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ABSTRACT: This paper presents explicitly a survey of uniformly integrable sequences of 

random variables. We also study extensively several cases and conditions required for uniform 

integrability, with the establishment of some new conditions needed for the generalization of the 

earlier results obtained by many scholars and researchers, noting the links between uniform 

integrability and pointwise convergence of a class of polynomial functions on conditional based. 
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INTRODUCTION 

 

Uniform integrability is an important concept in functional analysis, real analysis, measure 

theory, probability theory, and plays a central role in the area of limit theorems in probability 

theory and martingale theory. Conditions of independence and identical distribution of random 

variables are basic in historic results due to Bernoulli, Borel and A.N. Kolmogorov[1]. Since 

then, serious attempts have been made to relax these strong conditions; for example, 

independence has been relaxed to pairwise independence.  

 

In order to relax the identical distribution condition, several other conditions have been 

considered, such as stochastic domination by an integrable random variable or uniform 

integrability in the case of weak law of large number. Landers and Rogge [2] prove that the 

uniform integrability condition is sufficient for a sequence of pairwise independence random 

variables in verifying the weak law of large numbers. 

 

Chandra [3] obtains the weak law of large numbers under a new condition which is weaker than 

uniform integrability: the condition of Ces ro uniform integrability. Cabrera [4], by studying the 

weak convergence for weighted sums of variables introduces the condition of uniform 

integrability concerning the weights, which is weaker than uniform integrability, and leads to 

Ces ro uniform integrabilty as a particular case. Under this condition, a weak law of large 
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numbers for weighted sums of pairwise independent random variables is obtained; this condition 

of pairwise independence can also be dropped at the price of slightly strengthening the 

conditions of the weights. 

Chandra and Goswami [5] introduce the condition of Ces ro -integrability ( ), and show 

that Ces ro -integrability for any  is weaker than uniform integrability. Under the 

Ces ro - integrability condition for some , they obtain the weak law of large numbers 

for sequences of pairwise independence random variables. They also prove that Ces ro 

-integrability for appropriate  is also sufficient for the weak law of large numbers to hold for 

certain special dependent sequences of random variables and h-integrability which is weaker 

than all these was later introduced by Cabrera [4]. 

 

As an application, the notion of uniform integrability plays central role in establishing weak law 

of large number. The new condition; Ces ro uniform integrability, introduced by Chandra [3] can 

be used in cases to prove –convergence of sequences of pairwise independent random 

variables, and in the study of convergence of Martingales. Other areas of application include the 

approximation of Green’s functions of some degenerate elliptic operators as shown by 

Mohammed [6]. 

 

Definition 1 The random variables  are independent if: 

 

 of measurable sets . A family of random variables  is 

independent if for each finite set , the family  is independent. 

Definition 2  A family of random variables ,  is pairwise independent if and  

are independent whenever . 
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Definition 3  Let  be a probability space. A sequence of random variables   

defined on  is said to converge in probability to a random variable  if for every 

,  as .  This is expressed as :  

Definition 4. A sequence of random variables   defined on  is said to 

converge in  to a random variable  if  for all , and    

as .  This is expressed as :  

Definition 5. Sequence of real valued random variables is uniformly integrable 

if and only if, for any   such that  

 

where    is an indicator function of the event  i.e, the function which is 

equal one for  and zero otherwise, and  is an expectation operator. 

Expectation values are given by integrals for continuous random variables. 

 

NOTION OF USEFUL INEQUALITIES AND RESULTS OF UNIFORM 

INTEGRABILITY 

 

In this section, we introduce the basic inequalities and results needed for the conditions and 

applicability of uniformly integrable sequences of random variables. 

 

Markov Inequality 

If   is a random variable such that  for some positive real number  which may 

or may not be a whole number, then for any , 
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 . 

 

Chebyshev’s Inequality 

Let  be a random variable with finite mean and finite variance . Then 

  

This follows immediately by putting and  in the Markov’s inequality above. 

Chebyshev’s Sum Inequality 

If  and , then 

 

Proof: Assume  and , then by 

rearrangement of inequality, we have that: 

        

        

        

 

   

Now adding these  inequalities gives: 

        

Hence,                

 

RESULTS OF UNIFORM INTEGRABILITY 

Lemma 2.1 Uniform integrability implies - boundedness 
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Let  be uniformly integrable. Then  is - bounded. 

Proof: Choose  so large such that .  

Then     

Remark: The converse of Lemma 2.1 is not true, i.e boundedness in  is not enough for 

uniform integrability. For a counter example, we present the following: 

Let  be uniformly distributed on  such that: 

 

Then  so  is bounded. But for , 

, so  is not uniformly integrable. 

Theorem 2.2 Let  be a random variable and  be a sequence of random 

variables. Then the following are equivalent: 

i)      

ii)      is uniformly integrable and  in probability. 

Proof:  Suppose i) holds. By Chebychev’s inequality, for ,  

 

So  in probability. Moreover, given , there exists  such that  

whenever . Then we can find  so that  implies , 

, . Then for  and , 



 

International Journal of Mathematics and Statistics Studies 

Vol.2, No.1, pp. 1-13, March 2014 

          Published by European Centre for Research Training and Development UK (www.ea-journals.org) 

6 

 

 

Hence,  is uniformly integrable. We have shown that i) implies ii). 

Suppose on the other hand that ii) holds, then there is a subsequence  such that  

almost surely. So, by Fatou’s Lemma, 

 

Now, given , there exists  such that, for all , 

, . 

Consider the uniformly bounded sequence  and set  

Then  in probability, so by bounded convergence, there exists  such that, for all 

, . But then, for ,  

. 

Therefore, ii) implies i) since  was arbitrary   

Other authors like [7], [8], [9] have also shown that uniform integrability of functions were 

related to the sums of random variables. 

 

UNIFORM INTEGRABILITY OF A CLASS OF POLYNOMIALS ON A UNIT 

INTERVAL 

Let  denote the probability of exactly  successes in an  

independent Bernoulli trials with probability  success by any trial. In other words: 
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and, for integers , we define the family of functions   by  

          (1) 

The family of polynomials arise in the context of statistical density estimation based on 

Bernstein polynomials. Specifically, the case  has been considered by many authors 

[10], [11], & [12] while the case  and  was considered by [13]. These same authors 

have considered issues linked to uniform integrability and pointwise convergence of  

and . However, the generalization to any  has not been considered. In this 

section, we will establish the following results. 

 

Theorem 3.1 Let  be fixed positive integers. Then 

i)      for  and  

ii)      is uniformly integrable on . 

iii)      for  as . 

For the case , Babu et al [10, Lemma 3.1] contains the proof of iii). Leblanc et al 

[13,Lemma 3.1] considered when  and . The proof here generalizes (but follows the 

same line as) these previous results. 

In establishing Theorem 3.1, we first show that for all  and , 

         (2) 
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The proof of this inequality is based on a class of completely monotonic functions and hence of 

general interest [14]. Using completely different methods, Leblanc and Johnson [13] previously 

showed that  is decreasing in  and hence, (2) is a generalization of the earlier 

result. 

Lemma 3.1 Let  and  be real numbers such that  and 

 and let  denote the digamma function. Define  

 

If  and , then  is completely monotonic on  and hence  is 

increasing and concave on , see[14] & [15] . 

Proof: Let , and . Then the integral representation of  is: 

 

Therefore, for , 

  

              (3) 

The assumption  yields 

.       (4) 
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where  Calculus shows that, for ,  is strictly decreasing 

on  and hence, for every , is decreasing [we note that, if , 

there is no difficulty in taking , since these terms vanish in 

(3)]. Since  is also decreasing, Chebyshev’s inequality for sums yields: 

 

We see that, if , the integrand in (4) is non-negative and hence  

on . We conclude that  is completely monotonic on  and, in particular,  is 

increasing and concave on  whenever  and .            

Lemma 3.2 [14] Let  be integers such that  and and define  

  . 

Then  is decreasing in  and  

. 

Proof: The limit is easily verified using Stirling’s formula, thus we need only show that  is 

decreasing in . Treating  as a continuous function in  and differentiating we obtain: 
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where . Now, taking    an 

, and  in Lemma 3.1, we have that  is increasing on  and hence 

 for all  since  always    

 

Corollary 3.1 Let . Then  is decreasing in  for every fixed . 

Proof:   if and only if,  and we have, by 

Lemma 3.2. 

   

which completes the proof. 

 

Proof of Theorem 3.1. First we note that (i) holds since 

        

                                  

                                    

                                    

                                    

with equality if and only if . Similarly, (ii) holds since  is uniformly 

integrable on  and, by Corollary 3.1, we have  for all . 
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To prove (iii), let  and  be two sequences of independent random 

variables such that  is Binomial  and  is Binomial . Now, define 

 so that  has a lattice distribution with span gcd  [17]. We can 

write  in terms of the  as: 

      . 

Now, define the standardized variable  so that Var  

and note that these also have a lattice distribution, but with span gcd  

. Theorem 3 of Section XV.5 of Feller [16] leads to  

        , 

where  corresponds to the standard normal probability density function. The result now 

follows from the fact that                

Remark 3.1  Since  is decreasing, it is obvious that: 

 

And since  for . we see that the sequence 

 define by: 

                     (5) 
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is increasing. 

Also, Corollary 3.1 trivially leads to a similar family of inequalities for “number of 

failure”-negative binomial probabilities. As such, let  be the probability of exactly  failures 

 before the th success  in a sequence of i.i.d. Bernoulli trials with success 

probability  so that, for   

  . 

Hence, as a direct consequence of Corollary 3.1, we have that  is also decreasing. 

As a consequence of Theorem 3.1, we have, for any function f  bounded on [0,1], 

          (6) 

In particular, Kakizawa [12], establish (6) for the case   

CONCLUSION  

 

Generally, we conclude by pointing out the usefulness of the results to some other interesting areas 

such as combinatorial and discrete probability inequalities in terms of monotonicity. In addition, 

the consequence of Theorem 3.1 is a key tool in assessing the performance of nonparametric 

density estimators based on Bernstein polynomials.  

 

The work complements previous results in the literature with significance in computational 

analysis and in applied probability. Also, the result is of special interest in the study of uniform 

integrability of martingales in terms of pointwise boundedness, and equicontinuity of a certain 

class of functions.  
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