Olayinka O. Ajani*, Craig A. Obafemi^a, Chinwe O. Ikpo, Kehinde O. Ogunniran, Obinna C. Nwinyi^b

ХИМИЯ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ. — 2009. — № 11. — С. 1703—1713

MICROWAVE-ASSISTED SYNTHESIS AND ANTIBACTERIAL ACTIVITY OF SOME PYRAZOL-1-YLQUINOXALIN-2(1H)-ONE DERIVATIVES

3-Hydrazinoquinoxalin-2(1H)-one was prepared from quinoxaline-2,3-dione and subsequently used for the synthesis of some potentially biologically active 3-(pyrazol-1-ylquinoxalin-2(1H)-one derivatives. While 3-(3,5-dimethylpyrazol-1-yl)quinoxalin-2(1H)-one showed a comparative effect with streptomycin, 3-(5-oxo-3-phenyl-4,5-dihydropyrazol-1-yl)quinoxalin-2(1H)-one was found to be the most active at MIC value of 7.8 $\mu g/ml$.

Keywords: 3-hydrazinoquinoxalin-2(1H)-one, imines, gram-positive bacteria.

Over the years, it has been established that quinoxalines are, in general, relatively easy to prepare [1–3] and many derivatives have been synthesized with the aim of obtaining biologically active materials [4, 5]. Some quinoxaline and quinoxalinone derivatives have been reported to show antimicrobial [6, 7], anti-inflammatory [8], antifungal [9], anticancer [10], antiviral [11], antimalarial [12], anticonvulsant [13], antidepressant [14], antitubercular [15], antibacterial [16], and antithrombotic [17] activities.

Thermal and chemically stable polyquinoxalines (PQs) find potential applications as films, coating adhesives [18], ultrafiltering materials, and composite matrices that demand stability in harsh environment [19]. In a similar manner, the synthesis of novel pyrazole derivatives [20] and evaluation of their chemical behaviours have gained more importance in the recent decades for biological [21–23], medicinal [24], and agricultural [25] purposes. Although numerous methods are available for construction of pyrazoles [26, 27], only little attention has been given to the pyrazolysis of quinoxalinone derivatives [28]. For instance, 1,3-dipolar cycloadditions of azomethine imines, available by acid catalyzed treatment of 3-pyrazolidinone with acetone and butyraldehyde, respectively, were studied [29]. Photoluminescence and electroluminescence of some new 1H-pyrazolo[3,4-b]quinoxaline derivatives have been investigated [30] while the biological properties of such moieties have been understudied [31]. From this point of view, it is of great interest to synthesize some pyrazolylquinoxalinone derivatives with the aim of investigating their antibacterial properties.

3-Hydrazinoquinoxalin-2(1H)-one (2) was prepared from hydrazinolysis of 1,2,3,4-tetrahydroquinoxaline-2,3-dione (1), which existed as a keto-enol tautomer (Scheme 1). The starting material 1 was prepared by the modified Obafemi and Pfleiderer procedure [32]. To a heated (100°C) solution of oxalic

acid dihydrate in water, acidified *o*-phenylenediamine cautiously with vigorous stirring at 100°C for 20 min was added. The resulting mixture was cooled and then filtered off. The crude solid obtained was purified by crystallization from water to afford colorless needles of compound 1. 3-Hydrazinoquinoxalin-2(1H)-one 2 underwent condensation reaction with various β-diketones to afford (3,5-disubstituted pyrazol-1-yl)quinoxalin-2(1H)-one derivatives 3–7 in excellent yields (Scheme 1). For instance, the reaction of compound 2 with 2-thenoyltrifluoroacetone gave 97% of 2-trifluoromethyl-substituted pyrazole 7 as a single product. This is because the carbonyl next to CF₃ is more reactive than the carbonyl next to thiophene due to a high electron withdrawing ability of trifluoromethyl side chain. Therefore, the nucleophilic attack by NH₂ of hydrazine was initiated first on the carbonyl next to CF₃.

Furthermore, the condensation of compound 2 with α -keto esters followed by thermal cyclization of the reaction intermediate in the presence of ethanol solvent gave the target structure of (3-alkyl(aryl)-5-oxo-4,5-dihydropyrazol-1-yl)quinoxalin-2(1H)-one derivatives **8**, **9**. The carbonyl of ketone is being attacked first since it is more reactive than the carbonyl of ester. Finally, upon the treatment of compound **2** with ethyl cyanoacetate the main product obtained was 3-(3-amino-5-oxo-4,5-dihydropyrazol-1-yl)quinoxalin-2(1H)-one (**10**) in moderate yield (Scheme). Melting points of all compounds were on the high side (177 to > 360°C) as a result of the presence of amide bonds and probable existence of intramolecular hydrogen bonding.

i: oxalic acid/HCl/H₂O; *ii*: H₂NNH₂·H₂O; *iii*: pentane- or hexane-, or heptane-2,4-dione, or heptane-3,5-dione, or 2-thenoyltrifluoroacetone; *iv*: ethyl acetoacetate or ethyl benzoylacetate, or ethyl cyanoacetate;

The IR spectra of compounds **1–10** showed absorption bands due to the stretching vibrations of N–H, C=O, C=C, and C=N at 3470–3132, 1705–1648, 1620–1600, and 1580–1509 cm⁻¹, respectively. The IR spectrum of compound **9** showed a broad band at 3302 cm⁻¹ due to the stretching vibration of N–H, while its two carbonyl stretching vibration appeared at 1703 and 1648 cm⁻¹, respectively. The IR absorption band at 1600 cm⁻¹ depicted the presence of aromatic C=C, while C=N band was observed at 1509 cm⁻¹. UV-visible spectrum of compound **9** gave rise to wavelength (λ_{max}) at 208 and 352 nm,

while a shoulder was observed at 244 nm. The wavelength at 208 nm is a result of $\pi \rightarrow \pi^*$ transition of the phenyl ring, while 352 nm is a result of contribution from the pyrazolyl ring. The electronic transition in UV-visible spectra gave rise to wavelength (λ_{max}) ranging from 205 to 372 nm. Bathochromic shift was observed in compounds 3–10 compared with the precursor 2. This might be as a result of extensive conjugation of π -electrons from the pyrazolyl ring and σ donating character of alkyl groups experienced in the former. The chemical shifts and multiplicity patterns in NMR spectra correlated well with the proposed structures. For instance, the ¹H NMR of compound 9 showed a broad singlet corresponding to resonance of N–H of amide at δ 8.00 ppm and it was exchangeable with D_2O . The multiplet at δ 7.52–7.94 ppm confirmed the presence of five aromatic protons of phenyl attached to azomethine carbon in position 3 of the pyrazolyl ring, while the multiplet at δ 7.08–8.27 ppm indicated the presence of four aromatic protons of benzo-fused part of the quinoxaline nucleus of compound 9. The position of the pyrazole double bond was confirmed to be between nitrogen and carbon as a result of a singlet at δ 2.20 ppm, which was due to presence of two methylene protons (pyrazole CH₂). The ¹³C NMR of compound **9** revealed seventeen carbon atoms with two C= $\stackrel{\sim}{O}$ having highest signals at 165.0 and 158.0 ppm, while fourteen sp^2 -hybridized carbon atoms appeared at 157.6-115.2 ppm. The one CH₂ carbon atom appeared to have the least signal at δ 35.1 ppm.

In addition, the mass spectrum of compound **9** showed a molecular ion peak at m/z 304 [M⁺] with relative intensity of 54.3%, its mass spectrum was also characterized by the occurrence of a base peak at m/z 227 [M⁺–77(Ph⁻)], which was the result of the phenyl radical loss. Out of the three pyrazolone derivatives **8–10** only compound **9** had the highest steric effect due to the presence of a bulky substituent, which is a weakly activating group in C-3 position of pyrazolone ring, while compounds **8** and **10** had a low to moderate steric interaction due to the presence of smaller groups (CH₃ and NH₂).

Ten compounds **1–10** were screened *in vitro* for possible antibacterial activities using agar well diffusion method [33], while minimum inhibitory concentration test was carried out using Russell and Furr method [34]. The sensitivity testing (inhibition zones, mm) of the compounds and streptomycin (a reference clinical antibiotic) in DMSO (solvent) at $1000 \, \mu \text{g/ml}$ against nine gram-positive and five gram-negative bacterial strains is reported in Table 1. The results indicated that starting materials **1–2** and the reaction products **3–10** as well as streptomycin showed a broad spectrum against the bacterial strains.

Compound 3 has been synthesized before by conventional heating method [35], however, microwave assisted approach has not been used for compound 3 to the best of our knowledge, also its antibacterial activity has not been investigated. *Escherichia coli* and *Klebsiella pneumonia* developed a resistance against streptomycin, whereas all the compounds were active as to these two bacteria. Most of the compounds were not active on *Corynebacterium pyogene*, *Bacillus polymyxa*, and *Pseudomonas fluorescence*, whereas streptomycin was active on those bacteria mentioned.

Considering the pyrazolyl derivatives 3–7, compound 3 with a lower steric hindrance due to the presence of a smaller side chain (CH₃) was observed to have a larger inhibition zone and a lower MIC value of $7.8 \,\mu g/ml$ as compared

Table 1: Antibacterial screening (sensitivity testing) on bacteria with inhibition zones

Bacteria -	Antibacterial activity*										
	1	2	3	4	5	6	7	8	9	10	Str.**
Corynebacterium pyogene (LIO)	+	R	R	R	R	R	R	R	R	R	+++
Bacillus polymyxa (LIO)	++	R	R	R	R	R	R	++	++	R	++
Bacillus stearothermophilus (NCIB 8222)	+++	++	++	++	++	++	++	++	++	+++	++
Bacillus subtilis (NCIB 3610)	+++	+++	++	+	+	++	+	++	+++	+++	+++
Bacillus anthracis (LIO)	++	+++	++	++	++	+	+	+++	+++	+	++
Bacillus cereus (NCIB 6349)	+++	++	++	++	++	+	++	+++	+++	+++	+++
Streptococcus faecalis (NCIB775)	+++	++	+++	++	+	+	++	+	+++	R	+++
Staphylococcus aureus (NCIB 8588)	+++	R	R	R	R	R	+	+	R	++	+++
Clostridium sporogenes (LIO)	+++	+	+	R	R	R	R	+	+	R	+++
Escherichia coli (NCIB 86)	+++	+++	+++	+++	+++	+++	++	+++	++	+++	R
Pseudomonas fluorescence (NCIB 3756)	R	R	R	R	R	R	R	++	R	R	+++
Klebsiella pneumonia (NCIB 418)	++	+	++	++	+	+	+++	++	+	+	R
Shigella dysenteriae (LIO)	+++	+++	++	+	++	++	++	++	++	R	+++
Pseudomonas aeruginosa (NCIB 950)	+	++	++	++	+	++	R	++	++	R	

^{*} R - resistance, + - less active (0.5–1.2 mm), ++ - moderately active (1.3–1.9 mm), +++ - highly active (2.0–3.1 mm).

** Str. - streptomycin.

 $\begin{tabular}{ll} \textbf{Table 2: Minimum inhibitory concentration (MIC) test of the compounds on some selected \\ bacteria \end{tabular}$

Bacteria	MIC, μg/ml										
	1	2	3	4	5	6	7	8	9	10	Str.
B. stearothermophilus (NCIB 8222)	7.8	15.6	15.6	31.3	31.3	15.6	15.6	62.5	15.6	31.3	31.3
Bacillus subtilis (NCIB 3610)	62.5	15.6	15.6	250.0	250.0	31.3	62.5	62.5	7.8	7.8	7.8
Bacillus anthracis (LIO)	31.3	500.0	31.3	31.3	15.6	250.0	31.3	7.8	7.8	250.0	31.3
Streptococcus faecalis (NCIB 775)	7.8	250.0	7.8	15.6	250.0	250.0	7.8	31.5	7.8	R	15.6
Bacillus cereus (NCIB 6349)	7.8	15.6	15.6	15.6	31.3	62.5	15.6	7.8	7.8	62.5	31.3
Escherichia coli (NCIB 86)	62.5	7.8	7.8	15.6	15.6	15.6	62.5	7.8	15.6	7.8	R
Pseudomonas fluorescence (NCIB3756)	R	R	R	R	R	R	R	250.0	R	R	7.8
Klebsiella pneumonia (NCIB 418)	7.8	250.	7.8	31.3	62.5	31.3	15.6	62.5	7.8	250.0	R
Shigella dysenteriae (LIO)	15.6	31.3	250.0	62.5	62.5	31.3	31.3	31.3	62.5	R	62.5
Pseudomonas aeruginosa (NCIB 950)	7.8	15.6	15.6	15.6	250.0	31.3	R	250.0	31.3	R	R

to compounds **4–7**. So, it was discovered that the occurrence of steric hindrance created by the substituents on the pyrazolyl ring might have a probable effect on the biological activity of such moieties. On the other hand, considering the pyrazolone ring of compounds **8–10**, only compound **9** experienced an extensive conjugation due to the presence of phenyl group in C-3 position. Thus, compound **9** had a better activity as compared to compounds **8** and **10**. In fact, compound **9** was the most active on the *Bacillus* species at MIC value of 7.8 μ g/ml except for *Bacillus anthracis*, where the inhibition was at a concentration of 15.6 μ g/ml.

Based on the size of inhibition zones and the resistance degree observed, the minimum inhibitory concentration (MIC) test was selectively carried out on five gram-positive and five gram-negative bacterial isolates (Table 2). The MIC of compounds 1, 2 varied between 7.8 and 500 μ g/ml, it was between 7.8 and 250 μ g/ml for compounds 3, 8, 10 and between 15.6 and 250.0 μ g/ml for compounds 4–6. Finally, compounds 7, 9 inhibited the bacterial growth at MIC range between 7.8 and 62.5 μ g/ml. Overall result indicated that out of all the compounds prepared, compound 9 had the highest activity at 7.8 μ g/ml, while compounds 1, 3 appeared to compete favourably with streptomycin at 15.6 and 7.8 μ g/ml on both the gram-positive and gram-negative bacteria. In particular, the π - π interaction experienced in the phenyl side chain in compound 9 might also be a contributing factor to the reasonably high activity observed in compound 9.

In summary, we constructed a workable pathway and synthesized a series of (3,5-alkyl(aryl)-pyrazol-1-yl)quinoxalin-2(1H)-ones 3–7, 3-alkyl(aryl)-5-oxo-4,5-dihydropyrazol-1-yl)quinoxalin-2(1H)-one 8, 9, and 3-(3-amino-5-oxo-4,5-dihydropyrazol-1-yl)quinoxalin-2(1H)-one 10, which were structurally confirmed by IR, UV, 1H NMR, ^{13}C NMR, and MS spectral analyses and evaluated for antibacterial activity by the growth inhibition of some gram-positive and gramnegative bacterial strains. By visualizing the antimicrobial data it could be observed that some of the compounds possess a significant activity. In fact, the results show that the compounds exhibited a high potency as antibacterial agents. The most active compound was 3-(5-oxo-3-phenyl-4,5-dihydropyrazol-1-yl)quinoxalin-2(1H)-one (9) with an MIC value of 7.8 µg/ml. Thus, the pyrazol-1-ylquinoxalin-2(1H)-one derivatives synthesized as well as the starting material may seem promising for further activity optimization studies.

EXPERIMENTAL

Melting points were determined with an open capillary tube on a Gallenkamp (variable heater) melting point apparatus and were uncorrected. IR spectra were recorded as KBr pellets on a Buck Spectrometer, while UV-visible spectra were recorded on a Unicam Spectrophotometer using a methanol solvent. ^{1}H and ^{13}C NMR were run on a Bruker AC-50 and JEOL-JNM-GX 400-MHz spectrometer in MeOH-d₄ (compounds **2–9**) and DMSO-d₆ (compound **10**) (δ in ppm relative to Me₄Si). Mass spectra were registered on Finnigan MAT 312 machine. All compounds were routinely checked by TLC on silica gel G plates using CHCl₃: MeOH (9:1, v/v) solvent system and the developed plates were visualized by UV light. The elemental analyses (C, H, N) of compounds were performed using a Carlo Erba-1108 elemental analyzer. The

solvents used were of the reagent grade and, when necessary, were purified and dried by standard methods. The microwave-assisted syntheses were carried out in domestic oven, Midea PJ21B-A 400W.

1,2,3,4-Tetrahydroquinoxaline-2,3-dione (**1**). To a heated to 100° C and stirred solution of oxalic acid dihydrate (30.0 g, 238.0 mmol) in water (200 ml) concentrated HCl (45 ml) was added, followed by *o*-phenylenediamine (22.0 g, 204.0 mmol) with continuous stirring at 100° C for 20 min. The resulting mixture was cooled by addition of crushed ice (100 g) to give silvery white needles, which were collected by filtration, washed with water, and oven dried to afford compound **1** (32.3 g, 98.0%) as colourless needles; mp > 340°C (EtOH) (Lit. mp > 340°C [32, 36]). Other physical and spectroscopic data were identical to those of the authentic sample.

3-Hydrazinoquinoxalin-2(1H)-one (**2**). To a mixture of compound **1** (20.1 g, 124.0 mmol) and hydrazine hydrate (100.0 ml, 2.2 mol) water (50 ml) was added and the resulting mixture was refluxed for 3 h. The mixture was allowed to cool and the formed precipitate was filtered off, recrystallized from ethanol to give compound **2** (19.8 g, 90%) as a yellow solid; mp > 360°C. IR spectrum, v_{max} , cm⁻¹: 3412 (N–H), 3280 (N–H), 3175 (N–H), 1679 (C=O), 1620 (C=C). UV spectrum, λ_{max} (log ε_{max}): 216 (4.34), 247 (3.75 s), 327 (3.61 s). ¹H NMR spectrum, δ, ppm: 5.81 (2H, br. s, NH₂, D₂O exchangeable); 7.09–8.26 (4H, m, H Ar); 8.14 (1H, s, NH, D₂O exchangeable); 12.55 (1H, s, NH, D₂O exchangeable). ¹³C NMR spectrum, δ, ppm: 158.0 (C=O), 157.6, 142.7, 131.7, 129.1, 125.9, 123.5, 115.2. Mass spectrum, m/z (I_{rel} , %): 176 [M⁺] (55.5), 161 (92.3), 146 (85.5), 118 (100), 106 (80.1), 78 (40.5). Found, %: C 54.52; H 4.57; N 31.83. C₈H₈N₄O. Calculated, %: C 54.55; H 4.55; N 31.82.

3,5-Disubstituted pyrazolyl derivatives 3–7 (General procedure). To a solution of compound 2 (1.0 g, 5.7 mmol) in β -diketone (5.7 mmol) ethanol (10 ml) was added and irradiated in a domestic microwave oven (MW) at an emitted power of 400 W for the appropriate period. The clear solution formed was left to stand at room temperature to crystallize. The solid crude product was recrystallized from the appropriate solvent to afford 3,5-disubstituted (pyrazol-1-yl)quinoxalin-2(1H)-one.

3-(3,5-Dimethylpyrazol-1-yl)quinoxalin-2(1H)-one (**3**). Reagents: compound **2** (1.0 g, 5.7 mmol), acetyl acetone (1.0 ml, 5.7 mmol), ethanol (10 ml). Conditions: 3 min, 400 W, MWI. Purification: recrystallization. Yield (1.3 g, 99.0%) as a brown solid; mp 177–179°C (EtOH). IR spectrum, v_{max} , cm⁻¹: 3436 (N–H), 1679 (C=O), 1618 (C=C). UV spectrum, $λ_{max}$ (log $ε_{max}$): 208 (4.28), 239 (3.97 s), 325 (3.66 s), 352 (3.73). HNMR spectrum, δ, ppm: 2.30 (3H, s, CH₃); 2.48 (3H, s, CH₃); 6.18 (1H, s, -CH=); 7.09–8.27 (4H, m, H Ar); 8.00 (1H, s, NH, D₂O exchangeable). The NMR spectrum, δ, ppm: 157.6 (C=O), 152.3, 149.4, 143.2, 142.7, 131.7, 129.1, 125.9, 123.5, 115.2, 110.2, 13.5 (CH₃), 13.2 (CH₃). Mass spectrum, m/z (I_{rel} , %): 240 [M⁺] (100), 226 (68.3), 212 (70.5), 146 (88.3), 106 (45.1), 78 (55.0). Found, %: C 65.02; H 5.01; N 23.36. C₁₃H₁₂N₄O. Calculated, %: C 65.00; H 5.00; N 23.33.

3-(5-Ethyl-3-methylpyrazol-1-yl)quinoxalin-2(1H)-one (**4**). Reagents: Compound **2** (1.0 g, 5.7 mmol), hexane-2,4-dione (0.7 ml, 5.7 mmol), ethanol (10 ml). Conditions: 5 min, 400 W, MWI. Purification: recrystallization. Yield 1.35 g (93.1%) as a colorless solid; mp 183–185°C (EtOH). IR spectrum, v_{max} , cm⁻¹: 3430 (N–H), 1675 (C=O), 1620 (C=C). UV spectrum, $λ_{max}$ (log $ε_{max}$): 210 (4.12), 240 (3.95 s), 330 (3.85 s), 350 (3.51). H NMR spectrum, δ, ppm (J, Hz): 1.25 (3H, t, J = 7.2, CH₃); 2.30 (3H, s, CH₃); 3.07 (2H, q, J = 7.2, CH₂); 6.20 (1H, s, –CH=); 7.08–8.27 (4H, m, H Ar); 8.00 (1H, s, NH, D₂O exchangeable). ¹³C NMR spectrum, δ, ppm: 157.6 (C=O), 152.3, 149.4, 144.5, 142.7, 131.7, 129.1, 125.9, 123.5, 115.2, 104.9, 20.8 (CH₂), 13.2 (CH₃), 12.7 (CH₃). Mass spectrum, m/z (I_{rel} , %): 254 [M⁺] (89.1), 224 (66.3), 110 (100), 66 (57.5). Found, %: C 66.09; H 5.48; N 22.00. C₁₄H₁₄N₄O. Calculated, %: C 66.14; H 5.51; N 22.05.

3-(3-Methyl-5-propylpyrazol-1-yl)quinoxalin-2(1H)-one (5). Reagents: Compound **2** (1.0 g, 5.7 mmol), heptane-2,4-dione (0.8 ml, 5.7 mmol), ethanol (10 ml). Conditions:

5 min, 400 W, MWI. Purification: recrystallization. Yield 1.38 g (90.2%) as a colourless solid; mp 204–205°C (EtOH). IR spectrum, v_{max} , cm⁻¹: 3433 (N–H), 1685 (C=O), 1615 (C=C), 1579 (C=N). UV spectrum, λ_{max} (log ε_{max}): 208 (4.05), 244 (3.88), 338 (3.63 s), 370 (4.13). ¹H NMR spectrum, δ , ppm (J, Hz): 0.90 (3H, t, J = 7.3, CH₃); 1.65 (2H, sextet, J = 7.3, CH₂); 2.30 (3H, s, CH₃); 2.44 (2H, t, J = 7.3, CH₂); 6.19 (1H, s, -CH=); 7.09–8.27 (4H, m, H Ar); 8.00 (1H, s, NH, D₂O exchangeable). ¹³C NMR spectrum, δ , ppm: 157.6 (C=O), 152.3, 149.4, 144.5, 142.7, 131.7, 129.1, 125.9, 123.5, 115.3, 104.9, 31.1, 22.6, 13.7 (CH₃), 13.2 (CH₃). Mass spectrum, m/z (I_{rel} , %): 268 [M⁺] (70.1), 240 (65.2), 146 (85.3), 124 (52.1), 118 (100), 96 (92.3). Found, %: C 67.18; H 5.99; N 20.87. C₁₅H₁₆N₄O. Calculated, %: C 67.16; H 5.97; N 20.90.

3-(3,5-Diethylpyrazol-1-yl)quinoxalin-2(1H)-one (6). Reagents: Compound **2** (1.0 g, 5.7 mmol), heptane-3,5-dione (0.8 ml, 5.7 mmol), ethanol (10 ml). Conditions: 5 min, 400 W, MWI. Purification: recrystallization. Yield 1.41 g (92.2%) as a colorless solid: mp 192–193°C (EtOH/DMF). IR spectrum, v_{max} , cm⁻¹: 3430 (N–H), 1690 (C=O), 1605 (C=C). UV spectrum, λ_{max} (log ε_{max}): 209 (4.05), 245 (3.91), 372 (3.61). ¹H NMR spectrum, δ, ppm (*J*, Hz): 1.25 (6H, t, *J* = 7.2, 2CH₃); 3.07 (4H, q, *J* = 7.2, 2CH₂); 6.22 (1H, s, –CH=); 7.10–8.28 (4H, m, H Ar); 8.00 (1H, s, NH, D₂O exchangeable). ¹³C NMR spectrum, δ, ppm: 157.6 (C=O), 149.4, 146.8, 144.5, 142.7, 131.7, 129.1, 125.9, 123.5, 115.2, 104.9, 20.8 (CH₂), 19.5 (CH₂), 13.2 (CH₃), 12.7 (CH₃). Mass spectrum, m/z (I_{rel} , %): 268 [M⁺] (72.5), 240 (57.4), 212 (68.2), 146 (80.8). Found, %: C 67.13; H 5.92; N 20.92. C₁₅H₁₆N₄O. Calculated, %: C 67.16; H 5.97; N 20.90.

3-[5-Thien-2-yl-3-(trifluoromethyl)pyrazol-1-yl]quinoxalin-2(1H)-one (7). Reagents: Compound **2** (1.0 g, 5.7 mmol), 2-thenoyltrifluoroacetone (1.3 g, 5.7 mmol), 30 ml of DMF–ethanol, 1:5. Conditions: 2 min, 400 W, MWI. Purification: recrystallization. Yield 2.0 g (97.0%) as an orange solid; mp 328–330°C (EtOH). IR spectrum, v_{max} , cm⁻¹: 3241 (N–H), 1675 (C=O), 1620 (C=C), 1575 (C=N). UV spectrum, λ_{max} (log ε_{max}): 205 (3.38), 225 (3.00), 237 (2.51), 273 (3.10), 298 (3.70). ¹H NMR spectrum, δ, ppm: 6.02 (1H, s, pyrazol –CH=); 7.69–7.17 (3H, m, H Th); 7.09–8.27 (4H, m, H Ar); 8.00 (1H, s, NH, D₂O exchangeable). ¹³C NMR spectrum, δ, ppm: 157.6 (C=O), 149.4, 142.7, 139.9, 136.4, 131.7, 131.2, 129.1, 128.6, 128.0, 127.6, 125.9, 123.5, 121.4, 115.2, 105.9. Mass spectrum, m/z (I_{rel} , %): 362 [M⁺] (68.3), 294 (100), 280 (31.5), 212 (70.4), 146 (85.1). Found, %: C 53.06; H 2.50; N 15.49. C₁₆H₉F₃N₄OS. Calculated, %: C 53.04; H 2.49; N 15.47.

3-(5-Oxo-3-R-4,5-dihydropyrazol-1-yl)quinoxalin-2(1H)-ones 8, 9 (General procedure). To anhydrous compound **2** (1.0 g, 5.7 mmol) a homogenous mixture of β -keto ester (28.5 mmol) and ethanol (20 ml) was added dropwise at room temperature. The mixture was irradiated in a microwave oven at 15-s interval for the appropriate period to give a clear solution, which was left to stand at room temperature. The solid crude product was recrystallized from the appropriate solvent to afford compounds **8, 9**.

3-(3-Methyl-5-oxo-4,5-dihydropyrazol-1-yl)quinoxalin-2(1H)-one (8). Reagents: Compound **2** (1.0 g, 5.7 mmol), ethyl acetoacetate (3.6 ml, 28.5 mmol), ethanol (20 ml). Conditions: 3 min, 400 W, MWI. Purification: recrystallization. Yield 1.3 g (94.2%) as a yellow solid; mp 316–318°C (EtOH). IR spectrum, v_{max} , cm⁻¹: 3448 (N–H), 1705 (C=O), 1667 (C=O), 1610 (C=C). UV spectrum, λ_{max} (log ε_{max}): 220 (3.13), 305 (5.10), 320 (5.43 s). ¹H NMR spectrum, δ, ppm: 1.94 (3H, s, CH₃); 2.20 (2H, s, CH₂ pyrazol); 7.09–8.29 (4H, m, H Ar); 8.00 (1H, s, NH, D₂O exchangeable). ¹³C NMR spectrum, δ, ppm: 165.0 (C=O), 159.5 (C=O), 158.2, 157.3, 142.4, 131.8, 129.0, 125.8, 123.6, 115.1, 43.2, 16.4 (CH₃). Mass spectrum, m/z (I_{rel} , %): 242 [M⁺] (54.3), 228 (83.4), 214 (100), 200 (75.4), 146 (86.1), 106 (24.5). Found, %: C 59.52; H 4.14; N 23.16. C₁₂H₁₀N₄O₂. Calculated, %: C 59.50; H 4.13; N 23.14.

3-(5-Oxo-3-phenyl-4,5-dihydropyrazol-1-yl)quinoxalin-2(1H)-one (9). Reagents: Compound **2** (1.0 g, 5.7 mmol), ethyl benzoylacetate (4.9 ml, 28.3 mmol), ethanol (20 ml). Conditions: 2 min, 400 W, MWI. Purification: recrystallization. Yield 1.7 g (99.0%) as

a yellow solid; mp 287–288°C (EtOH). IR spectrum, v_{max} , cm⁻¹: 3302 (NH), 1703 (C=O), 1648 (C=O), 1600 (C=C), 1509 (C=N). UV spectrum, λ_{max} (log ε_{max}): 208 (4.29), 244 (4.09 s), 352 (3.76). ¹H NMR spectrum, δ , ppm: 2.20 (2H, s, CH₂ pyrazol); 7.09–8.27 (4H, m, H Ar); 7.52–7.94 (5H, m, H Ar); 8.00 (1H, s, NH, D₂O exchangeable). ¹³C NMR spectrum, δ , ppm: 165.0 (C=O), 158.0 (C=O), 157.6, 155.6, 142.7, 134.0, 131.7, 131.0, 129.1, 128.8, 125.9, 123.5, 115.2, 35.1 (CH₂). Mass spectrum, m/z (I_{rel} , %): 304 [M⁺] (54.3), 227 (100). Found, %: C 67.09; H 3.94; N 18.40. C₁₇H₁₂N₄O₂. Calculated, %: C 67.11; H 3.95; N 18.42.

(10).3-(3-Amino-5-oxo-4,5-dihydropyrazol-1-yl)quinoxalin-2(1H)-one To anhydrous compound 2 (1.0 g, 5.7 mmol) dissolved in ethyl cyanoacetate (0.6 ml, 5.7 mmol) ethanol (30 ml) was added in an open beaker and swirled thoroughly. The mixture was irradiated in a microwave oven at 15-s interval for 3 min to give a clear solution, which was left to stand at room temperature. The solid crude product obtained was recrystallized from ethanol to afford compound 10 (0.7 g, 50.0 %) as an orange solid; mp 335–338°C. IR spectrum, v_{max} , cm⁻¹: 3470 (NH), 3448–3132 (NH), 1667 (C=O), 1605 (C=C), 1580 (C=N). UV spectrum, λ_{max} (log ε_{max}): 216 (6.37), 304 (5.82), 330 (5.68 s), 336 (5.32), 348 (5.39). ¹H NMR spectrum, δ, ppm: 2.20 (2H, s, CH₂ pyrazol); 7.12-8.29 (4H, m, H Ar); 8.00 (1H, s, NH, D₂O exchangeable); 8.51 (2H, s, NH₂, D₂O exchangeable). 13 C NMR spectrum, δ , ppm: 165.1 (C=O), 160.1 (C=O), 158.2, 157.8, 142.9, 132.1, 129.3, 125.9, 123.7, 115.0, 71.8. Mass spectrum, m/z (I_{rel} , %): 243 [M⁺] (75). Found, %: C 54.33; H 3.72; N 28.83. C₁₁H₉N₅O₂. Calculated, %: C 54.32; H 3.70; N 28.81.

Antibacterial activity assays

Most of the organisms used were standard bacteria of National Collection for Industrial Bacteria (NCIB), while few others were locally isolated organisms (LIO). The gram-positive bacteria were *Bacillus cereus* (NCIB 6349), *Bacillus stearothermophilus* (NCIB 8222), *Bacillus subtilis* (NCIB 3610), *Bacillus anthracis* (LIO), *Bacillus polymyxa* (LIO), *Corynebacterium pyogenes* (LIO), *Streptococcus faecalis* (NCIB775), *Staphylococcus aureus* (NCIB 8588), *Clostridium sporogenes* (LIO), while the gramnegative ones were *Escherichia coli* (NCIB 86), *Pseudomonas fluorescence* (NCIB 3756), *Klebsiella pneumonia* (NCIB 418), *Shigella dysenteriae* (LIO), and *Pseudomonas aeruginosa* (NCIB 950).

All the synthesized compounds **1–10** and streptomycin were screened for antibacterial activity on 9 gram-positive and 5 gram-negative bacterial strains using agar well diffusion method [33].

With the aid of a sterile 1-ml pipette about 0.2 ml of the broth culture of the test organism was added to 18-ml sterile molten diagnostic sensitivity test agar (Biotech, Ltd.), which was already cooled down to 45° C. This was well mixed and poured into previously sterilized Petri dishes, which were properly labelled according to the test organisms. The medium was then allowed to set. With the aid of a sterile cork borer the required numbers of holes were bored into the medium. The wells were made of about 5 mm to the edge of the plate. The wells were then filled up aseptically with the solution of the compound in DMSO using Pasteur pipettes. Streptomycin was used as a standard antibacterial agent at a concentration of $1000~\mu g/ml$. The plates were allowed to stand for about 1 h on the bench for proper diffusion of the antibacterial agents into the medium and then incubated uprightly at 37° C for 24 h. Care was taken not to stockpile the plates. Clear inhibition zones, mm, indicated the relative susceptibility of the bacteria to compounds 1-10 and streptomycin standard.

The minimum inhibitory concentration (MIC) was detected using the method of Russell and Furr [34]. Based on the level of resistance of some organisms and large inhibition zones experienced in others, MIC was selectively done for 5 gram-positive and 5 gram-negative bacterial strains. Different concentrations (7.8 and 1000.0 µg/ml) of

the compounds and standards were prepared using a two-fold dilution, which was prepared in a sterile plate with a sterile pipette and then mixed with 18 ml of molten nutrient agar. This was then allowed to set. The surface of the nutrient agar plate was allowed to dry before streaking with overnight broth cultures of the bacterial strains. The plates were then labelled accordingly and incubated at 37°C for up to 72 h. They were subsequently examined for the growth presence or absence. The lowest concentration preventing the bacteria growth was taken as the MIC of the compounds. This procedure was likewise repeated for streptomycin.

REFERENCES

- 1. L. Zhenjiang, L. Weisi, S. Yingjie, H. He, O. Pingkai, *J. Heterocycl. Chem.*, **45**, 285 (2008).
- 2. C. A. Obafemi, G. Olayiwola, F. O. Taiwo, African J. Biotech., 6, 777 (2007).
- 3. G. S. Welmaker, J. A. Nelson, J. E. Sabalski, A. L. Sabb, J. R. Potoski, D. Graziano, M. Kagan, J. Coupet, J. Dunlop, H. Mazandarani, S. Rosenzweig-Lipson, S. Sukoff, Y. Zhang, *Bioorg. Med. Chem. Lett.*, **10**, 1991 (2000).
- 4. M. A. J. Al-Mossawi, A. A. Salem, M. Salam, A. Arani, Environ. Int., 5, 141 (1981).
- 5. H. M. Refaat, A. A. Moneer, O. M. Khalil, Arch. Pharm. Res., 27, 1093 (2004).
- 6. M. M. Ali, M. M. F. Ismail, M. S. A. El-Gaby, M. A. Zahran, Y. A. Ammar, *Molecules*, **5**, 864 (2000).
- 7. C. A. Obafemi, D. A. Akinpelu, *Phosphorus*, *Sulfur*, *Silicon*, *Relat. Elem.*, **180**, 1795 (2005).
- 8. Ch. Sridevi, K. Balaji, A. Naidu, S. Kavimani, D. Vankappayya, R. Suthakaran, S. Parimala, *Int. J. Pharmatech. Res.*, **1**, 816 (2009).
- 9. A. Carta, P. Sanna, U. D. Gherardini, S. Zanetti, Farmaco, 56, 933 (2001).
- 10. P. Sanna, A. Carta, M. Loriga, S. Zanetti, L. Sechi, Farmaco, 54, 161 (1999).
- 11. M. A. H. Hamida, Carbohydr. Res., 338, 2301 (2003).
- 12. J. B. Rangisetty, C. N. V. H. B. Gupta, A. L. Prasad, P. Srinivas, N. Sridhar, P. Parimoo, A. Veeranjaneyulu, *J. Pharm. Pharmacol.*, **53**, 1409 (2001).
- 13. M. Kodama, N. Yamada, K. Sato, Y. Kitamura, F. Koyama, T. Sato, K. Morimoto, S. Kuroda, *Eur. J. Pharmacol.*, **374**, 11 (1999).
- 14. R. Sarge, H. R. Howard, R. G. Browne, L. A. Lebel, P. A. Seymour, B. K. Kve, *J. Med. Chem.*, **33**, 2240 (1990).
- 15. A. Jaso, B. Zarranz, I. Aldana, A. Mongye, Eur. J. Med. Chem., 38, 791 (2003).
- M. M. Badran, K. A. M. Abouzid, M. H. M. Hussein, Arch. Pharm. Res., 26, 107 (2003).
- 17. U. J. Ries, H. W. Priekpe, N. H. Havel, S. Haandschuh, G. Mihm, J. M. Stassen, W. Wienen, H. Nar, *Bioorg. Med. Chem. Lett.*, **13**, 2297 (2003).
- 18. L. Fengcai, W. Baigeng, C. Jinbao, Polym. Sci. Tech., 26, 261 (1984).
- 19. Polymers: thermally stable quinoxaline polymers, in: Encycl. Physical Sci. Tech., 3rd ed., J. P. Critchey (Ed.), Acad. Press, 2002, p. 775.
- 20. A. F. R. Sherif, A. S. Manal, A. E.-D. Maha, Eur. J. Med. Chem., 38, 959 (2003).
- 21. A. B. Adnan, M. A. A. Hayam, S. A. G. Yasser, E.-D. A. B. Alan, B. Azza, *Eur. J. Med. Chem.*, **43**, 456 (2008).
- 22. W. W. Wagnat, A. L. Nadia, J. Chilean Chem. Soc., 52, 1145 (2007).
- 23. D. Zainaba, L. Meryem, S. Abdelfatah, B. Abdelmejid, H. Mohammed, K. Said, B. Mohammed, *Arch. Pharm.*, **339**, 291 (2006).
- 24. I. Bouabdallah, L. A. M'Barek, A. Zyad, A. Ramdani, I. Zidane, A. Melhaoui, *Nat. Prod. Res.*, **20**, 1024 (2006).
- 25. A. Şener, E. Akbas, M. K. Şener, Turkey J. Chem., 28, 271 (2004).

- 26. H. E. El Sayed, F. A. Kamal, A.-E. Salah, B. Razika, *J. Carbohydr. Chem.*, **26**, 1 (2007).
- 27. Q. Jairo, C. Debora, I. Braulio, A. Rodrigo, C. Silvia, N. Manuel, C. Justo, *J. Heterocycl. Chem.*, **45**, 155 (2008).
- 28. X. Deng, N. S. Mani, Org. Lett., 8, 3505 (2006).
- 29. L. Pezdirc, V. Groselj, A. Meden, B. Stanovnik, J. Svete, *J. Heterocycl. Chem.*, **45**, 181 (2008).
- 30. P. Wang, Z. Xie, Z. Hong, J. Tang, O. Wong, C.-S. Lee, N. Wong, S. Lee, *J. Mat. Chem.*, **13**, 1894 (2003).
- 31. S. M. Allin, W. R. Bowman, M. R. J. Elsegood, V. Mckee, R. Karim, S. S. Rahman, *Tetrahedron*, **61**, 2689 (2005).
- 32. C. A. Obafemi, W. Pfleiderer, Helv. Chim. Acta., 77, 1549 (1994).
- 33. L. P. Carrod, F. D. Grady, *Antibiotics and Chemotherapy*, 3rd ed., Churchill Livingstone, Edinburgh, 1972, p. 477.
- 34. A. D. Russell, J. R. Furr, J. Appl. Bacteriol., 43, 253 (1977).
- 35. N. Rashed, A. M. El Massry, E.-S. H. El Ashry, A. Amer, H. Zimmer, *J. Heterocycl. Chem.*, **27**, 691 (1990).
- 36. G. W. H. Cheeseman, M. Rafiq, J. Chem. Soc., C, 452 (1971).

Chemistry Department, College of Science and Technology, Covenant University, Canaanland, Km 10, Idiroko Road, P.M.B. 1023, Ota, Ogun State, Nigeria e-mail: wajanfresh@yahoo.com

^aDepartment of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-ife, Osun State, Nigeria

^bDepartment of Biological Sciences, College of Science and Technology, Covenant University, Canaanland, Km 10, Idiroko Road, P.M.B. 1023, Ota, Ogun State, Nigeria Received April 17, 2009