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1 Introduction 

Multipoint boundary value problems for second order differential equations have 
recently been the focus of study by several authors (see [4),(7),[8]). However, 
there are relatively few papers dealing with the study of third order multipoint 
boundary value problems. Multipoint boundary problems arise from various 
sources. For instance in solving linear partial differential equations by the 
method of separation of variables, one comes across differential equations con­
taining several parameters with auxiliary condition that the solutions satisfy a 
boundary condition at several points (see [5]). 
In this paper we present some results concerning the existen~ of solutions for 
the third order three point boundary value problem of the form 

x"' (t) = f(t, x, x', x") (1.11~ 
I 

x' (1) = x" (0) = 0, x(1) = x(17) (1.2) 
I 

where 17 E--+ (0, 1); f : [0, 1) x JR3 E lR is continuous. Our method of pro0f 
consists of imposing a decomposition condition on f of the form 

f(t , x, y, z) = g(t, x, y , z) + h(t, x, y, z). 

We shall employ the coincidence degree theory of Mawhim to obtain our exis­
tence results. 

2 Existence Results 

Let X denote the Banach space C2 [0,1] and Z denote the Banach space £
1 

[0,1] . We define the linear mapping 

L: D(L) c X--+ Z by setting 

D(L) = {x E W3•1(0, 1) : x' (1) = x" (0) = 0, x(1) = x(17)} 

and for 
x E D(L), Lx = x'" 

Let N : X --+ Z be the nonlinear mapping defined by 

(Nx)(t) = f(t, x, x', x ''), t E [0, 1] 

Then the boundary value problem (1.1) - (1.2) can be put in the abstract form 

Lx=Nx 

We shall prove the following theorem. 
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0 .0 .1 Theo r e m 2 . 1 

Assume that f : [0, 1] x JR3 -+ fR is continuous and has the decomposit ion 

f(t, x, y, z) = g(t, x, y, z) + h(t, x, y, z) 

such that 

(i) J; j(t, x, y, z) > for a.e.t. E [0. 1] and (x, y, z) E ./R.3 

(ii) yg(t,x,y,z)2:0 

(iii) I h(t, X, y, z) 1::; A1 {I X I + I y I + I z 113} for 0 ::; {3 < 1 

(iv) zf(t, x, y, z) ::; (I z 12 +1)(D(t, x, y) + a:(y)) where D(t, x, y) is bou nded 

011 bounded sets and a: E £ 1 [0, l ]. 

Then Lhe boundary value problem (1.1) - (1.2) has at least one solution in 
C'2 [0,l] provided 

_3 

M < ---='=' == 
1GJ4. + rr2 

In t.hc proof of Theorem 2.1 we sha.ll need t he following conti nuation theorem 
based uu Mawhin 's coincidence degree. 

Theorcrn: Let D be a bou nded open sd in X <J.nd suppose that the fol­

lowing conditions !told 

(l) f..:c f. ,\i\':c for any (x, >.) E (domL nan) x (0, 1) 

(2) (JNJ: i 0 fo:· X E ker L nan 
' 

(3) Tlte Brouwer degree dcg 13 (JQN)kerL OnkerL, 0) =/ 0 where J : imQ -• 
ker L is SO In(' isomorphism. Then ther~ exists X E n n dom L sudt t ltat 

Lx = Nx 

0. 1 P roof of T h eore m 2 .1 

Let L be dcfi ned as above. T hen ker L = { x E X : x is a constant mapping } ::::: 

IR 

imL = {z E Z: e {1 r z(s)dsdTdt = 0} 
},1 lt Jo 

the latLcr is closed in Z a ud of co-dimension l. T hus L is F redholm operator of 

index zero. Therefore from the resul ts of linear functiona.J a nalysis there exist 
continuous projections 

7' : X _, ker L and Q : Z -+ Z 1 

which \\'C! define by 

(px)(t) . = x(O) 
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r:•~c~-· ~ ~' 

and 
Qz= 6 {1 {1 rr 

' 77 + 2)(77 - 1)2 )
11 

l t Jo z(s)dsdrdt , z E im L 

so t hat 
X = ker L El1 ker p, z = imL El1 imQ 

and 
Lp = L ID(L)nker p 

The operator k = L; 1 : im : L---+ D (L)n kerp is t he linear opera tor defined by 

1 rt 
(ky)(t ) = 2 l o (t- s)2y(s) ds (2.2) 

By the Arzela-Ascoli t heorem it can be shown that k is compact. Hence N is 
£ -compact . 
We shall prove that the conditions of the theorem are satisfied. To do this, we 
shall show that for >.. E (0,1), the set of solutions of the family of equat ions 

X
111 

= >..f(t, x , X
1

X
11

) 

"' X
1 

(1) = X
11 

(0) = 0, x(1) = x(17) 

is apriori bounded and then construct n accordingly. 

(2.3) 

(2.4) 

Let x E C2[0,1] satisfy (2.3)-(2.4). From condition (i) we derive that if x(t) > 0 
then f (t , x, y, z) > 0 and if x (t) < 0 then f (t, x, y , z) < 0. Since x(1) = x(ry), 
t here exist ~ E (TJ, 1) such that X

1 

(~) = 0 and from X
1 

(1) = X
1 

(0 = 0 there exist 
t 1 E (~, 1) such that X

11 

(tl) = 0. Hence if x(t) > 0 then 

, rt! Ill rtl I II 

0 = .fa x (s)ds =A Jo f( t , x(s), x (s), x (s)ds > 0 

a contradiction. If x(t ) < 0 we derive a similar contradiction. Hence there exist 
t 0 E (0, t1) such that x(t0 ) = 0. Hence for each t E[O,l ] we have 

2 4 I 2 I X b.::; 2 I X b 
1T 

(2.5) 

Mult iplying (2.3) by X
1 

(t) and using the relation 

x'(1) = X
11 

(0) = 0 

yields 

11 I llld 11 I II 12 d XX t=- X t 
0 0 

Therefore 

1 II 2 _ 1 I I 1/ 1 I I 'II fo ! xI dt -->..f
0

xg(t,x,x,x )dt->.. f0 xh(t ,x,x,x )dt 
1 I I II 

.::; fo I x II h(t,x,x ,x )dt. 
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Using the Cauchy inequality I ab 1::; E~
2 

+ ~: for E > 0, we have 

11 1 1 11 € rl I 1 [ 1 
I II 

0 

lx llh(t,x,x,x )l dt :::; 2Jo lx l
2

dt+ 2El o l h(t,x,x,x )l
2

dt 

From condition (iii), we obtain the estimate 

I h(t, x, y, z) 12:::; 4M21{1 X 12 +I Y 12 + I z 12.8} 

Therefore from the Holder's inequality, we get 

II 2 E I 2 2M2 2 I 2 II 2,8} 
I X b - 2 I X 12:::; - E-{1 X b +I X b +I X b 

Since X
1 

(1) = 0, we obtain 

1 II 2 ( 11"2 E) I 2 2M
2 

. 2 I 2 II 2,8 
2 I X b + 8- 2 I X b:::; -E-{1 X b +I X b + I X b } 

Using (2.5) in (2.6), we get 

1 I II 12 ( 11"2 E 8M2 2M2) I I 12 2M2 I II 12,8 
- X 2 + ---- --- -- X 2< -- X 2 
2 8 2 m 2 E - E 

Since 0 ::=; (3 < 1 we infer the existence of a constant M 1 such that 

provided 

I x
1 

l2< l x
11 

h< M 1, 

11"4 8M2 211" M2 €11"2 
- >--+--+ -
8 E E 2 

(2.6) 

(2 .7) 

(2.8) 

The choice E = 2M .J 4 + 1r2 minimizes the right hand side of (2.8) and the ~ 
minimum values is 2M 1rJ 4 + 11"2. Therefore (2.8) holds p rovided M < 16] 4

3
+1r2. i· 

Furthermore, since x(t0 ) = X
1 
(1) = 0 for t0 E (rt, 1) we get from (2.7) that 

I X loo<l X
1 

loo< M2 (2.9) 

for some constant M2 > 0. 
From condition (iv) of Theorem 1.1, we obtain 

II Ill 

X X I 

I x" 12 +1 :::; D(t , x, x ) + a(t). (2 .10) 

Integrating (2.10) from 0 to t we get 

1t X
11

(s)X
111

(s) [1 11 ]t 
o lxll(s)l2+1ds= 2loge(lx (s)l2+1) o < D +Iab=N, (2. 11) 

where the constant D depends only on M2. Furthermore since X
11 

(0) = 0 we 
get from (2 .11) that 

II N I X loo< e = M3. (2. 12) 
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Let 

llxl/ = max (I x loo, I x' loo, I x" )oo) < max (M2, Ma ) = R . 
It follows that 1/xl! < R. 

We take n = {x E X : Jlxll < R}, then if x E D(L) nan then Lx '/= >..Nx, 0 < >. < I. 
If X E ker L n an then X = ±R. 
Now if x = R we derive from condition (i) that 

6 ell r 
QN x := (TJ + 2)(TJ _ 1)2 ;

71 
t lo J(S, R, 0, 0) > 0 

and if x = - R we get 

QNx < 0. 

Thus Q N X 'I= 0 for X E ker L nan, verifying condition (2) of the theorem. It is easily verified that 

H (J.t , x) = f.tX + (1 - J.t)QNx , 0 $ J.t < 1 

is a homotopy from the identity I to QN on fi and is such that H (J.t , x) '/= 0 
on [0,1] x(an n ker L ). Hence taking J in condition (3) of theorem to be the identity we get . 

degB [QN lker L • 0 n ker L, OJ= detB[l, n n kerL, OJ= 1 

This completes the of proof our theorem. 

R emark 2.1 The results of Theorem 2.1 still hold i{ condition (i) is re­placed by the oondition 

x f (t , x , y, z ) < 0 . 

R emark 2.2 The results of Theorem 2.1 remains valid if assumption (iii) 
is replaced by any of the following assumptions. 

1. I h(t,x, y, z ) I$ M(l x I + I y 1.6 + I z I) for 0 $ {3 < 1 provided M < ,. 
BJ16+,.4 

2. I h(t, x, y) I$ M(l x 1.6 + I y I+ I z j) for 0 $ {3 < 1 provided M < ~ 
3. I h(t,x, y,z) I$ M{l X r + I y 1.6 +I z I'Y} for 0 $ ,, {J,r < 1 for some constant M. 

4. I h(t, x,y, z) I$ M{l X 1.6 + I y r +I z 1}, 0 $ {J, r < 1 for some constant M . 

~ 
/' 
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