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Abstract

An A(a)-stable implicit one step hybrid method for the numerical
approximation of solutions of initial value problems of general second
order ordinary differential equations is proposed. The method is
developed by interpolation and collocation of a power series
approximate solution and implemented as simultaneous integrators via
block method. The stability and convergence of the methods are
determined. Numerical experiments are conducted on sample problems
and the absolute error estimates of the results are presented.
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1. Introduction

Due to sophistication in computing, mathematical modeling of real life
systems throw up complex mathematical equations which pose the challenge
of obtaining close form solutions. Mostly, these complex mathematical
equations are either in the form of partial differential equations (PDE) or
ordinary differential equations (ODE). Of interest to us however, is the latter,
where the models pose initial value problems (IVP).

For these kinds of problems, developing efficient and accurate numerical
methods has increasingly been of much interest to researchers in the area of
numerical methods and analysis over the years. Indeed, through a variety of
approaches, several numerical methods have been proposed; ranging from
the single step Runge-Kutta type methods [11, 17], through Adam type
multistep methods [4, 5, 9, 18, 20] to the now very popular block methods [1,
2, 3, 8, 13, 19]. Besides these methods, are their hybrid variants [6, 7, 10, 12,
14, 16]. These methods respectively, have their setbacks which impacts on
their efficiency and accuracy. Therefore, the overriding objective in
developing new methods has always been to improve on the efficiency and
convergence with the ultimate aim of reducing the error of approximation.

Thus, it is our intention in this paper to develop a more efficient and
accurate implicit one step hybrid method for the direct solution of general
second order IVP of ODE of the form:

y"'=f(x, v, ¥), xelab]
y(a) = Co, 1)
y'(a) = .

This class of problems often arises in areas such as control theory,
chemical kinetics, circuit theory, mechanics and biology. Unique solutions
have been shown to exist for problems of this class in [21].

The layout of this paper is as follows: the next section describes the
derivation of the proposed numerical method, this is followed by the analysis
of the method for stability and convergence in section three. In section four,
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the associated block formulation for the implementation of the method is
presented, this is followed by numerical experiments on some selected
problems in section five. Finally, conclusion is given in section six and
references thereafter.

2. Derivation of the Method
In this section, a continuous representation of an implicit one-step hybrid
method is derived.
Let my:a=Xg <X <--<XN_1 <Xy =n be a partition of the
integration interval [a, b], into N subintervals, [xj, xj+1], with constant
step size given by h = Xje1 = Xj j=0,1 .., N-1 Also, let the basis

polynomial be a power series polynomial of the form

m
Y(x) = Z ajx' 2
i=0
completely determined by m +1 unknown parameters a;, i = 0,1, 2, ..., m.

Introducing n offstep points, p, = ﬁ u=12 ..,n-1n, in the

one step structure, (see [6]), a continuous implicit one step hybrid method is
obtained. This is accomplished, by interpolating (2) at the points Xjtun-1)

and X " in a Stormer-Cowell fashion, (see [13]), and collocating (1) at the

points Xj.j, i = O(ny, )1. A combination of these procedures give rise to a

system of m + 1 equations of degree at most m in the form:

m

Z:aix'j+HS = Yjspgr S=N-1n (32)
i=0

m -

Zi(i ~Daixid = fip, r=0py, 1, (3b)
i=0

where s and r represent the interpolation and collocation points respectively.
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The system of equations (3) is solved for the values of the unknown
parameters a;, i =0, 1, ..., m which are then substituted into (2). By using
X = Xjtpp

h
obtained the proposed continuous implicit one-step hybrid method and its
first derivative in the form:

the transformation, t = in the resulting algebraic system, we

V() = o, OV jpy + gy OV jrpg)

1 n
+ h{ZBi(t) Fivi + D By, (O m], (4a)

i=0 u=1

Y' () = oy (O jay + %y O japgny

1 n
+ h[ZBi(t) fiei + D B, (OF wu}. (4b)
i=0 u=1

where for arbitrary d € R, a4 (t) and B4 (t) are continuous coefficients in t,

Yi+i = y(xj+i) is the numerical approximation of the analytical solution at

the point xjj = xj +ih and fi; = f(Xj4i, Yjsir Vjsi):

Obtaining values of t by evaluating (4a) x = Xj,, 1=0,py, 1; u=
1,2 ..,n-2and(4b)at x = Xjsis i=0pn,,Lu=1 2 .., n, respectively,

the desired discrete numerical methods and their first derivatives are
obtained.

In particular, if we set n = 6, that is, if six offstep points are introduced
between x; and Xj,;. Then, a power series approximate solution (2) of

degree m =9 vyields a system of equations, each completely determined by
the coefficients aj, j=0,1, ..., 9. Following the procedure described earlier

we obtained the continuous implicit one step hybrid methods:
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y(t) = a5y §+0€§(t)y_+6
7 77 I

1 6
+h? ZBi(t)fjH + ZBHU () Fjapy | (52)
i=0 u=1

y(t)=a5(t)y s5+agt)y ¢
7 77 7

1 6
# A B i + D By O Fjgy | (5b)
i=0 u=1

Obtaining values for t by evaluating (5a) at the points X = Xj,q,

i=0 1234
_1717!7171

their coefficients in Table 1. In a similar manner, when (5b) is evaluated at

1, yields specific discrete methods expressed in terms of

X = Xj4i, i = O(%)l for values of t, specific derivative methods expressed

by their coefficients in Table 2 are obtained.

Table 1. The coefficients of the method (5a) for t = —g, S 43

|
~| N
~N |-

ioas(t) ag(t)  Bo(t)  Bult)  Bz(t)  Bs()  Ba(t)  Bz(t)  Polt)  Hult)
0 6 -5 3683 8333 35771 20063 45089 23221 25511 —349
2963520 370440 987840 296352 592704 246960 2963520 1481760
1 5 4 =1 2927 304 4187 8825 36307 899 —349
7 11760 1481760 15435 98784 148176 493920 123480 1481760
2 4 _3 =31 23 521 16297 58039 1355 1609 =127
7 1481760 185220 493920 740880 1481760 24696 296352 740880
3 3 -9 =31 527 —11 9109 28477 35507 2713 —349
7 1481760 2963520 15435 2963520 1481760 987840 740880 2963520
4 92 -1 —31 K — 649 4343 463 1129 —=19
7 2963520 370440 109760 1481760 2963520 27440 592704 296352
1 -1 2 19 —517 29 —11477 811 —2099 13831 275

296352 987840 15435 2963520 164640 987840 740880 197568
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Table 2. The coefficients for the method (5b) for t = —=, =, —, —=

[ 01
7 7 7

ioag(t) as(t)  Bolt) Bu(t)  Bz(t)  Ba(t)  Ba(t)  Bz(t)  PBe(t) Ba(t)

0 i 7 —534223 —346873 —147751 —331003 —19987 —182201 —18691 —6031
12700800 1587600 4233600 1270080 362880 1058400 12700800 6350400

1 -7 7 8881 —677249 —5912 —41801 —40555 —521309 —47239 8563

7 6350400 12700800 33075 362880 254016 4233600 3175200 12700800

2 7 7 —409 4967 —35713  —213499  —324901  —144761  —143971 1649

7 1814400 1587600 604800 1270080 2540160 1058400 12700800 6350400

3 i 7 1201 —3287 298 —181919 —192791 —542909 —42439 6163

7 6350400 1814400 33075 2540160 1270080 4233600 3175200 12700800

4 _7 7 —463 647 —9511 2305 —180613 —147641 —141571 1649

7 12700800 1587600 4233600 254016 2540160 1058400 12700800 6350400

5 -7 7 1201 —20609 208 —37631 32233 —302429 —T7297 8563

7 6350400 12700800 33075 2540160 1270080 4233600 453600 12700800

6 7 7 —409 3047 —31111 21509 —13985 7207 512669 —6031

7 1814400 1587600 4233600 1270080 508032 151200 12700800 6350400

1 _7 7 8881 —145889 1378 —222623 21391 —404669 652601 539923
6350400 12700800 33075 2540160 181440 4233600 3175200 12700800

In particular, the main method and its first derivative are obtained as follows:

h2
yj+l = 2y]+$ - yj+g +m 4125f1+1 +55324f]+§ - 6297 f 5

7 *7

+14598f , —11477f 4 +5568f , —1551f ; +190f, |, (6)
J+7 J+7 J+7 J+7

h

Vi = 7,6 =TV, 5 * T7o0800| 5399231 + 26104041 o

7 7 7
-1214007f 5 +1497370f , —1113115f 4
j+= J+= j+=
7 7 7
+52012521, 5 —1458891 , +17762f, |. @)
7 7

3. Analysis of the Methods

In this section, the order, local error constant, zero stability, consistency,
convergence and absolute stability and A(o)-stability of the method (6) is
determined.
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3.1. Order and error constant

To obtain the order and error constants for the new methods, rewrite (6)
in the form of the linear difference operator

LIy(x); h] = y(xj + h) =y V(Xj + pp_gh) — o Y(Xj + uph)
1 n
—h2 > Biy"(xj +ih)+ D" B, V(X + ugh) |, ®)
i=0 u=1

where y(x) e cd [a, b] is an arbitrary test function. Then expand y(x; + ih)
and y"(xj +ih), i =0, py, 1 for all i respectively in Taylor series about x;

and collect terms in powers of y such that (8) becomes:
LLy(x); ] = Coy(x) + Cohy @ (x) + Coh?y 2 (x) + -+ C o Py P (x)
+Cpyh e )

where the constant coefficients Cq, g=0,1 2, .. are defined as follows:

k
Cl = ;Ia,

k

k k
1 . .0— 2
Cq = a{zlqai -q(q —1)£Zlq i + Zugq B, H
“Li=l i=1 i=1
Definition 3.1. 1. The difference operator £ and the associated method

is said to be of order pif Cy =C; =---=Cp =0and Cp,, # 0.

2. The term C ., is called the error constant and it implies that the
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local truncation error (l.t.e) is defined by:
lte. = Cp,ohPH2yP+2 4+ O(hP*3), (10)

We have established from our computation that method (6) has order p =8

and error constants C,,, = —9.5888 x 10712,

3.2. Zero stability, consistency and convergence

Definition 3.2. The first and second characteristic polynomials of the
algorithm (6) are defined respectively as

k
p(2) = ) o', (11a)
i=0
k .
o(z) = ) Biz", (11b)
i=0

where z is the principal root, o, # 0 and oc% + 35 = 0.

Definition 3.3. The method (6) is said to be zero stable as h — 0 if no
root of (11a), p(z) has modulus greater than one, and if every root of
modulus one has multiplicity not greater than one.

For our method (6), we obtained (11a) as follows;

& 5
p(z)=z-2z7 +27. (12)

Clearly, the conditions in Definition 3.3 are satisfied hence, the
algorithm is zero stable. The consistency of the method is established by the
fact that the order of the algorithm is greater than one, (see [17]).

Following [15], convergence is established by the zero stability and
consistency of method (6).
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3.3. Stability

Absolute stability for the algorithm is determined by means of the
boundary locus method. Consider the stability polynomial

I1(z, h) = p(z) - ho(z) = 0, (13)

where h = h2w? and ® = % are assumed constant.

The stability polynomial (13) is obtained by applying the continuous
implicit one step hybrid methods (6) to the scalar test problem;
y' = —o’y. (14)
The following definitions shall guide our conclusions.

Definition 3.4 (Absolute stability). The algorithm, (6) is said to be
absolutely stable if for a given h all the roots 24, of (13) satisfy | z,, | <1,

6=12,..,(r-12).
Definition 3.5 (Region of absolute stability). The region R of the
complex h -plane such that the roots of the polynomial I1(z, h) lie within

the unit circle whenever h lies in the interior of the region is called the
region of absolute stability.

Definition 3.6 (A(a)-stability). A linear multistep method is A(a)-stable,

o e (0, g) if the region of absolute stability includes the infinite wedge
Sq ={h:|n—arg(h)|< a}. (15)

We established from our computation that method (6), is absolutely stable
and indeed A(a)-stable. The A(a)-stability property is shown in Figure 1.
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Im(E)

Figure 1. A(a)-stability of method (6).
4. Implementation

The methods obtained from Tables 1 and 2 are combined to form a block
method given in vector notation by

AYm = Eym + h"*[DF(ym) + BF (ym)], (16)
where A is a square identity matrix of order 14; E, D, B are constant
coefficient - matrices, Y = (Vjipy,, Yistr Yieuy, Yisr) - YOG ¥
F(Ym) = (fjp,, fj+i)T, F(ym) = (fj), X is the power of derivative in (4)
and vy is the order of the problem.

The constant coefficient matrices are obtained as follows:

_ /1 1 1
E-|1 23
7

77

N A

1110000000}T
5 6
> 21111

D - 416173 14939 18399 15824 102425 597 10597
188905600 1389150 1097600 694575 3556224 17150 259200

751 41 265 278 275 41 751 '
17280 980 6272 6615 6272 980 17280
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[ 33953 27821 39141 71152 59375 1413 25333 139849 1466 1359 1448 36725 54 35771 7T
3175200 694575 548800 694575 444528 8575 129600 846720 6615 6272 6615 169344 245 17280

—341699 —17 —24111 —3832 —13375 —54 _ 49 —4511 =71 1377 8 775 27 49
29635200 675 1097600 231525 1185408 8575 86400 31360 2940 31360 245 18816 980 640

105943 799 369 11344 210625 267 245 123133 68 5927 1784 4625 68 2989
8890560 27783 7840 138915 1778112 1715 1296 846720 735 31360 6615 18816 245 17280

—153761 —5881 —7299 —856 —130625 —99 —833 —88547 —1927 —3033 _609239 13625 27 2989
17781120 277830 219520 19845 3556224 3430 51840 846720 26460 31360 12700800 169344 980 17280

[oo]}
Il

943 2321 8613 4912 25 459 3283 1537 26 1377 8 1895 54 49

231525 231525 548800 231525 864 8575 43200 31360 735 31360 245 18816 245 640

—99359 —1916 —4737 —4072 —26875 —9 2989 —11351 —29 —373 —64 —275 41 3577

88905600 694575 1097600 694575 3556224 1225 259200 846720 2940 31360 6615 18816 980 17280

6031 233 9 496 1625 9 167 275 8 9 275 751

8
L 44452800 694575 17150 694575 1778112 8575 4800 169344 6615 6272 6615 169344 17280 4

The block formulation for the implementation of these schemes is according
to [8]. A single application of the revised block formula generates
simultaneously, approximate solutions and first derivative solutions at the
step points Xj, Xju1 and all the offstep points: Xjipyr U =1 .., n The

procedure is a block by block procedure where initial conditions are obtained
explicitly at xj,1, j =0,1 .., N —1 using the computed values y; ;. The

starting values for subsequent block is then computed from the previous
block for the implementation of the method over the subintervals:

[X0, x], D X2, s XNy XN ]
5. Numerical Experiments

In this section, numerical experiments are performed using some sample
problems to test the efficiency and accuracy of the hybrid methods. The
results are compared with results obtained from existing methods in Tables 3,
4 and 5 respectively, using in each case a fixed step size h = 0.01.

Problem 5.1.
n ! 2 ’ 1
Yy =x(y)" =0,y(0) =1 y(0) =3

Theoretical solution:
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Table 3. Comparison of absolute errors and CPU time between method (6),
[3] and [8] for Problem 5.1

X Exact Computed Error in Error in Error in Time(s) Time(s) Time(s) for
Result Result Method (6) 3] 8] for [3] for [8]  method(6)
0.1 1.0500417  1.0500417  0.0000(00)  4.8627(-14)  6.5501(-11)  0.0312 0.0156 0.0624
0.2 1.1003353 1.1003353 6.6661(-16) 2.1604(-13) 5.4803(-10)  0.0624 0.0468 0.0780
0.3 1.1511404 1.1511404  1.5543(-15) 5.2557(-13)  1.9256(-09)  0.1092 0.1092 0.0936
0.4 12027325  1.2027325 2.8866(-15) 1.0254(-12) 4.8029(-09)  0.1404 0.1716 0.1092
0.5 1.2554128 1.2554128  4.8850(-15) 1.8032(-12) 1.0006(-08)  0.2653 0.1872 0.1404
0.6 1.3095196  1.3095196  7.1054(-15) 3.0078(-12) 1.8727(-08)  0.2964  0.2028 0.1872
0.7 1.3654437  1.3654437  1.2657(-14) 4.8991(-12)  3.2746(-08)  0.3744 0.2340 0.2496
0.8 1.4236489 1.4236489  2.3315(-14) 7.9460(-12) 5.3969(-08)  0.4524 0.2496 0.2808
0.9 1.4847003  1.4847003  4.1522(-14) 1.3702(-11) 8 8004(-08) 0.5460 0.3432 0.2808
1.0 1.5493061  1.5493061  7.4829(-14) 2.1885(-11) 1.4353(-07)  0.6552 0.4748 0.2964

Problem 5.2.
, (y)2 ( ) 1 ,(Ej_ﬁ

Theoretical solution:

y = sin? x.

Table 4. Comparison of absolute errors and CPU time between method (6)
and [1] for Problem 5.2

X Exact Computed Error in Error in ~ Time(s) Time(s) for

Result Result Method (6) 1] for [1]  method (6)
1.1035988  0.7971525280 0.7971525281  3.5274(-11) 1.8811(-10)  0.3900 0.0936
1.2035988  0.8711181442 0.8711181442 2.9418(-11) 2.4539(-10)  0.4368 0.1092
1.3035988  0.9302884505 0.9302884505 2.2389(-11) 3.0306(-10)  0.4680 0.1092
1.4035988  0.9723045137  0.9723045137 1.4467(-11) 3.5819(-10)  0.4992 0.1404
1.5035988  0.9954912857  0.9954912857  5.9693(-12)  4.0838(-10)  0.5460 0.1560
1.6035988  0.9989243831  0.9989243831 2.7670(-12) 4.5128(-10)  0.5772 0.1560
1.7035988  0.9824669392 0.9824669392 1.1393(-11) 4.8473(-10)  0.6552 0.1560
1.8035988  0.9467750604  0.9467750604  1.9564(-11)  5.0696(-10)  0.6864 0.1716
1.9035988  0.8932716692 0.8932716692  2.6956(-11) 5.1697(-10)  0.7020 0.2028
2.0035988  0.8240897771 0.8240897770  3.3274(-11) 5.1381(-10)  0.7644 0.2184

Problem 5.3.
y'+wyy=0y0)=1y(0)=2 ¢y =2
Theoretical solution:

y(X) = cos 2x + sin 2x.
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Table 5. Comparison of absolute errors and CPU time between method (6)
and [2] for Problem 5.3

X Exact Computed Error in Error in ~ Time(s) Time(s) for

Result Result Method (6) 2] for [2]  method (6)
0.01 1.0197987 1.0197987  7.3274720(-15) 9.5379(-13)  0.0000 0.0000
0.02 1.0391894 1.0391894 6.6613381(-15) 2.1846(-12)  0.0156 0.0000
0.03 1.0581645 1.0581645 6.2172489(-15) 3.6890(-12)  0.0312 0.0000
0.04 1.0767164 1.0767164 5.5511151(-15) 7.1798(-12)  0.0312 0.0156
0.05 1.0948376 1.0948376  5.1070259(-15) 1.0965(-11)  0.0624 0.0156
0.06 1.1125208 1.1125208 4.2188475(-15) 1.5016(-11)  0.0624 0.0312
0.07 1.1297591 1.1297591  3.7747583(-15) 2.1162(-11)  0.0780 0.0624
0.08 1.1465455 1.1465455 3.5527137(-15) 2.7600(-11)  0.0780 0.0624
0.09 1.1628733 1.1628733  3.1086245(-15) 3.4333(-11)  0.0862 0.0780
0.10 1.1787359 1.1787359  2.8865799(-15) 4.3238(-11)  0.0862 0.0780

6. Conclusion

An A(a)-stable continuous implicit one step hybrid method which is
both efficient, accurate and economical has been developed in this paper. It
has been established that the order p = 8. method obtained converges very

fast for fixed step sizes as shown in the time it takes to obtain solutions at the
respective grid points. It is worth noting that apart from serving as starting
values, the simultaneous block solutions can themselves be used as
integrators. It is also evident that derivative solutions can be obtained at
individual grid points as well. Numerical experiments performed on sample
problems yielded the results reported in Tables 3, 4 and 5 respectively. In
view of the comparison made with solutions obtained from block method [8],
block predictor-corrector method [2] and block hybrid predictor-corrector
method [3], we observed that method (6) gave better result; yielding very low
error of approximation and used lesser CPU time (in seconds) than these
methods. The method developed is recommended for the direct solution of
higher order initial value problems of ordinary differential equations, even
for stiff problems.
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