal drugs (Okunlola *et al.*, 2007).

Okunlola *et al.* (2007) and Abba *et al.* (2009) had independently reported large scale contamination of herbal remedies sold in Benin and Kaduna metropolis respectively. The high incidence of *Staphylococcus aureus* was also reported by Okunlola *et al.* (2007) and Abba *et al.* (2009).

These bacteria constitute the intestinal flora of human and other animals and are therefore used as indicator organism and as an index of possible contamination by human pathogen (Prescott et al., 1999; Nester et al., 1998). Enterococcus faecalis may cause infections such as urinary tract, biliary tract, ulcer and occasionally endocarditis ormeningitis (Cheesbrough, 2000; Prescott et al., 1999; Nester et al., 1998). Bacillus sp produces heat stable spores and causes food borne intoxication when ingested (Cheesbrough, 2000; Pelczar et al., 1993). Corynebacterium sp produces toxins which can cause toxaemia with fetal cardiac and neural complication (Cheesbrough, 2000; Pelczar et al., 1986).

The significance of the faecal bacteria is that if these specific bacteria are present, then other harmful microorganism may also be present such as *Salmonella* (Forest, 2004).

Fungal species such as *Aspergillus Penicillium, Mucor* and *Rhizopus* may endanger the health of consumers as they have been implicated in human pathogenicity. They produce potent mycotoxins that have been implicated in carcinogenicity, dermatitis, hepatotoxicity and nephrotoxicity (Pelczar *et al.*, 1997; Frazier and Westhoff, 1978).

Staphylococcus aureus, Enterococcus faecalis and Bacillus subtilis responded positively (susceptible) to seven out the ten antibiotics and therefore strongly recommended for the treatment of suspected cases of infections arising from the intake of contaminated herbal remedies.

Good manufacturing practice (GMP) is strongly advocated to produce herbal remedies with wholesome quality.

CONCLUSION

Large microbial population and types were isolated from some herbal medicines consumed in Nigeria. The pathogenic effects of some isolates have been discussed. The need for constant monitoring and control of the standard of herbal remedies available in the Nigerian market is strongly advocated to curb the menace and maintain correct quality, safety and efficacy of the final herbal preparation

REFERENCES

Abba, D., Inabo, H.I., Yakubu, S.E, and Olontola, S.O. (2009). "Contamination of Herbal Medicinal Product Marketed in Kaduna Metropolis with Selected Pathogenic Bacteria". "African Journal of Traditional, Complementary and Alternative Medicine", **6**(1)70 – 77.

Abbey, S.D. (2007). Foundation in Medical Mycology, 4th edn Kenalf Publication, Port Harcourt, Nigeria, p 22-30.

Adeleye, I. A., Okogi, G and Ojo, E.O (2005). Microbial contamination of herbal preparation in Lagos, Nigeria. Journal of Health Population and Nutrition, **23**(3): 296-297.

Barnnet, H.I. and Hunters, B.B., (1987). Illustrated Genera of Imperfecti Fungi, 4th Edition Macmillan Publishing Company New York, USA, pp. 106, 130.

Barret, B.J., Kafer, D. and Rabago, D. (1999). "Assessing the Risk and Benefits of Herbal Medicine and Overview of Scientific Evidence" C. Attern Health Med., **4**:40 – 49.

Beishir, I. (1987). Microbiology in Practice. A Self-Instructions Laboratory Course, 4th edn. Harper and Row Publishers, New York, pp 96-111, 120-130, 238-272.

Braide, W., Sokari T. G., Nwaoguike, R.N. and Okorondu, S. I. (2008) "Microbes from soil Associated with Metamorphosing Moth Larvae, Current Trends in Microbiology, **4**:11 – 14.

Buchannan, R. E. and Gibbon, N. E. (1974). Bergeys Manual of Determination Bacteriology, Williams and Wilkin Baltimore, USA.

Castleman, M. (2001). "The New Healing Herbs". The Classic Guide to Nature's Best Medicine Featuring the Top 100 Time-Tested Herbs' Rodale Chess Brought.

Cheesbrough, M. (2000). District Laboratory Practice in Tropical Countries, Part 2, Cambridge University Press, UK. pp 157-234.

Coon, J.T., Ernest, E. and Parax, G. (2002) "A systematic Review of Adverse Effects and Drug interaction. Drug Safety, 5:323 – 344.

Forest, J (2004). Faecel coliforms Hygienic Laboratory Manual Vol 36. University of Lowa, pp. 2 – 4.

Frazier, W.F. and Westhoff, P.C. (1978). Food Microbiology, 3rd Edition, Tata McGraw Hill Publishing Co-Limited, New Delhi, India pp. 17 – 64, 456.

Harrigan, F.W and MacCance, M.E. (1990). Laboratory Methods in Food and Dairy Microbiology, 8th Edition Academic Press Inc, London Pp. 7 – 23, 286 – 303.

Nester, E., W., Roberts, C. E., Pearsall, N. N., Anderson, D.G. and Nester, M.T. (1998). Microbiology. A Human Perspective, 2nd Edition WBC/McGraws Hills New York, USA, pp. 434 -435.

Okunlola, A., Babatunde, A.A, and Oluwatoyin, A.O. (2007). "Evaluation of Pharmaceuticals and Microbial Quality of some Herbal Medicinal Product in South Western Nigeria" Tropical Journal of Pharmaceutical Research, **61** (1):661-670.

Prescott, L.M., Harley, J.P and Klein, D.A (1999). Isolation of Pure Bacterial Culture from Specimen: Microbiology International, 4th Edition: Boston WCB McGraw's Hill Companies: pp. 714 – 796.

Pelczar, M.J. and Chan, E.C.S. (1977). Laboratory Exercise in Microbiology. Bank Pot. Inc, New York, USA.

Pelczar, M.J (Jr)., Chan, E.C.S. and Krieg, N.R. (1986). Microbiology, 5th ed. McGraw-Hill Book Co., New-York, USA. pp.37-50,133-146.

Pelczar, M.J (Jr)., Chan.E.C.S. and Krieg, N.R. (1993). Microbiology: Concepts and Applications, 1st edn. McGraw-Hill Inc., New York, USA. pp. 80-100, 158-161,370.

Sofowara, A. (1993). "Medicinal Plant and Traditional Medicine in Africa" Ibadan Spectrum Books Ltd Pub, Ibadan, Nigeria. pp. 50 – 195.

Tapsel, L.C., Hemphill, I. and Cobiac, L. (2006). "Health Benefits of Herbs and Spices. The Past, the Present, the Future" Med. J. Aust. **185** (4): 24.

World Health Organization, WHO (1998). "Regulatory Situation of Herbal Medicine: A World Wide Review" Retrieved July 1, 2012 from http://en/Wikipedia/wiki.

World Health Organization (2000). 'General Guidelines' for Methodologies on Research and Evaluation of Traditional Medicine Retrieved, June 2012 from http/en/Wikipedia.

http/www.who.int/mediacentre/factsheets/fs/34/eni.