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Abstract 
 

Transport structure such as railway bridges (plates), are subjected to moving 

railway vehicles (loads) which vary in both space and time. This branch of 

transport has experienced great advances, characterised by increasing high speed 

and weights of railway vehicles. Structures and media on which the railway 

vehicles move have, therefore, been subjected to vibration and dynamic stress 

more than ever before. The motivation for this paper is the observation that most 

of the works available in the literature are concerned with plates for which the 

effects of both rotatory inertia and shear deformation are neglected. Also the 

plates are assumed not resting on any foundation. In this paper, the dynamic 

response of railway track, modelled as an elastic rectangular plate, continuously 

supported by an elastic foundation and traversed by moving railway vehicle is 

investigated. Finite difference method is used to transform the set of coupled 

partial differential equations to a set of algebraic equations. The desired solutions 

are obtained with the aid of computer programs developed in conjunction with 

MATLAB. This shows that the elastic foundation, rotatory inertia and shear 

deformation have significant effect on the dynamic response of the railway 

bridge, to the moving railway vehicle (modelled as partially distributed moving 

load). In particular, it is observed that the deflection of the railway bridge 

decreases as the foundation moduli increase. 

Keywords: Winkler foundation, Mindlin plate, finite difference method, dynamic 

response, railway vehicle, railway tracks. 
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1 Introduction 

The moving load problem is a fundamental problem in several fields of Applied 

Mathematics, Mechanical Engineering, Applied Physics and Railway 

Engineering. The importance of this problems also manifested in numerous 

applications in the area of railway transportation. Rails and bridges are examples 

of structured elements to be designed to support moving masses. Furthermore, in 

connection with the design of machines processes, many members can be 

modelled as beams and plates acted upon by moving load. The challenges of 

these designs have attracted the attention of many investigations since 1897, 

when the Chester Rail Bridge collapsed in England [1]. Various kind of 

problems associated with moving loads have been presented in the excellent 

monograph by Fryba [2]. More recent development and results can be found in 

state – of – the – art review [3, 4, 5]. 

Also recently an attempt has been made to analyse the dynamic response of a 

Mindlin Elastic plate under the influence of moving load, without considering 

the possibility of the plate resting on any foundation [6]. Also another attempt, 

by Gbadeyan and Dada was to study the influence of elastic foundation on the 

plate under a moving load, but without considering the influence of rotatory 

inertia and shear deformation on the plate [7]. 

In the present work, the model suggested in reference [6 , 7] is extended to 

include the effect of foundation reaction on the vibration of Mindlin plate. The 

foundation reaction is modelled as Winkler type. An attempt is therefore made in 

this paper to carry out a dynamic analysis of reactions of railway track, as an 

elastic structure, on elastic foundation under the influence of an external moving 

load - railway vehicle. 

 

2.  Problem Definition 

 

 A railway bridge, modelled as a rectangular plate, with a moving railway 

vehicle (moving load) and different boundary conditions is considered. The load 

is relatively large, that is, its inertia cannot be neglected, and is moving along the 

mid-space on the surface of the plate, supported by a Winkler foundation, as 

shown in figure 1. 

 

2.1 Assumptions:  

 

(i). The plate is of constant cross – section, (ii.) the moving load moves with a 

constant speed, (iii). The moving load is guided in such a way that it keeps 

contact with the plate throughout the motion, (iv). The plate is continuously 

supported by a Winkler foundation, (v). The moving load is partially distributed, 

(vi). The rectangular Mindlin plate is elastic, (vii). No damping in the system, 

(viii). Uniform gravitational field and (ix). Constant mass (ML) of the load on the 

plate. 

 



 

 
Figure 1.  A moving load on the plate supported by Winkler foundation 

 

 

2.2. Initial Conditions 

 

W (x, y, o) = 0 = 
  

  
 (x, y, 0) 

 

2.3. Boundary Conditions. 

 

W (x, y, t) = MX (x, y, t) = ⍦Y (x, y, t) = 0, for x = 0 and x = a 

W (x, y, t) = MY (x, y, t) = ⍦X (x, y, t) = 0, for y = 0 and y = b 

Where MX and My are bending moments in the x – and y – directions 

respectively, ⍦X (x, y, t) and ⍦y (x, y, t) are local rotations in the x – and y – 

directions respectively.           is the traverse displacement of the plate at 

time t.  

 

3. Problem Solution 

The set of dynamic equilibrium equations which govern the behaviour of 

Mindlin plate supported by Winkler foundation and traversed by a partially 

distributed moving load may be written as [6,7]; 
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     is the Heaviside function defined as;  

 

        1,  x >0 

      =                      0.5, x=0               (6) 

                    0, x < 0 

 

u is the velocity of a load of rectangular dimension   and µ with one of its lines 

of symmetry moving along Y = Y1  A = µ , the area of the load in contact with 

the plate. The plate is Lx by Ly in dimension, and   = UT  
 

 
, h and h1 are 

thickness of the plate and load respectively.   and  L are the densities of the 

plate and load respectively. G is the modulus of rigidity of the plate. D is the 

flexural rigidity of the plate defined by D = ½ Eh
2
 [(1-  3

)] = Gh
3
/6 (1-  ). K

2
 is 

the shear correction factor,    is the poison’s ratio of the plate. G is the 

acceleration due to gravity. E is the young modulus of Elasticity   is the mass 

of the load. K is the stiffness of the foundation (constant for this case). Mf is the 

mass of the foundation. 

The bending moments    and   , the shear deformation    and   and the  

twisting moments     can be written as[7]: 
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Rewriting equation (1), (2) and (3), and substituting equations (7), (8), (9),(10) 

and (11) results in  
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From equation (10) 
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Substituting (10) into (16) we have  
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. 

 

Solving for 
  ⍦ 

  
 in equations (7) and (8) we have 
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Substituting (21) into (20) yields  
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Similarly, by virtue of (21), we have, 
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  Similarly equation (3.18) reduces to 
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By virtue of (16), the expression on the left hand side of equation (1) reduces to 
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where          is the moving load 

 

Now equation (1), (2), and (3) can be written as 
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Moreover, note that [6] 
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Substituting equations (30), (31), (32), (33) and (34) into 

 (27), (28) and (29) yield; 
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Where (Mf –  ) = M,   Dt = 
  

  
 

Equation (35), (36) and (37) can be written as first order partial differential 

equations as follows: 
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Where⍦    = 
  ⍦ 

   and⍦   = 
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    . 

 

Differentiating equations (30),(31),(32),(33),and (34) with respect to   yields 

respectively: 
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The set of first order partial differential equations (38) – (45) with 
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are the simplified partial differential equations to be solved for the following 

nine dependent variables: Qx, Qy, Mx, My, Mxy, ψx,t, ψy,t, Dt and W. A numerical 

procedure, finite difference method, can be used to solve the system of equations 

(38) - (46). [6] 

Rearranging them in matrix form results in: 

 

             Hi,j+1 S’i,j+1 + Ii+1,j+i S’i+1,j+1= - Gi,jS’I,,j – Ji+1,j S’i+1,j + Lk               (47) 

 

 i = 1, 2, 3, ..., N-1; j = 1, 2, 3, ... M -1 

 

Where N and M are the number of the nodal points along X and Y axes 

respectively. 

 

 Lk = Ki, j S i,j + Li,j +i , S i,j+1 Mi+1 S i+1,j + Ni+1, j+1 S i+1,j+1 + P1              (48) 

 

Each term in equations (47) and (48) is a 9×9 matrix. 

 

4. The Shear, Rotatory and Kirchhoff Railway Bridges (Plates) Resting on 

Winkler Foundation 

 

In order to compare the effects of shear deformation and rotatory inertia on the 

deflection of the railway track under a moving railway vehicle (load) supported 

by a sub-grade, the following types of plates are considered; the share plate (no 

rotatory inertia effect.), the rotatory plate (no shear deformation effect) and 

Kirchhoff plate (non – Mindlin plate). 

 

 



5. Results Discussion 

 

The numerical calculations were carried out for a simply supported rectangular 

plate (railway bridge) resting on a Winkler foundation and subjected to a moving 

railway vehicle (load.). Damping effect was neglected. For a specific value of 

foundation stiffness   and contact area (  ), deflection of the Mindlin plate is 

calculated and plotted (in figure 2) as a function of time. It is observed that 

Mindlin plate has highest maximum amplitude when compared with Non – 

Mindlin plate , plate without rotating effect and plate without shear deformation 

effect. The plate without shear deformation effect has the least. In figure 3, the 

deflection of the Mindlin plate resting on a Winker foundation due to the moving 

partially distributed load is plotted as a function of time for K=100 and various 

values of contact areas (  ).Clearly, from the figure, the response maximum 

amplitude of the Mindlin plate decreases with an increase in the contact area (Ar) 

of the moving load, for a fixed value of velocity u. The effect of the Winkler 

foundation on the deflection of the Mindlin plate is shown in figure 4. Evidently, 

it is noted that the response maximum amplitude decreases as the foundation 

stiffness K increases for fixed values of velocity u and contact area Ar. Figure 5 

shows the deflection of the plate for various values of velocity u. It can also be 

seen that the response maximum amplitude of the plate decreases as velocity 

decreases. 

 

   

  

 

 

 

 

 

 

 

                                                                                            

                                                                                              

 

 

 

 

 

 

 

 

 

Figure 2: Deflection of different plates at K=100, Ar=0.5, u=1.5 and various  

                values of time. 
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Figure 3: Deflection of the plate at K=100 and various value of Ar and time. 

 

 

 
 

Figure 4. Comparing the effect of K=100 with K=200 on the deflection of  

 Mindlin plate resting on Winkler foundation when velocity u=5.5 
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Figure 5: Deflection of Mindlin plate at K=200 and different values of velocity  

  and time. 

 

6. Conclusion 

The structure of interest was a Mindlin rectangular elastic plate (railway track) 

on Winkler elastic foundation, under the influence of a uniform partially 

distributed moving load (railway vehicle). The problem was to determine the 

dynamic response of the whole system. Finite difference technique was adopted 

in solving the resulting first order coupled partial differential equations obtained 

from governing equations for the simply supported Mindlin plate. The study has 

contributed to scientific knowledge by showing that the elastic subgrade on 

which the Mindlin plate rests has a significance effect on the dynamic response 

of the plate to a partially distributed load. The effect of rotating inertia and shear 

deformation on the dynamic response of the Mindlin plate (railway track) to the 

moving railway vehicle (load) gives more realistic results for practical 

application, especially when such plate is considered to rest on a foundation. 
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