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Abstract 

The conjugate gradient method provides a very powerful tool for solving unconstrained optimization problems. 

In this paper the non-linear conjugate gradient methods are tested using some benchmark non-polynomial 

unconstrained optimization functions. The task was accomplished by finding the exact values of the descent also 

known as the minimizing argument or rather the minimizer in each method. Findings also show that the basic 

requirement for exact convergence was satisfied by all the methods. 
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1. Introduction 

The major focus of this paper is the unconstrained optimization problem of the general form 

   ��������: � ∈ ℝ�
      (1) 

where�:ℝ� → ℝ is a continuous and differentiable function. The gradient of � at a point �� is 

denoted by �����. In equation (1), the number of objective variable or decision variable, �, is 

assumed to be very large since we are dealing with large scale problems.  
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In order to solve problem (1), a general method of descent has been employed as discussed in [6]. 

This method better known as the conjugate gradient method (CGM) was first proposed by Hestenes 

and Stiefel in a seminar in 1952 [8]. The method so proposed was an approach for solving linear 

system of equations that is characterised by it symmetric positive definite nature. Later the non-linear 

conjugate gradient methods evolve, first from the work of Fletcher and Reeves [4] in 1964. The 

recurrence formula for a non-linear CGM is given by      

     ���� = �� + ����     

 (2)The step length �� is positive and can be obtained by a line search. The search direction 

�� is evaluated by 

�� = �����������			� 		�!�
��"			#$		�%&      (3) 

where'� is the conjugate gradient updating parameter. Since the emergence of the non-linear CGMs, 

several variants of '� have been proposed corresponding to different CGMs. Few of this parameters 

has proposed are given in table 1 below. 

Table 1: Variants of Conjugate Gradient Updating Parameter 

S/N Author(s) Year CG Parameter 

1 Hestenes and Stiefel [8] 1952 '�() = ����* +�
��* +�  

2 Fletcher and Reeves [4] 1964 '�,- = ‖����‖/
‖��‖/  

3 Polak, Ribiere and Polyak [10,11] 1969 '�0-0 = ����* +�
‖��‖/  

4 Fletcher [5] 1987 '�12 = ‖����‖/
−��* ��  

5 Liu and Storey [9] 1991 '�4) = ����* +�
−��* ��  

6 Dai and Yuan [3] 2000 '�25 = ‖����‖/
��* +�  

7 Bamigbola, Ali and Nwaeze [2] 2010 '�678 = −����* +�
��* +�  

 



Here, +� = ���� − ��. 

It is noteworthy that if � is convex and quadratic, in the presence of an exact line search, these 

methods are equivalent. This distinct behaviour is lost in the case of non-convex functions. The nature 

of a function, whether convex or concave, has a lot to contribute to the convergence of the methods. 

More on convergence in sections 5 and 6. 

The remainder of this work is structured as follows: in section 2 we discussed the approach of line 

search in nonlinear CGMs. Section 3 discusses the exact line search which is the main focus of the 

experiment carried out in the work, while in section 4, the basic algorithmused in this research was 

presented. Sections 5 and 6, as noted above, present the numerical results and the appropriate 

inference respectively. 

2. Line Search in Conjugate Gradient Method 

In finding the local minimum, �∗, of an optimization function �:ℝ� → ℝ, two basic iterative 

techniques are required. One is called the line search, while the other approach is the trust region. For 

an iterative sequence given by���� = �� + ����,	the former initially computes a search direction 

along which the function � undergoes a decrease, and afterward determines the length of each step 

along that direction. 

The success of a line search is largely dependent on (i) the choice of the search direction, �� and (ii) 

the step length ��. In most cases, a line search algorithm requires �� to be a descent direction such 

that ��* ∇�� < 0.With this property, the objective function � is guaranteed to be reducible along such 

direction of descent. Most often, a simple line search always has the form 

    �� = −?���∇��      (4) 

where?� is a non-singular symmetric matrix. 

In performing a line search, various methods are applicable. One of such methods is the steepest 

descent which simply recognises ?� as the identity matrix @. The Newton method on the other hand 

computes ?� as the exact Hessian of ∇/�����. In the quasi-Newton method, ?� is approximated to 



an updated Hessian at every iteration by means of the formula     

    ��* ∇�� = −∇��*?���∇�� < 0     (5) 

This shows clearly that �� is a descent direction. 

To determine the value of step length ��, one can either do this exactly or approximately. As will be 

evident in subsequent sections, the application of exact line search to non-linear optimization 

functions may fail in most cases, this is coupled with the fact that accurate line searches are very 

expensive to carry out and the possibility that an exact descent may not exist. As a matter of fact, it is 

often desirable to forfeit accuracy for a global convergence [7]. The inexact line search affords us this 

opportunity. 

The inexact line search is a more practical approach to identifying a step length that offers adequate 

reduction in �. Until a certain predefined condition is satisfied, a typical inexact line search algorithm 

continues to search a sequence of value for the step length �. Any approximate line search of this 

nature works in two phases: (i) an interval-searching phase. The interval so searched contains desired 

step lengths. This is also known as the bracketing stage. (ii) the interpolation stage which computes a 

better step length with the interval in (i). 

In what follows, we present a brief discussion on exact line search and the accompanying algorithm to 

implement it for the few chosen benchmark optimization problems. 

 

3. Exact Line Search 

Finding the step length �� for a particular objective function ����, which is to be minimized, can be 

narrowed down to finding the value of �� = α which consequently minimizes the function  

    ������� = ���� + ���� = ����    (6) 

where �� and �� are fixed. By (6), ������� has become a function of a single variable, that is, �. 

The implication is that, to find the value of ��, a one-dimensional minimization technique will 

suffice. The aim of every line search is to determine the step length �� such that �� > 0 along the 

direction�� with the objective of ensuring a non-deteriorating rate of global convergence. To do this, 

we first set �� = �∗ in such a way that          



�∗ = CDE���	���� + ���� = 0     (7) 

In other words, �� is the value of � > 0 that minimizes the function �along ��. Thus �∗ in (7) can 

be obtained by solving the differential equation       

    
�
�F ���� + ���� = 0        (8) 

Any approach which yields an exact value such as in (8) is referred to an exact line search. To a 

polynomial objective function, the method can be directly amendable. For a non-polynomial function, 

an indirect application of (8) by expanding the function using Taylor’ series will do. We obtained the 

step length �� from (8) by finding the real root which satisfies (7). 

4. Algorithm for Exact Line Search 

Step 1: Given a non-polynomial objective function ����, expand in Taylor's series and truncate the 

series after a number of terms. In this paper we considered only the first four terms in each series. 

Step 2: For the truncated ����, substitute � with � + ��to get ����, that is, ���� = ��� + ��� and 

write as a polynomial of �. 

Step 3: Compute the first-order derivative of ��� + ��� with respect to �and equate to zero. 

Step 4: Solve for the real root � such that � > 0. 

5. Results 

The following non-polynomial objective functions obtained from Andrei [1] were used as benchmark 

problems. 

i. Raydan 1 Function 

���� =G 1
10 Iexp��#� − �#M

�

#%�
, �N = I1, 1,… , 1M* 

ii. Raydan 2 Function  

 	

���� =GIexp��#� − �#M
�

#%�
, �N = I1, 1,… , 1M* 



iii. Diagonal 3 Function 

���� =GIexp��#� − sin	��#�M
�

#%�
, �N = I1, 1, … , 1M* 

iv. Diagonal 6 Function 

���� =GIexp��#� − �1 − �#�M
�

#%�
, �N = I1, 1,… , 1M* 

v. Cosine Function 

���� =GScos��#� + �#/V
�

#%�
, �N = I1, 1, … , 1M* 

The following results were generated by a code based on the seven CG parameters in Table 1. The 

notations used are: � – dimension, ITR – number of iteration, �∗ - optimal value of the objective 

function, ‖E∗‖ - norm of the optimal gradient E∗, Ext – program execution time, BmF – benchmark 

function, AT – average execution time per computation. 

 Table 2. Numerical Results with BAN (AT=0.165) 

BmF n BAN 

ITR W∗ ‖X∗‖ Ext 

i 5000 1 5.00e003 2.7e-011 0.11 

10000 1 1.00e004 3.0e-011 0.09 

ii 5000 1 5.00e003 4.2e-012 0.02 

10000 1 1.00e004 1.2e-012 0.02 

iii 5000 1 5.00e003 9.1e-012 0.04 

10000 1 1.00e004 1.7e-011 0.06 

iv 5000 1 1.56e010 4.3e-007 0.07 

10000 3 5.00e010 9.6e-007 0.77 

v 5000 1 -8.33e003 1.3e-013 0.43 

10000 1 -1.67e004 1.8e-013 0.04 

 



 Table 3. Numerical Results with FR (AT=0.042
+
) 

BmF n FR 

ITR W∗ ‖X∗‖ Ext 

i 5000 1 5.00e003 2.7e-011 0.05 

10000 1 1.00e004 3.0e-011 0.09 

ii 5000 1 5.00e003 4.2e-012 0.02 

10000 1 1.00e004 1.2e-012 0.02 

iii 5000 1 5.00e003 9.1e-012 0.04 

10000 1 1.00e004 1.7e-011 0.06 

iv 5000 1 1.56e010 4.3e-007 0.04 

10000                 Test Failed 

v 5000 1 -8.33e003 1.3e-013 0.03 

10000 1 -1.67e004 1.8e-013 0.03 

 

 Table 4. Numerical Results with PRP (AT=0.082) 

BmF n PRP 

ITR W∗ ‖X∗‖ Ext 

i 5000 1 5.00e003 2.7e-011 0.07 

10000 1 1.00e004 3.0e-011 0.09 

ii 5000 1 5.00e003 4.2e-012 0.02 

10000 1 1.00e004 1.2e-012 0.02 

iii 5000 1 5.00e003 9.1e-012 0.04 

10000 1 1.00e004 1.7e-011 0.06 

iv 5000 1 1.56e010 4.3e-007 0.10 

10000 3 5.00e010 6.0e-007 0.23 

v 5000 1 -8.33e003 1.3e-013 0.16 

10000 1 -1.67e004 1.8e-013 0.03 



 Table 5. Numerical Results with HS (AT = 0.057) 

BmF n HS 

ITR W∗ ‖X∗‖ Ext 

i 5000 1 5.00e003 2.7e-011 0.07 

10000 1 1.00e004 3.0e-011 0.09 

ii 5000 1 5.00e003 4.2e-012 0.02 

10000 1 1.00e004 1.2e-012 0.02 

iii 5000 1 5.00e003 9.1e-012 0.04 

10000 1 1.00e004 1.7e-011 0.06 

iv 5000 1 1.56e010 4.3e-007 0.04 

10000 3 5.00e010 6.0e-007 0.15 

v 5000 1 -8.33e003 1.3e-013 0.05 

10000 1 -1.67e004 1.8e-013 0.03 

 

 Table 6. Numerical Results with CD (AT = 0.046
+
) 

BmF n CD 

ITR W∗ ‖X∗‖ Ext 

i 5000 1 5.00e003 2.7e-011 0.08 

10000 1 1.00e004 3.0e-011 0.09 

ii 5000 1 5.00e003 4.2e-012 0.02 

10000 1 1.00e004 1.2e-012 0.02 

iii 5000 1 5.00e003 9.1e-012 0.04 

10000 1 1.00e004 1.7e-011 0.06 

iv 5000 1 1.56e010 4.3e-007 0.04 

10000 Test Failed 

v 5000 1 -8.33e003 1.3e-013 0.03 

10000 1 -1.67e004 1.8e-013 0.03 



 Table 7. Numerical Results with DY (AT=0.045
+
) 

BmF n DY 

ITR W∗ ‖X∗‖ Ext 

i 5000 1 5.00e003 2.7e-011 0.07 

10000 1 1.00e004 3.0e-011 0.10 

ii 5000 1 5.00e003 4.2e-012 0.02 

10000 1 1.00e004 1.2e-012 0.02 

iii 5000 1 5.00e003 9.1e-012 0.05 

10000 1 1.00e004 1.7e-011 0.05 

iv 5000 1 1.56e010 4.3e-007 0.04 

10000 Test Failed 

v 5000 1 -8.33e003 1.3e-013 0.03 

10000 1 -1.67e004 1.8e-013 0.03 

 

 Table 8. Numerical Results with LS (AT=0.055) 

BmF n LS 

ITR W∗ ‖X∗‖ Ext 

i 5000 1 5.00e003 2.7e-011 0.07 

10000 1 1.00e004 3.0e-011 0.10 

ii 5000 1 5.00e003 4.2e-012 0.02 

10000 1 1.00e004 1.2e-012 0.02 

iii 5000 1 5.00e003 9.1e-012 0.04 

10000 1 1.00e004 1.7e-011 0.05 

iv 5000 1 1.56e010 4.3e-007 0.04 

10000 3 5.00e010 7.9e-007 0.15 

v 5000 1 -8.33e003 1.3e-013 0.03 

10000 1 -1.67e004 1.8e-013 0.03 



6. Remark 

The norm of E∗ is defined as 

 ‖E∗‖ = Y∑ E#/�#%� [�// < ] ⟹ ∑ E#/ < ]/�#%�     (9)  

If all the components of E∗ have the same value, then 

 �E#/ < ]/ ⟹E#∗ < _`a
� 			∀	�      (10) 

The highest value of � used in all the methods is 10,000 and the predefined tolerance used is          

] = 10�c. Substituting these for � and ] in (10), we have 

  E#∗ < _�&��a
�&&&& = �&�d

�&& = 10�e		∀		�	 

Now, ifEf∗ ≠ 0 and E#∗ = 0		∀	� ≠ h 

i.e., Ef∗/ < ]/ ⟹Ef∗ = √]/ = 10�c 

Thus, 10�e ≤ E#∗ ≤ 10�c, from which we deduce that E∗ ≈ 0. This is the requirement for the exact 

convergence. 

The minimization of the above problems using all the methods are all satisfied for ] = 10�c except 

for the methods FR, CD, and DY which failed for problem (iv) at � = 10000. All the methods gave 

the same value of �∗. Considering the execution time, we conclude that all used methods have fast 

rates of convergence. Thus, the methods are stable and consistent. 
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