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ABSTRACT: This study evaluated the enzymatic conversion of alkaline peroxide oxidative  pretreatment of an 

invasive lignocellulosic biomass (siam weed) to reducing sugar, amenable  to further microbial effects  at the 

downstream processing. Using a statistical design of experiments approach (response surface methodology), 

optimum pretreatment conditions of 43.7 oC, 9.3 h, and 0.4% H2O2 , and enzymatic hydrolysis conditions of 25 

FPU cellulase/g treated biomass, 50 oC hydrolysis temperature, 2% biomass loading, and  72 h hydrolysis 

period, 391.3 mg/g reducing sugar yield was achieved and validated. At the optimized pretreatment and 
enzymatic conditions,  the conversion of treated biomass to untreated biomass was about a 6-fold increase. 
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I. INTRODUCTION 
Concerns about exhaustion of the world’s reserves of fossil fuels and about the negative impacts, such 

as greenhouse gas emissions associated with the combustion of these fuels have resulted in an increasing 

worldwide interest in using fuels from renewable resources, for instance ethanol [1]. However, a reduction of 

the ethanol production cost is desirable to improve the competitiveness. As the sugar and starch-containing 
feedstock’s traditionally used for ethanol production represent the largest share of the total production cost [2], 

the use of cheaper and more abundant raw materials is desirable for increasing the production. In recent years, 

the worldwide trends toward scientific and technological advances in the field of new fuels point to the 

importance of more efficient utilization of cellulosic feedstock’s (agro-industrial and other residues) as raw 

material in the ethanol production process. Lignocellulosic biomass (cellulosic biomass) is favourable because 

of its high abundance, low cost, and high-energy potential. Lignocellulose consists of three major components: 

cellulose, hemicellulose, and lignin [3,4]. These components are contained within the primary and secondary 

cell walls of plants. A huge diversity of lignocellulosic wastes is available around the world. Sugarcane bagasse, 

rice hulls, peanut shells, and cassava stalks are agricultural and agro-industrial residues that could be considered 

for bioconversion in tropical countries. These lignocellulosic residues are available on a renewable basis as they 

are generated during harvesting and processing of agricultural and forest products; sugar cane, rice, peanuts, 

cassava, wood residues (including sawdust and paper mill discards), grasses, waste paper, straws of different 
grains, stover, peelings, cobs, stalks, nutshells, non food seeds, domestic wastes (lignocelluloses garbage and 

sewage), food industry residues, municipal solid wastes [5]. Pretreatment and enzymatic conversion of 

lignocellulosics are crucial steps to overcome lignocelluloses recalcitrance in the conversion to ethanol [6]. 

Lignocellulosic materials contain polymers (cellulose and hemicelluloses) needed to be broken down through 

hydrolysis (pretreatment and enzymatic) in other for the monosaccharides and other chemicals to be accessible. 

Alkaline peroxide oxidation pretreatment has been studied extensively for mostly agricultural residues and very 

few woody residues [7–14]. Scientific literature also reported the treatment of siam weed using different 

chemical methods as mild sulphuric acid, alkaline, and peracetic acid [15]. The hydrolysis of cellulolytic 

materials with diluted acids is well known, but this process generates toxic products of hydrolysis. Other 

negatives factors related to the acid hydrolysis are the corrosion and the high amounts of salts resulting from the 

acid neutralization. Enzymatic hydrolysis is preferred because of the higher conversion yields and less 
corrosive, less toxic conditions compared to an acid hydrolysis. 
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This study investigated the effect of alkaline sodium hydroxide under oxidative conditions (using 

hydrogen peroxide) on pretreatment of siam weed in order to cause appreciable enzymatic digestibility of 
treated biomass. Optimum conditions were predicted and validated for the enzymatic conversion of the alkaline 

peroxide oxidation pretreated siam weed. Furthermore, at the optimized enzymatic conditions, effect of the 

variation in hydrolysis temperature (at 45 oC) was also evaluated. 

 

II. MATERIALS AND METHODS 
Raw material: The Siam weed (Chromolaena odorata), is an invasive exotic weed [15], is typically a fast 

growing perennial herb. Raw material preparation from the field to the laboratory before compositional analysis 

was carried out by harvesting the shoots (leaves and stems) in late October, 2012 from an open fallow land 

around Ota town (6o40'N 3o08'E), South west, Nigeria (the growth period of the plant on the land was monitored 
to be 5 months). The leaves were chopped off from the branches manually. The stems were cut to 5±1 cm equal 

lengths and dried in an open space (35±2 oC) for 3 days (8 h each day)(Ayeni et al 2014; under review). Size 

reduction was further performed on the dried mass by knifing and milling. Samples were sieved to yield 

different size particles [16], and dried in a convection oven at 105 oC for 3 h to a dry matter content of 88%. 

Milled Siam weed stem was screened in the size range of 0.25 to 1 mm. The screened sample within the size 

range of 1 mm and 0.5 mm were retained while smaller particles were discarded because they corresponded 

mainly to sand. The bigger size fractions were manually mixed for 10 min to obtain an homogeneous equal 

proportions of sizes (Fig. 1). The raw biomass was stored in plastic bags and kept in a refrigerator until ready for 

use. 

 

(a) (b) 
 

               Fig. 1: Harvested siam weed (a), and milled siam weed stem (b) 

 
Experimentation: MINITAB 15 statistical software (PA, USA) was used for the design of the pretreatments 

(DOE) using response surface methodology (RSM)( 23-central composite design (CCD) [17]. Design of 

experiments with MINITAB [18] was made up of 20 base runs (8 cube points, 4 centre points in cube, 6 axial 

points, and 2 centre points in axial, 2 base block, all in duplicate, resulting in a total of 40 experiments. The 

objective was to evaluate the influence of reaction temperature (X1; Low level: 50 oC and High level: 70 oC), 

pretreatment time (X2; Low level:4 h and High level: 8 h), and hydrogen peroxide concentration (X3; Low 

level:1% and High level: 3%) on enzymatic digestibility of treated biomass. Table 1 shows the experimental 

design matrix. 

  

Raw biomass pretreatment: 5 g of dried siam weed biomass were mixed with different concentrations of 100 

mL hydrogen peroxide-water solution in a 500 mL beaker at pH 11.5. The distilled water contained H2O2 

volume per volume distilled water of 0.32%, 1.00%, 2.00%, 3.00%, and 3.68%. The pH of solution was 
maintained to 11.5 by adding equivalent amount of sodium hydroxide pellets. Agitation of mixtures was made 

to occur by using a magnetic stirrer. Pretreatment occurred by varying the reaction temperature and reaction 

time.  After each pretreatment time, the slurry was cooled to room temperature and separated into liquid and 

solid fractions by vacuum filtration. The solid part was washed with distilled water until it reached neutral pH. 

A portion of the solid was dried to a constant weight in a convention oven at 105 oC  in order to estimate percent 

total solids [19]. The remaining wet treated materials were kept in the refrigerator for further  determination of 

the extent of enzymatic hydrolysis and the optimum reducing sugar yields. Material balance for the residual total 

solids and solubilized fraction after pretreatment was evaluated. Each experiment was carried out in duplicate. 

 

Compositional analysis of raw biomass: Extractives were determined by means of the Soxhlet extractor on 

2.5 g of dry biomass using 150 mL acetone as solvent. The Soxhlet extractor was set up with the boiling flask 
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positioned on the heating mantle set at 70 oC. Each cycle on the extractor was maintained at 23 min for 4 h. At 

the end of each periods, the samples were air dried for few minutes at room temperature and further dried to 
constant weight at 105 oC in a convection oven. The extractives content was calculated as the difference in 

weight between the raw and extracted material [20–21]. The hemicellulose content was determined by weighing 

1 g of dried biomass from the extractive analysis into a 250 mL Erlenmeyer flask and then 150 mL of 500 

mol/m3 NaOH solution was added. The mixture was boiled for 3 h and 30 min with distilled water [7, 22]. The 

hemicellulose content was obtained as the difference between the sample weight before and after boiling the 

extracted biomass with NaOH. Lignin composition was determined by weighing into glass test tubes 0.3 g of 

dry extracted biomass and adding 3 mL of 72% H2SO4. Acid hydrolysis was made to occur by keeping the 

samples at room temperature for 2 h with mixing of samples every 30 min. 84 mL of distilled water was added 

to each test tube after the 2 h acid hydrolysis step bringing the total volume to 87 mL. The samples were 

autoclaved for 1 h at 121 oC. After the second weak acid hydrolysis step, the hydrolyzates were cooled to room 

temperature and separated by vacuum filtration. The acid insoluble lignin was determined by drying the residue 

at 105 oC for 4 h and accounting for ash by burning the insoluble residue at 575 oC in a muffle furnace. The 
difference in weight of the acid insoluble residue when ash content was subtracted is the acid insoluble lignin 

[23]. The acid soluble lignin fraction was determined by measuring the absorbance of the acid hydrolyzed 

samples at 320 nm [23]. The lignin content was calculated as the summation of acid insoluble lignin and acid 

soluble lignin. The cellulose content was calculated by difference, assuming that extractives, hemicellulose, 

lignin, ash, and cellulose are the only components of the entire biomass [22]. The composition of the raw siam 

weed(wt.%) was estimated as; extractives content –4.82%, hemicellulose content –29.94%, acid insoluble lignin 

content –23.70%, soluble lignin content –0.52%, Ash content –0.97%, cellulose content –40.05%. 

 

Enzymatic digestibility:  The pretreated washed solid fractions were hydrolyzed  by enzymes to determine 

the efficiency of substrate conversion. Enzymatic conversion was performed  at 2% dry biomass content of total 

saccharification volume. 5 ml sodium citrate buffer at 0.1 M concentration and pH of 4.8 was  added to the wet 
materials in 50 ml culture tubes. A preparation of Trichoderma reesei cellulase enzyme system  with an activity 

of 57.8 filter paper unit (FPU)/ml was added at a loading of 25 FPU/g  dry biomass. A total volume of 20 ml 

mixture was attained by adding an appropriate volume of  distilled water to the citrate buffer and wet biomass. 

After an hydrolysis period of 72 h, 0.5 ml aliquot was sampled and analysed for reducing sugar. Experiments 

were conducted at 50 oC in a non-shaking incubator. To quench the hydrolysis, the samples were boiled for 15 

min and then cooled in an ice bath. After hydrolysis, the samples were centrifuged at 4000 revolution/min for 5 

min to remove residual solids. Fermentable sugars were estimated as reducing sugar with 3,5, dinitrosalicylic 

acid method [24] using glucose as standard. Reducing sugar yields from enzymatic hydrolysis was calculated 

based on mg equivalent glucose per g dry substrate (based on equivalent glucose in the hydrolyzed sample) [25].  

              …(1) 

where Y = reducing sugar yield (mg equivalent glucose/g dry biomass) 

S = sugar concentration in diluted sample (mg equivalent glucose/mL) 

D = dilution factor 

V = working volume (mL) 
W = weight of dry treated biomass (g) 

 

Design of experiments: The objective was to evaluate the influence of reaction temperature (X1), 

pretreatment time (X2), and hydrogen peroxide concentration (X3) on the APO process such that the 

pretreatment will enhance enzymatic hydrolysis of treated materials to reducing sugars. They were chosen for 

study as these parameters can influence the fractionation of the solid material. Table 2 shows the design matrix 

and both the experimental and predicted results of the reducing sugar. Temperature, time, and oxidation have 

been reported to have profound effects on ligno-cellulosic materials pretreatment [9,26]. The order in which the 

experiments were carried out was randomized. Each experiment in this study was replicated twice; reported 

results indicate the mean values of the replicated experiments. 

   The model generated as a function of  X1 (Temperature), X2 (Time), and X3 (% H2O2) variables 

(factors) on the predicted response of the reducing sugar yield (Y) is a second-order polynomial and is 
represented as follows: 

 

  +  +  +  

          +                                                                …(2) 

 

The predicted responses Y (reducing sugar yields) associated with each factor level combinations;  to 

 are coefficients to be estimated from regression, they represent the linear, quadratic and cross-products of 
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X1, X2, X3 on the responses. The MINITAB 15 (PA, USA) was used for regression analysis of experimental 

data, plotting of response surfaces and to optimize the process parameters. The coefficients in the second-order 
polynomial (equation 1) were calculated by multiple regression analysis, based on the experimentally obtained 

data, and then the predicted responses were obtained using equation (1). Analysis of variance (ANOVA) was 

used to estimate statistical parameters. 

 

III. RESULTS AND DISCUSSION 
Hydrolysis of treated biomass: The enzymatic digestibility of biomass is affected by the pretreated methods 

used and the structural modification of the biomass (e.g. lignin content, acetyl group content, and crystallinity) 
(27). The results of experiments obtained by utilizing a central composite design were analyzed by considering 

reducing sugar yields (RS) after enzymatic hydrolysis of pretreated siam weed samples. Table 1 shows the 

design matrix with the experimental and predicted RS yields for a 72 h terminal hydrolysis period. Reducing 

sugar yields did not follow a particular trend. The experimental maximum reducing sugar yield was 223 mg/g 

dry biomass. However, increasing temperature with longer pretreatment time produced more of the reducing 

sugar. For example, at temperature of 50 oC, 8 h, and 1%H2O2 (Run 20), reducing sugar yield was 205.92 mg/g. 

Also, at 60 oC, 6 h, and 0.4%H2O2, 223 mg/g reducing sugar was produced (Run 5), while at 70 oC, 4 h, and 3% 

H2O2, 194.34 mg/g RS was produced. In our previous work, comparable results were obtained on both screened 

and unscreened sugarcane bagasse under same pretreatment conditions (Ayeni et al 2014; under review), 

maximum reducing sugar attained was 285 mg/g for screened sugarcane bagasse (pretreatment conditions of 70 
oC, 4 h, and 1%H2O2) and 297.56 mg/g for unscreened sugarcane bagasse (pretreatment conditions of 50 oC, 4 h, 
and 1%H2O2).  

Optimization and validation of operating conditions: Following the result obtained from enzymatic 

hydrolysis of siam weed, the statistical software MINITAB 15 was also used to determine the coefficients of the 

second-order polynomial by multiple regression analysis as well as to build the quadratic model and the 3D 

response surface plots. The experimental results were analyzed by regression analysis consisting of the linear, 

quadratic and interaction effects which gave the following regression equation with reducing sugar yields (Y) as 

a function of pretreatment temperature, time and %H2O2. 

The model equation generated for the enzymatic hydrolysis process is given as: 

 

Y = 482.780 – 11.946X1+30.577 X2 – 165.788 X3 + 0.160X1
2 + 4.558 X2

2 + 49.111X3
2 

-1.087X1X2 + 0.326X1X3 -10.854X2X3 

R2 = 0.9568         
 …(3) 

 

When the values from X1 to X3 were substituted in equation (3), the predicted responses were obtained 

(Table 1). The P-values (probability values) are used as tools  to check the significance of each of the 

coefficients in the models, which in turn, may indicate the patterns of the interaction among the variables. The 

larger the magnitude of T and smaller the  P-value the more significant is the corresponding coefficient. From 

Table 2, temperature is statistically significant on enzymatic hydrolysis (P = 0.049), hydrogen peroxide 

concentration is also significant (P = 0.002). All the square effects are significant while only the interaction 

effect between temperature and hydrogen peroxide concentration is not statistically significant. 

 

Table 1: Design matrix of the experimental and predicted yields of reducing sugar of the pretreated siam 

weed 
Run 

Order 

Temperature 

(X1), 
o
C 

Time 

(X2), h 

H2O2 

(X3)%(v/v) 

Experimental 

(mg/g) 

Predicted 

(mg/g) 

1 43.7 6.0 2.0 89.85 92.07 

2 60.0 6.0 2.0 67.35 71.98 

3 60.0 6.0 3.6 187.78 178.60 

4 60.0 9.3 2.0 95.89 115.26 

5 60.0 6.0 0.4 223.78 227.29 

6 76.3 6.0 2.0 145.10 137.21 

7 60.0 6.0 2.0 75.15 71.98 

8 60.0 2.7 2.0 150.98 125.94 

9 60.0 6.0 2.0 69.75 71.98 

10 70.0 8.0 1.0 190.95 177.49 

11 60.0 6.0 2.0 73.95 71.98 

12 50.0 4.0 3.0 109.34 126.58 

13 50.0 4.0 1.0 118.95 119.50 

14 70.0 8.0 3.0 107.55 110.78 
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15 50.0 8.0 3.0 132.50 120.09 

16 60.0 6.0 2.0 71.30 71.98 

17 70.0 4.0 1.0 167.89 184.08 

18 60.0 6.0 2.0 72.50 71.98 

19 70.0 4.0 3.0 194.34 204.20 

20 50.0 8.0 1.0 205.92 199.84 

 

Table 2: Estimated regression coefficients and their probability values 

 

Term Coefficient T P 

Constant 482.780 2.455 0.034 

X1 -11.946 -2.245 0.049 

X2 30.577 1.461 0.175 

X3 -165.788 -4.207 0.002 

X1
2 0.160 3.878 0.003 

X2
2 4.558 4.420 0.001 

X3
2 49.111 11.907 0.000 

X1X2 -1.087 -4.101 0.002 

X1X3 0.326 0.615 0.552 

X2X3 -10.854 -4.096 0.002 

 
A 

 
 

B 

 
 

C 
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Fig. 2: Response surface plots of effects of operating variables on reducing sugar yields (mg/g dry 

biomass)A: Temperature and Time, B: Temperature and %H2O2, C: Time and H2O2. 
 

The statistical significance of the model equation using confidence interval of 95% was validated by 
the F-value for analysis of variance (ANOVA), which showed that the regressions were statistically significant 

for the treated samples (F = 24.62, P ≤ 0.000) (data not shown). The ANOVA of the models also showed the 

linear, square, and the interactive effects of factors on treatments  to be statistically significant (P ≤ 0.004). 

Analysis of variance (ANOVA) fitted for the model was required to test the significance and adequacy of the 

model. Temperature was reported to have significant effect on conversion for most lignocellulosic materials 

[9,28,29]. The coefficient of determination (R2) of the model was 0.9568, indicating again that the model was 

suitable in establishing relationships among the reaction variables. The R2 value explains that about  96% 

variability is attributed to the factors for the response Y (reducing sugar yield). This also means only 4% of the 

total variation is not explained by the model. The model equation for the response (equation 1) and the response 

surface plots (Fig. 2) were utilized in determining the optimum process conditions. 

 
The influences of individual factors on on reducing sugar yield are shown in Fig. 2(A to C).  These 

plots were obtained by holding the third variable at mid point value. Fig. 2 (A) shows the surface plot of Time 

and Temperature on sugar yields, indicating that the optimum reducing sugar yields should occur between the 

40–50 oC with increasing time between 6–9 h. The surface plots also show that optimum hydrogen peroxide 

concentration should occur very closely to 1% and 2% (Fig. 2(B) and  Fig. 1(C)). The response optimizer was 

set by maximizing with a target of 300. The upper limit was selected to be 300. Considering the minimum time, 

temperature, and %H2O2 set to 4 h, 50 oC, and 1% respectively, the optimum cumulative response was obtained 

at 43.7 oC, 9.3 h, and 0.4% H2O2. The  optimized predicted response of the reducing sugar was 415.2 mg/g with 

a desirability of 1.  The individual desirability evaluates how the settings optimize a single response. 

Desirability value of  1 represents an ideal case; zero indicates that one or more responses are outside their 

acceptable limit. A value close to 1 indicates that the settings are more effective  at maximizing the response. 

Additional sets of experiments at these specific conditions were performed to validate the optimized conditions. 
The validated reducing sugar yields at optimized pretreatment conditions was obtained to be 391.3 mg/g dry 

biomass. The experimental and predicted responses were found to be in close agreement, thus confirming the 

optimization process. 

 

Effects of variations of hydrolysis temperature at optimized conditions:  A single optimum condition for 

enzymatic digestibility may be impossible because the optimum may shift due to factors such as dry solid 

content, pH, temperature, the desired residence time, and enzyme activity. Enzymes are inhibited by the end 

products, the build-up of any of these products negatively affects cellulose hydrolysis. The maximum cellulase 

activity for most fungal derived cellulases and β-glucosidase occurs at 50 ± 5 °C and a pH of 4.0–5.0 [30]. 

Treated to untreated biomass reducing sugar yield at 50 oC with same hydrolysis conditions was about 6-fold 

increase (Fig. 3). The untreated solid material was used as the control for comparing the enzymatic digestibility 
of the treated siam weed. This showed the efficiency of pretreatment process to cause disruption to the 

lignocellulosic complex. The digestibility of treated sample at 45 oC hydrolysis temperature (at optimized 

conditions; 43.7 oC, 9.3 h, and 0.4% H2O2) was also evaluated. Under the same digestibility conditions, (25 

FPU/mL cellulase enzyme loading, pH of 4.8, time of 72 h, and 2% treated biomass loading), results showed a 

decrease of about 2-folds in the reducing sugar yield at 45 oC to 50 oC hydrolysis temperature (Fig. 3). This may 

not be unconnected to the mild pretreatment conditions on biomass and enzymatic hydrolysis conditions. Future 

studies will be directed at optimizing between the hydrolysis period, time, pH, and biomass loadings. 
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Fig. 3: 3-d Effect of temperature on treated and untreated biomass on sugar yields. Pretreatment 

conditions: 44 
o
C, 0.4%H2O2, and 9.3 h. Enzyme hydrolysis conditions: 25 FPU cellulase per g 

dry biomass,  45 
o
C and 50 

o
C  hydrolysis temperatures, pH 4.8, 20 g kg

-1
 substrate concentration. 

 

IV. CONCLUSIONS 
The study explored the feasibility of using a suitable method (alkaline peroxide oxidation) pretreatment 

for the bioconversion of  a lignocellulosic biomass (siam weed) to reducing sugar which may eventually be 

acted upon by microbes through fermentation techniques  with the aim of producing ethanol.  A 23 central 

composite design was used to determine the validated optimized pretreatment condition for the biomass as 

43.7oC, 9.3  h, 0.4% H2O2 so as to obtain 391.3 mg/g dry biomass reducing sugar yield. Enzymatic hydrolysis 

evaluated at the optimized conditions for the untreated biomass showed the efficiency of pretreatment on raw 

biomass. The reducing sugar yield of the treated to the untreated biomass was about a  6-fold increase. 
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