SYNTHESIS, CHARACTERIZATION AND EVALUATION OF NANO-MODIFIED POLYMERIC MATERIALS FROM YELLOW OLEANDA (*Thevetia peruviana*) SEED OIL

BY

SIYANBOLA, TOLUTOPE OLUWASEGUN (CUGP070185)

Department of Chemistry, School of Natural and Applied Sciences, College of

Science and Technology, Covenant University, Ota.

February, 2014

SYNTHESIS, CHARACTERIZATION AND EVALUATION OF NANO-MODIFIED POLYMERIC MATERIALS FROM YELLOW OLEANDA (*Thevetia peruviana*) SEED OIL

BY

SIYANBOLA, TOLUTOPE OLUWASEGUN

B. Sc. (UNAD); M. Tech. (FUTA)

A THESIS SUBMITTED TO THE POSTGRADUATE SCHOOL OF COVENANT UNIVERSITY, OTA, OGUN STATE, NIGERIA

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF DOCTOR OF PHILOSOPHY (PH.D) IN CHEMISTRY, Department of Chemistry, School of Natural and Applied Sciences, College of Science and Technology, Covenant University

February, 2014

DECLARATION

I, SIYANBOLA, Tolutope Oluwasegun, hereby declare that this thesis is a product of my own unaided research work. It has not been submitted, either wholly or in part, to this or any other institution for the award of any degree, diploma, or certificate. All sources of scholarly information that were used in this thesis were duly acknowledged.

J- Ala 25 - 03 - 2014

SIYANBOLA, Tolutope Oluwasegun

.....

CERTIFICATION

We certify that the thesis titled "Synthesis, Characterization And Evaluation Of Nano-Modified Polymeric Materials From *Thevetia Peruviana* Seed Oil" is an original work carried out by Mr. Siyanbola Tolutope Oluwasegun (CUGP070185) in the Department of Chemistry, Covenant University, Ota, Ogun State, Nigeria under the supervision of Prof. E.T. Akintayo, Prof O. Olaofe, and Dr. K.O. Ajanaku. We have examined and found the research work acceptable for the award of a degree of Doctor of Philosophy in Industrial Chemistry.

Ace-7. 26 - 03 - 2014Supervisor Date **Prof. E.T. Akintayo** 26 - 03 - 2014**Co-Supervisor** Date Prof. O. Olaofe **Co-Supervisor** Date Dr. K.O. Ajanaku HOD, Chemistry Date Dr. K.O. Ajanaku External Examiner Date **Prof. I.C. Eromosele** Dean, College of Science and Technology Date **Prof Loto Cleophas**

DEDICATION

This research work is dedicated to God almighty, for the provision of wisdom, personalities and agencies necessary for the success of this research work. To Him alone I give all the praise and adoration.

ACKNOWLEDGEMENTS

Unto Him that is able to do exceedingly abundantly above all that we could ever imagine or think, to Him alone be all the glory and adoration. It is in the respect of the foregoing that I without limits appreciate God almighty through Jesus for the journey so far, it has been Him and Him alone.

My Bishop, Dr. David O. Oyedepo who also doubles as the Chancellor of Covenant University is well acknowledged for his fatherly role towards me and my family. I still remember the 1999 scholarship grant you gave me and my younger brother immediately after the demise of our mother. That fund kept us going in school while we waited for her gratuity benefits. The good Lord will continually bless you. My gratitude also goes to all members of the Board of Regent of Covenant University.

The Vice Chancellor Covenant University, Professor Charles K. Ayo is appreciated for the visionary leading and encouragements given towards the success of this study.

At this point in time, it becomes excessively important for me to appreciate and thank my supervisor, Professor. E.T. Akintayo of Chemistry Department Ekiti State University, Ado-Ekiti, Nigeria, for his patience, kindness, understanding and mentorship that he showed towards me from the beginning of my research work. I cannot forget the timeless encouragements that eventually brought out the beauty of this work. I also treasure the contributions of my co-supervisor Professor. O. Olaofe, who also took time to attend to me despite his tight schedule as a Deputy Vice Chancellor (Academic) of his University.

With every sense of gratitude and appreciation, I like to acknowledge my host supervisor at the Indian Institute of Chemical Technology (IICT), Hyderabad, India Dr. K.V.S.N. Raju (Scientist F, Deputy Director) for the practical knowledge and experience he shared with me while I was in his laboratory. I really appreciate the understanding and the light you brought my way as far as coating formulations is concerned. You also taught me how to prepare for International Conferences, one of which our Division (Polymers and Functional Materials) came tops in 2011 (SSPC-2011).

Dr. K.O. Ajanaku who also came on board as a co-supervisor is well appreciated for his kind gesture, advice and contributions. His brotherly support and mentorship is well acknowledged. My sincere appreciation goes to the Academy of Science for Developing World (TWAS) and the Council for Scientific and Industrial Research (CSIR) for the joint sponsorship of my experimental/bench work under the 2010 (TWAS-CSIR) Postgraduate Fellowship Award in India. The Indian Institute of Chemical Technology (IICT), Hyderabad, India is also acknowledged and appreciated for the wonderful research environment provided.

My deep appreciation goes to the Dean, School of Post Graduate Studies (SPS), Professor C.U. Obgulogo, Deputy Dean SPS, Dr. O. Daramola, the Dean of College of Science and Technology Professor Lotto Cleophas, and Deputy Dean, School of Natural and Applied Sciences, Dr. O.O. Obembe. They are treasured for their wonderful coordination.

The Head of Chemistry Department, Covenant University Dr. K.O Ajanaku is appreciated for the kind of coordination he has been giving the Department, especially on postgraduate matters. God Almighty will reward you accordingly.

Professor K.O. Okonjo is appreciated for his ever fatherly role and mentorship towards me and other post graduate students while he was the College Postgraduate Coordinator. May God uphold you sir. I humbly extend my deep gratitude to Professor M.A. Mesubi, former Head of Department who always offer listening ears and promptly gave useful guidance where needed. Professor J.O. Echeme of Chemistry Department, Michael Okpara University of Agriculture, Umudike is well appreciated for his kind gestures towards the success of my work in India.

I remember my place of "chemical birth", that is why I want to thank all the Lecturers at the Chemistry Department, University of Ado-Ekiti, Nigeria (UNAD) now Ekiti State University, Ado-Ekiti for the kind of tutelage given to me. In particular I appreciate Professor E.I. Adeyeye, Dr. Faleye, Dr. H.N. Ogungbemile, Dr. S.O. Adefemi, Mrs. A.F. Akinsola and all of the UNAD experience. I want to thank my Dons in Chemistry Department Federal University of Technology, Akure (FUTA): Professor O.O. Ajayi, Professor A.A. Oshodi, Professor L. Lajide, Dr. V.O.E. Akpambang, Mr Tayo Alabi and other members of staff for their innumerable efforts. To my good friends and rare gems Dr. R. Narayan, Dr. B.V.S.K. Rao, Dr. Jena Kishore, Dr. Aswini Kumar Mishra, K. Sasidhar, Kamal, Anji neyulu, Shaik Allauddin, Keval Yadav, Raju, Amit, Agit Singh, Nagrage, Rajnish, Ravi, Pranai, Partha Sarathi Sadhu, and Shivaraj; all of IICT, Hyderabad, India I say thank you for your care and help.

To my friends Dr. G.I. Olasehinde, Dr. S.A. Bishop, Dr. A.A. Ajayi, Dr. O.J. Rotimi and Dr. O.O. James (of Central Institute of Mining and Fuel Research (CIMFR), Dhanbad, India) I want to specially thank you all for the unassuming encouragements and technical assistance you have all rendered at one point or the other.

My aunties (Mrs J.F. Jegede and Mrs T. Isiaka), uncles and cousins are all well appreciated for the kind of love they shared with me and my siblings after the demise of my mother.

I am indebted to my wonderful parent's in-law the Apelua of Oye-Ekiti, Engineer and Mrs. Ogunsakin S.I. for taking care of my family when I was away in India. I also send a word of thanks and appreciations to my brothers (Babatunde, Akintunde) and sisters in-law (Busola, Foluke, Tunrayo).

Pastor and Deaconess Kayode Adedayo of the Living Faith Church (aka Winners' Chapel, Lagos) are appreciated for always staying in the gap praying for me. I want to thank you for the fatherly and motherly role you have been playing in our lives. It shall be well with you and your household.

I must not fail to express my rich thanks to my siblings who have been praying for this feat Fisayo Siyanbola and Ayodeji Siyanbola; God Almighty will uphold both of you and always give you reasons to celebrate.

To my nephew Tioluwani Siyanbola and sister in-law Mrs Adepeju Siyanbola may God continually spring forth goodness and gladness in your lives.

With joy and gladness of heart I want to thank my late parents Mr and Mrs J.D Siyanbola though you are not here today but the seeds you have sown in our lives are yet speaking. Mummy, I really understood how difficult it was for you to depart knowing well that you were the only one standing. I still feel the squeeze on my hand as you drew the last breath, but those enduring values, teachings, friendliness, love and revelations you shared with us has kept us going. You are a rare gem.

Finally, I want to appreciate my wife and the love of my life Mrs Tunmike S. Siyanbola who has been so supportive and without limits has been able to provide necessary joy that has kept the family going. God almighty will continually bless you. My wonderful children Siyanbola Oluwatoni and Siyanbola Toluwase are well appreciated for being a source of joy to our family.

Siyanbola, Tolutope Oluwasegun

TABLE OF CONTENTS

	Pages
Title Page	i
Declaration	ii
Certification	iii
Dedication	iv
Acknowledgements	v
Table of Contents	viii
List of Figures	xiii
List of Tables	xvi
List of Reactions Schemes	xvii
List of Abbreviations	xix
Basic Units	XX
Abstract	xxiii

CHAPTER ONE

INTRO	TRODUCTION	
1.0	Yellow oleanda (Thevetia peruviana)	2
1.1	Plant seed oil	3
1.1.1	Linseed oil (Linum usitatissimum)	4
1.1.2	Soybean oil	4
1.1.3	Palm oil (Elaies guinensis)	5
1.1.4	Castor oil	6
1.1.5	Rapeseed oil	6
1.2	Fatty acids	7
1.3	Polymeric materials from seed oils	10
1.4	Paint composition	11
1.4.1	Pigments	11
1.4.2	Binders	12
1.4.3	Solvents	12
1.4.4	Additives	13

1.5	Hybrid coatings	14
1.6	Coating properties	16
1.6.1	Adhesion	17
1.6.2	Abrasion resistance	17
1.6.3	Gloss	18
1.6.4	Hardness	18
1.6.5	Flexibility and toughness	19
1.6.6	Salt spray	19
1.6.7	Chemical resistance	20
1.6.8	Thermal transitions	21
1.6.9	Accelerated weathering	22
1.6.10	Antimicrobial coatings	22
1.7	Objective of the study	24

CHAPTER TWO

LITER	LITERATURE REVIEW	
2.0	Seed oil extraction	25
2.0.1	Mechanical press	25
2.0.2	Solvent extraction	26
2.1	Physico-chemical characteristics of seed oils	26
2.1.1	Saponification value	26
2.1.2	Acid value	27
2.1.3	Iodine value	27
2.1.4	Hydroxyl value	27
2.2	Raw materials for coating preparation	27
2.2.1	Isocyantes	28
2.2.2	Polyols	36
2.2.2.1	2.2.2.1 Methods of polyols preparation from vegetable oils	
2.3	Urethane stoichiometry	52
2.4	Polyurethane chemistry	53
2.4.1	Polyurethane properties of polyols obtained via hydroformylation	55

2.4.2	Polyurethane properties for polyols prepared via ozonolysis	57
2.4.3	Polyurethane properties for polyols prepared via epoxidation	57
2.5	Nano-modified systems	58
2.5.1	Synthesis hybrid materials (Sol-gel process)	60
2.6	Coating structural properties relationship	61
2.7	Justification for the study	62

CHAPTER THREE

EXPE	RIMENTAL PROCEDURES	65
3.0	Materials	65
3.1	Seed oil extraction	65
3.2	Physico-chemical analyses of oil (TPSO)	66
3.2.1	Acid value determination	66
3.2.2	Saponification value	67
3.2.3	Iodine value	67
3.2.4	Hydroxyl value	68
3.2.5	Gas chromatographic analysis of TPSO	69
3.2.6	Determination of viscosity	69
3.2.7	Determination of refractive	70
3.3	Preparation of polyols	70
3.3.1	N,N'-bis (2-hydroxyethyl) Thevetia peruviana oil fatty amide (HETA)	70
3.3.2	De-saturated N,N'-bis (2-hydroxyethyl) Thevetia peruviana	
	seed oil fatty amide (DHETA)	70
3.3.3	Thevetia peruviana seed oil Partial glyceride (TPPG)	71
3.4	Synthesis of 3-aminopropyltrimethoxysilane(APTMS)	
	modified ZnO	72
3.5	Synthesis of Thevetia peruviana polyesteramide (TPPEA)	72
3.6	Synthesis of polyesteramide (PESA) from de-saturated	
	fatty acid methyl esters (FAME)	72
3.7	Synthesis of Hybrid -NCO terminated poly (urethane fatty amide)	
	resin (PUTFA-APTMS-ZnO)	73

3.8	Synthesis of polyesteramide-urethane from FAME polyol (PESAU)	73
3.9	Synthesis of NCO terminated partial glycerides-urethanes (PGU cum Siloxane	
	modified ZnO hybrid composites (PGU-APTMS-ZnO) from PGU	74
3.10	Spectroscopic Analysis	74
3.10.1	Fourier Transform Infrared (FTIR)	74
3.10.2	Nuclear Magnetic Resonance (NMR) Analysis	74
3.11	Antibacterial activity	75
3.12	Thermal analysis	75
3.12.1	Thermogravimetric analysis	75
3.12.2	Differential scanning calorimetry	76
3.12.3	Dynamic thermal analyzer	76
3.13	X-ray Diffractometer (XRD)	76
3.14	Scanning electron microscopy (SEM)	76

CHAPTER FOUR

RESU	LTS AND DISCUSSIONS	77
4.0	Analysis on Thevetia peruviana seed oil	77
4.0.1	Physico-chemical properties of Thevetia peruviana seed oil (TPSO)	77
4.0.2	Spectroscopic characterization of TPSO	80
4.1	Synthesis of anti microbial and anti corrosive polyurethane siloxane	
	modified ZnO hybrid coatings from Thevetia peruviana seed oil	83
4.1.1	Spectroscopic analysis of HETA	84
4.1.2	Physico-chemical properties of HETA	89
4.1.3	Spectroscopic analysis of Thevetia peruviana polyesteramide (TPPEA)	91
4.1.4	Spectroscopic analysis of Poly (urethane fatty amide) resin (PUTFA)	
	and its hybrid films	95
4.1.5	Scanning electron microscopy (SEM) analysis	101
4.1.6	Thermal analysis	103
4.1.7	Antibacterial study	108
4.1.8	Anticorrosive properties	108
4.1.9	Salt spray test	110

4.2	Synthesis and characterization of De-saturated polyesteramide-urethanes	112
4.2.1	Physico-chemical analysis of desaturated TPSO FAMEs	112
4.2.2	Gas chromatographic analysis of desaturated TPSO FAMEs	114
4.2.3	Spectroscopic analysis of N, N'-bis (2-hydroxyethyl) Thevetia peruviana oil	
	fatty amide prepare from desaturated TPSO FAMEs (DHETA)	117
4.2.4	Spectra Analysis of Polyesteramide (PESA) from desaturated FAMEs	122
4.2.5	Spectroscopic evaluation of polyesteramide-urethanes (PESAU)	126
4.2.6	Physico-chemical characterization of DHETA,	
	PESA and PESAU	127
4.2.7	Film curing and coating properties of resins	132
4.2.8	Thermal analysis of PESAU film	132
4.3	Synthesis, characterization and antimicrobial studies of Polyurethane-Siloxane	
	modified ZnO hybrid coatings from renewable sources	136
4.3.1	Physico-chemical characterization of partial glyceride and the resin	136
4.3.2	Spectroscopic characterization of partial glyceride (PG) techniques	137
4.3.3	Spectroscopic investigation of PGU hybrids forms	141
4.3.4	Morphology Study of Hybrid Composites	144
4.3.5	Powder X-ray Diffraction (XRD) Analysis	150
4.3.6	Thermogravimetric analysis of PGU-APTMS-ZnO hybrid composites	153
4.3.7	Dynamic mechanical thermal analysis of PGU-APTMS-ZnO hybrid composites	157
4.3.8	Antimicrobial examinations of PGU and its hybrid films	159
4.3.9	The salt spray test on hybrid composites	162
CHAF	PTER FIVE	
CONC	CLUSIONS AND RECOMMENDATIONS	165
5.0	Conclusions	165
5.1	Recommendations	166
5.2	Contributions to knowledge	166
REFE	RENCES	167
APPE	NDIX	196
Appen	dix A	196
Appen	dix B	201

LIST OF FIGURES

Figure		Page
1.0	Photographic representation of Thevetia peruviana	2
1.1	A triglyceride molecule	3
1.2	(a) saturated fatty acid (b) isolated fatty acid (c)	
	conjugated fatty acid	9
1.3	Processing route representation of materials prepared	
	from sol gel process.	15
1.4	Salt spray fog chamber	20
1.5	QUV test chamber	22
2.0	Pictorial representation of (a) expeller (b) Ghani extractor	25
2.1	Stereo-isomers of H ₁₂ MDI	35
2.2	Nanotechnology areas of applications	59
2.3	Environmental conditions and its effects on coatings	63
3.0	Extraction of TPSO	66
4.0	FTIR Spectrum of TPSO	81
4.1	¹ H NMR spectrum of TPSO (ppm)	82
4.2	Overlay FTIR spectra of HETA and TPPEA	86
4.3	HETA ¹ H NMR spectrum (ppm)	87
4.4	HETA ¹³ C NMR spectrum (ppm)	88
4.5	Pictorial differences between TPSO and HETA	90
4.6	Overlay of PUTFA and TPPEA FTIR Spectra (ppm)	93
4.7	TPPEA ¹ H-NMR spectrum (ppm)	94
4.8	TPPEA ¹³ C-NMR spectrum (ppm)	95
4.9	FTIR spectra of PUTFA and different PUTFA-hybrid coatings	99
4.10	¹ H NMR spectrum of PUTFA	100
4.11	SEM micrographs of ZnO, APTMS-ZnO, PUTFA and	
	PUTFA-hybrids	102
4.12	TGA curves of PUTFA and its nanocomposites	105
4.13	Derivative of TGA curves for PUTFA and its hybrid composites	106
4.14	DSC thermograms of PUTFA and PUTFA-hybrids	107

4.15	The salt spray results of pristine and hybrid coatings in 3.5%	
	NaCl solution	111
4.16 (a)	GC-FID spectrum of TPSO FAMEs	115
4.16 (b)	GC-FID spectrum of desturated TPSO FAMEs	116
4.17	Overlay FTIR spectra of DHETA and PESA	119
4.18	¹ H NMR spectrum of DHETA (ppm)	120
4.19	¹³ C NMR spectrum of DHETA (ppm)	121
4.20	¹ H NMR spectrum of PESA	124
4.21	¹³ C NMR spectrum of PESA (ppm)	125
4.22	PESAU FTIR Spectra	129
4.23	¹ H NMR spectrum of PESAU	130
4.24	¹³ C NMR spectrum of PESAU	131
4.25	Overlay profiles of TGA and DTG thermograms of PESA	134
4.26	DSC thermogram of PESAU	135
4.27	FTIR Overlay spectra of TPSO and PG	139
4.28	¹ H NMR spectrum of Partial Glyceride (PG)	140
4.29(a)	FTIR spectrum of pristine PGU	145
4.29(b)	FTIR spectra overlay of hybrid systems	146
4.30	¹ H NMR spectrum of PGU	147
4.31	¹³ C NMR spectrum of PGU	148
4.32	The SEM Micrograms of (A) ZnO (B) APTMS-ZnO (C) PGU	
	(D) PGU-1% APTMS-ZnO (E) PGU-1.5% APTMS-ZnO	
	(F) PGU-2% APTMS-ZnO hybrid films	149
4.33	X-ray diffraction patterns of (a) Pure ZnO and	
	(b) APTMS-ZnO nano-particles	151
4.34	X-ray diffraction patterns of the PGU and PGU-APTMS-ZnO	
	hybrid films	152
4.35 (a)	Thermogravimetric curves of PGU and its hybrid forms	
	under N_2 atmosphere at heating rate of 10° C/min	154
4.35 (b)	First-derivative of TG thermograms (DTG) of PGU,	
	PGU-1% APTMS-ZnO and PGU-2% APTMS-ZnO	154

4.36	DMTA profile of E' against temperature °C of pure and hybrid	
	composites	158
4.37	Antibacterial activities of PGU and other PGU hybrid forms	161
4.38	Antifungal activity (Aspergillus niger) of PGU-2%APTMS and PGU	162
4.39	The 350 hrs salt spray results of different hybrid coatings	
	in 5% NaCl solution	164

LIST OF TABLES

Table		Page
1.0	Fatty acid compositions of different oils	8
1.1	Common fatty acids in natural oils	9
2.0	Diisocyanate components	30
4.0	Physico-chemical characterizations of TPSO	77
4.1	Fatty acid profile of TPSO FAMEs	79
4.2	TPSO elemental analysis (CHNS)	79
4.3	FTIR peaks and the corresponding functional groups in TPSO	81
4.4	Physico-chemical characterization of HETA and TPSO	89
4.5	Thermal behaviour of PUTFA and its hybrids	104
4.6	Antibacterial activities of PUTFA and its hybrids	108
4.7	Chemical resistance and drying time of PUTFA and its	
	hybrid forms	109
4.8	Physico-chemical characterization of desaturated TPSO FAME	113
4.9	Fatty acid constituents of TPSO FAME(s) and desaturated TPSO FAME(s)	114
4.10	Physico-chemical characterizations of DHETA, PESA and PESAU	128
4.11	Chemical resistance of resins	132
4.12	Physico-chemical analysis of PG and PGU	137
4.13	TGA data of pristine and hybrid polymeric composites	156
4.14	Antibacterial activities of pure polymer and PGU-APTMS-ZnO	
	hybrid coatings	160

REACTION SCHEMES

Reaction	Page
Reaction 1.0: Peripheral modification of TEOS (Sol gel process)	16
Reaction 1.1: Condensation of partially hydrolysed moiety	16
Reaction 2.0: Synthesis of aliphatic isocyanate	28
Reaction 2.1: Synthesis of aromatic isocyanate	28
Reaction 2.2: Phosgenation of amines	28
Reaction 2.3: Urethanation blocking of PUD intermediate	33
Reaction 2.4: Synthesis of polyester polyol	37
Reaction 2.5: Preparation of polyether polyol from crude oil	38
Reaction 2.6: Preparation of triglyceride-based polyol via air oxidation	40
Reaction 2.7: Polyol formation from triglyceride via epoxidation method	42
Reaction 2.8: Transesterification of FA in TG	44
Reaction 2.9: Hydroformylation method for preparation of soy-oil based polyols	45
Reaction 2.10: Ozonolysis of triglyceride followed by either reduction or oxidation	47
Reaction 2.11: Aminolysis of triglyceride	49
Reaction 2.12: FAMEs from triglyceride	50
Reaction 2.13: Physico-sorption of saturated FAMEs	51
Reaction 2.14: Preparation of polyurethanes	54
Reaction 2.15: Reactions of isocyanates	55
Reaction 2.16: Hydroxylation of metal alkoxide	60
Reaction 2.17: Oxolation step	60
Reaction 2.18: Olation step	60
Reaction 4.0: Synthesis of N,N'-bis (2-hydroxyethyl) Thevetia peruviana oil	
fatty amide (HETA)	84
Reaction 4.1: Synthesis of Thevetia peruviana polyesteramide (TPPEA)	91
Reaction 4.2: Preparation of nano modified material (APTMS-ZnO)	95
Reaction 4.3: Synthesis of moisture cured PUTFA polymer	95
Reaction 4.4: Synthesis of hybrid composite PUTFA-APTMS-ZnO	96
Reaction 4.5: Reaction paths towards the preparation of enriched FAMEs	117
Reaction 4.6: Synthesis of desaturated fatty acid methyl esters (DHETA)	117

Reaction 4.7: Synthesis of polyesteramide from DHETA	122
Reaction 4.8: Synthesis of polyesteramide-urethane	126
Reaction 4.9: Urethanation of partial glycerides	141
Reaction 4.10: Synthesis of hybrid polymer composite	142

LIST OF ABBREVATIONS

APTMS	3-Aminopropyltrimethoxysilane
AV	Acid value
CaO	Calcium oxide
DMSO	Dimethylsulfoxide
DMTA	Dynamic Mechanical Thermal Analysis
DSC	Differential Scanning Calorimetry
ESI-MS	Electrospray ionization mass spectroscopy
FAME	Fatty acid methylesters
FT-IR	Fourier Transform Infrared Spectroscopy
HETA	N,N'-Bis (2-hydroxyethyl) Thevetia peruviana oil fatty amide
H ¹² MDI	4,4'-Diisocyanatodicyclohexylmethane
H.V	Hydroxyl value
HCl	Hydrochloric acid
I.V	Iodine value
ICl	Iodine monochloride
NCO	Isocyanate group
NMR	Nuclear Magnetic Resonance
Ν	Normality
PESA	Polyesteramide
КОН	Potassium hydroxide
MTCC	Microbial Type Culture Collection
PESAU	Polyesteramide-urethane from FAME polyol
%	Percentage
RB	Round Bottom Flask
S.V	Saponification value
SEM	Scanning Electron Microscopy
$Na_2S_2O_3$	Sodium thiosulphite
E'	Storage Modulus
TGA	Thermal Gravimetric Analysis
TEOS	Tetraethyl orthosilicate

TPPEA	Thevetia peruviana polyesteramide
TPPG	Thevetia peruviana partial glyceride
TPSO	Thevetia peruviana
TLC	Thin layer chromatography
TMS	Trimethylsiliane
PUD	Polyurethane Dispersion
XRD	X-ray Diffraction
ZnO	Zinc Oxide

BASIC UNITS

Å	Angstrom
cm	centimeter
°C	degree celcius
g	gram
min	minutes
mL	milimeter
ppm	parts per million

ABSTRACT

The use of sustainable and biodegradable resources in the preparation of diverse industrial materials (such as organic coatings) has been revitalized due to emerging environmental challenges faced by today's world. Plant oils are considered the most available and renewable resource material, capable of replacing the petroleum feed-stock (petrochemicals), used in the preparation of most polymeric materials. The present report presents the synthesis, characterizations and evaluations of nano-modified polymeric materials from Thevetia peruviana seed oil (TPSO). The triglyceride based monomers were prepared through aminolysis and partial glyceride (PG) formation from TPSO. The fatty-amide of the oil (N,N-bis (2-hydroxy ethyl)) Thevetia peruviana seed oil fatty-amide {HETA}) as well as desaturated fatty-amide methylesters of the oil (desaturated N,N-bis (2-hydroxy ethyl) Thevetia peruviana seed oil fattyamide {DHETA}) were treated with isophthalic acid and polyesteramides of their respective esterification were obtained. Partial glycerides polyol formation was carried out by reacting TPSO with glycerol in the presence of CaO as catalyst. These polyols were further reacted with 4,4'-diisocyanatodicyclohexylmethane (H_{12} MDI) to synthesize pristine polyurethanes. Nano particles (zinc oxide {ZnO} and 3-aminopropyltrimethoxylsilane-zinc oxide {APTMS-ZnO}) were also dispersed within the polymer matrix. The formation of monomers, pre-polymers as well as the eventual polymer composites were structurally elucidated by Fourier Transform Infrared Spectroscopy (FT-IR), Proton Nuclear Magnetic Resonance (¹H NMR) and Carbon 13 Nuclear Magnetic Resonance (¹³C NMR) spectroscopic techniques. The fatty acid profile of TPSO fatty acid methyl esters (FAMEs) was examined by GC-FID. Thermal stability and curing of the hybrid composites were examined by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical thermal analyzer (DMTA). The surface morphology and crystal/amorphous nature of the hybrid films was studied with scanning electron microscopy (SEM) and X-ray diffractometry (XRD) respectively. Anticorrosive (in acid, alkali, water, xylene and salt spray fog test), solubility test and antimicrobial (Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Aspergillus niger and Klebsiella pneumonia) properties of the films were investigated. Results revealed that the fatty acid composition of the oil comprised mainly oleic (48.2 %), palmitic (22.3 %), linoleic (19.8 %) acids. FT-IR, ¹H and ¹³C NMR confirmed the formation of the expected polymer matrices and their corresponding nanomodified composites, indicating a successful incorporation of the nano-material (APTMS-ZnO) in the pristine polymer coatings. The impregnation of the nano-material in the polymer led to curing of the polymer at room temperature. Results further revealed that as the percentage composition of the synthesized and incorporated nano-particle in the polymer matrix increased, properties such as thermal stability, anticorrosive and antimicrobial properties of the polymeric coatings also increased. However, at higher percentages, agglomeration of the nano-particle within the polymeric matrix ensued (for example in the case of PUTFA (Polyurethane Thevetia fatty amide)-APTMS-ZnO {15 wt %}). This made the micrograph of the film to be rough and also affect the thermal stability of the coatings. The successful incorporation of modified nanoparticle within the pristine polymer had positive influence of the thermal stability, chemical resistance and antimicrobial inhibition on organisms tested. The coatings retain their photographic transparency irrespective of the varying inorganic-organic nano-particle within the polymer matrix.