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ABSTRACT: An efficient one step Adam type implicit block numerical algorithm developed by simultaneous
employment of interpolation and collocation techniques is proposed in this paper. Non mesh points were introduced
to upgrade the order of consistency and improve the rate of convergence of the method. Further analysis revealed a
wide interval of absolute stability. The method is implemented as a block to improve efficiency and reduce computational
cost. Comparison of the new method with previous methods in terms of absolute errors of approximation established
an improvement over those methods.
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1. INTRODUCTION

Differential equations usually arise from the mathematical modeling of real life phenomena such as in
dynamical systems. For example, in chemical reactor dynamics, predator-prey problems, atmospheric fluid
dynamics, biological dynamics, finance, electrical circuits and mechanical systems, etc. Very often, closed
form solutions can not be obtained for these equations hence, the need for numerical approximations.
However, the development of accurate numerical approximations is not usually an easy task and furthermore,
there is usually a trade off between accuracy, stability and efficiency. Some of the several numerical methods
proposed include the Runge-Kutta type methods [7, 9, and 10], the Adam type methods [1, 2, 3, 4, 5, and
6] and the backward differentiation formulae [11, 12].

The aim in this paper is to develop a stable, accurate and efficient method for the solution of initial
value problems (IVP) of first order ordinary differential equations (ODEs) of the form:

� � 0 0, , 0, y(t ) = ;  [t ,T]F x y y t� � � � , (1)

where (T ���)����.

Conventionally, higher order ODEs are sometimes reduced to a system of first order ODEs before their
solutions are sought. Many times problems in this class are mildly stiff or outright stiff problems. By stiff
problems, we mean problems that correspond to physical processes whose components have disparate
time scales or whose time scale is small compared to interval over which it is studied. For example, in
chemical kinetics where reactions take place at different speeds. The motivation for this paper is therefore,
to develop an accurate numerical algorithm for the solution of initial value problems of first order ODEs of
any nature. In what follows, we shall assume standard conditions for the existence and uniqueness of the
solutions of (1). Some of the other methods proposed for the solution of (1) can be seen in [1, 11, 13, and
12]. In the sections that follow, we shall describe the method of derivation, then an analysis of the properties
of the method is presented. Furthermore, numerical experiments are conducted on sample problems and
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comparisons of the numerical results, with respect to the absolute error of approximation, with other proposed
methods are presented in tables.

2. DERIVATION OF THE METHOD

Let � � � �: 0, , ,nh
t t n N� � �  with a fixed step size h, be the time discretization of the interval [t0, T] such

that 1 , 0, , 1n nt t h n N� � � � �� , defined as a sequence 0 1 1n Nt t t t T�� � � � ��  of mesh points. Following

[3], consecutive mesh points, say � �� �1, : 0,1, , 1n nt t n N� � �� , are further partitioned into q so called non

mesh points given by 1, ; 1, 2, ,
u

u
n u qt u q�� �� � � � .

Let

� �
0

m
i

m i
i

P x a x
�

� � (2)

be a power series polynomial completely determined by m+1 unknown parameters ai, i = 0,1,..., m. Now,

interpolate (2), Stormer-Cowell style, at the non mesh points, 
qnt �� and collocate (2) at all points,

� �, 0 1,n j ut j u� � � � . These procedures together give rise to a system of m+1 equations:

0

,
s s

m
i

i n n
i

a x y s q�� ��
�

� �� (3a)

� �
0

1 , 0, ,1
m

i
i n r n r u

i

i i a x f r� �
�

� � � �� (3b)

where m = (s + r) –1 and s, r represent the interpolation and collocation points respectively. Equations (3a)
and (3b) together satisfy the matrix equation:

AX = B (4)

where A is an (m+1)×(m+1) coefficient matrix, (note that the coefficients here are the points,

� �, 0 1,n j ut j u� � � � ), obtained from the interpolation and collocation equations; X and B are column

matrices of the unknown parameters to be solved for, that is, � �, 0 1j ua j � � . The solutions so obtained

when substituted back into (2) give rise to an algebraic equation from where a continuous implicit hybrid
multistep method is obtained, after some algebraic manipulations as follows:

� � � �
q qn j n j n j

j

y z y h z f� � �� �� � � �� (5)

where � �0 1,uj u� � � . The coefficients � �
q

z��  and �j(z) are continuous for all values of z�[0, 1] and are

obtained by evaluating the transformation:

nt t
z

h

�
� (6)
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In what follows, for reasons of accuracy, stability and convergence desired, we make q = 7, that is a

choice of seven non mesh points. Hence, the coefficients � �
q

z��  and � � ,j z j� �  were obtained as follows:

� �7
8

1z� � (7)

� � 9 8 7
0

6 5 4

3 2

13102 8192 53248

2835 35 105
3072 34208 1068

5 75 5
59062 761 149527

945 70 4147200

z z z z

z z z

z z z

� � � �

� � �

� � � �

(8)

� �1
8

9 8 7

6 5 4

3 2

1048576 16384 1196032

2835 9 315
117760 673792 11168

27 225 9
30784 408317

32
105 2073600

z z z z

z z z

z z

� � � � �

� � �

� � �

(9)

� �1
4

9 8 7

6 5 4

3 2

524288 278528 3915776

405 45 315
366592 1956992 146824

27 225 45
3312 24353

56
5 2073600

z z z z

z z z

z z

� � � �

� � �

� � �

(10)

� �3
8

9 8 7

6 5 4

3 2

1048576 180224 2441216

405 15 105
72704 1097728 25504

3 75 5
128192 224 542969

135 3 2073600

z z z z

z z z

z z

� � � � �

� � �

� � �

(11)

� �1
2

9 8 7

6 5 4

3 2

262144 131072 1712128

81 9 63
733184 703552 46624

27 45 9
2764 343

70
3 25920

z z z z

z z z

z z

� � � �

� � �

� � �

(12)
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� �5
8

9 8 7

6 5 4

3 2

1048576 507904 6406144

405 45 315
2642944 2443264 156512

135 225 45
3008 224 368039

5 5 2073600

z z z z

z z z

z z

� � � � �

� � �

� � �

(13)

� �3
4

9 8 7

6 5 4

3 2

524288 16384 999424

405 3 105
26624 358784

1496
3 75

34288 56 261023

135 3 2073600

z z z z

z z z

z z

� � � �

� � �

� � �

(14)

� �7
8

9 8 7

6 5 4

3 2

1048576 475136 114688

2835 315 45
62464 274432 16864

27 225 45
6592 32 111587

105 7 2073600

z z z z

z z z

z z

� � � � �

� � �

� � �

(15)

� � 9 8 7
1

6 5 4

3 2

1048576 106496 204800

2835 63 63
461824 482176 36572

135 225 45
56884 1487 8183

315 70 4147200

z z z z

z z z

z z t

� � � � �

� � �

� � � �

(16)

Furthermore, evaluating (6) at the point 1 1, 0, ,..., ,1n j qt t j � �� �� �  respectively, gives the values

1 1 3 1 5 3 7
, , , , , ,  and 1

8 4 8 2 8 4 8
z�  respectively, yielding eight discrete schemes. To derive the block method, we

obtained an additional scheme from differentiating (5) and evaluating (6) at t = tn

The block method comprises of a set of eight independent solutions (both at the mesh and non mesh
points) as follows:

1
8

7 3
8 4

5 1
28

3 1
48

1
8

1[ 33953
29030400

312874 1291214

3146338 5033120

5595358 4604594

4467094 1070017 ]

n nn

n n

nn

nn

nn

h
y y f

f f

f f

f f

f f

��

� �

��

��

�

� � � �

� �

� �

� �

�

(17)
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1
4

7 3
8 4

5 1
28

3 1
48

1
8

1[ 833
907200
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74728 116120

120088 42494

182584 32377 ]

n nn

n n

nn

nn
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y y f

f f

f f

f f

f f
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� �

��

��

�

� � � �

� �

� �

� �

�

(18)

3
8

7 3
8 4

5 1
28

3 1
48

1
8

1[ 369
358400

3402 14062

34434 56160

79934 3438

70902 ]

n nn

n n

nn

nn

nn

h
y y f

f f

f f

f f

f f

��

� �

��

��

�

� � � �

� �

� �

� �

�

(19)

1
2

7 3
8 4

5 1
28

3 1
48

1
8

1[ 107
113400

976 3956

9232 9080

32752 244

22576 4063 ]

n nn

n n

nn

nn

nn

h
y y f

f f

f f

f f

f f

��

� �

��

��

�

� � � �

� �

� �

� �

�

(20)

5
8

7 3
8 4

5 1
28

3 1
48

1
8

1[ 1225
1161216

11450 49150

170930 4000

318350 7550

230150 41705 ]

n nn

n n

nn

nn

nn

h
y y f

f f

f f

f f

f f

��

� �

��

��

�

� � � �

� �

� �

� �

�

(21)

3
4
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8 4 8

1 3 1
2 48

1
8
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11200
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360 3224 18
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n nn

n n n
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h
y y f

f f f

f f f

f f
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�
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7
8

7 3
8 4

5 1
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3 1
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1
8

1[ 8183
4147200

223174 522046
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816634 149527 ]

n nn

n n
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h
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� � � �

� �

� �

� �

�

(23)

7
8

3 5 1
24 8

3 1 1
4 88

1 1[989 5888
28350

928 10496 4540

10496 928 5888

989 ]

n n n n

nn n

n nn

n

h
y y f f

f f f

f f f

f

� � �

�� �

� ��

� � �

� � �

� � �

�

(24)

Which in compact form can be written as:

� � � �m m m mAY By h CF y DF Y� � �� � �� � (25)

where , ,A B C  and D  are coefficients matrices associated respectively with 1( , ,
um n nY y y�� �� , 1, )

u

T
n ny y�� �� � ,

� �,
T

m m my y y��  � � � �1,
u

T
m n nF Y f f�� �� , � � � �m nF y f�  and ���=1, coincides with the order of (1).

3. ANALYSIS OF THE METHOD

In this section, the order of the consistency, local error term, convergence and stability of the method (25)
are determined.

3.1. Order and Local Error Term

Following [3] and [10], the linear difference operator associated with the block method is defined as:

� � � �
� �

, [m m m

m

y x h AY By h CF y

DF Y

� � �� �� �
�

L
(26)

Now, expanding (26) in Taylor series about nx and collecting terms in powers of h yields the following:

� � � � � � � �
� � � �
� � � �

� � � �

1
0 1

22
2

11
1

, ,n n n

n

pp
p n

pp
p n

y x h c y x c hy x

c h y x

c h y x

c h y x��
�

� �� �� �
� �

�

�

L

�

(27)

where y(p)(xn) represents the pth derivative of y with respect to xn and the , 0,..., , 1,...ic i p p� �  are vector
coefficients.
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Definition 3.1

1. The block method (25) and the associated linear difference operator (26) have order equal to p if

0 1 0pc c c� � � ��  and 1 0.pc � �

2. The term 1pc �  is called the error term and implies that the local truncation error of (25) is given

by the term:

� � � � � �11 2
1 0pp p

n p nT c h y x h�� �
�� � (28)

From our computation, the block method (25) is of uniform order p = 9 with local error term given as
12 12 12

1 (7.3505 10 , 5.9871 10 ,6.4964 10pc � � �
� � � � � 12 12 12 126.1760 10 ; 6.4964 10 ; 5.9871 10 ;7.3505 10 ; 0)T� � � �� � � �

3.2. Stability of the Method

The region of stability and zero stability of the method (25) is investigated in this section.

Consider the scalar test equation:

, 0y y� � � � � (29)

Furthermore, let h h� �  then, applying (29) to (25) , (see [12]), gives the stability polynomial

� �
8 7 7 7

6 7 5 7 4 7

3 7 2 7 7
7

8 8 7 8

6 8 5 8 4 8

3 8

761
,

150994944 2642411520

29531 89 1069

3963617280 655360 589824

9 91

512 768 2

761

150994944 2642411520

29531 89 1069

3963617280 655360 589824

9

51

h z h z
z h

h z h z h z

h z h z hz
z

h z h z

h z h z h z

h z

� � � � �

� �

� � � � �

� �

� �

�
2 8 8

891

2 768 2
0

h z hz
z� � �

�

(30)

From (30), it can be established that the method is zero stable since as h�0 the equation reduces to the
first characteristic polynomial of (25) as follows:

z8 – z7 = 0 (31)

with z = 0 or 1 satisfying the root conditions for zero stability, [10].

From our computation, the method is found to have an interval of absolute stability of (–12000,0).
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3.3. Consistency and Convergence

It can be deduced that the block method (25) is consistent from the fact that the order of the method is
greater than one.

Convergence for the method is considered in the light of the result by [8]. That is, our claim for
convergence follows from the fact that the method (25) is consistent and zero stable.

4. IMPLEMENTATION

Implementation of the block formula (25) is according to [5]. A single application of the block formula
generates simultaneously, approximate solutions at the step points tn, tn+1 and all the non mesh points

, 1, ,
unt u q�� � � . The procedure is a block by block procedure where initial conditions are obtained explicitly

at 1, 0,1,..., 1nt n N� � �  using the computed values yn+1. The starting values for subsequent blocks are then
computed from the previous block for the implementation of the method over the subintervals:

0 1 1 2 1[ , ], [ , ],..., [ , ]N Nt t t t t t� .

5. TEST PROBLEMS

In this section, the proposed block method is tested on the following sample stiff problems:

Problem 5.1

� �
� �

21
2

, 0 1

:

: [1]

x

y xy y

Exact Solution y x e

Source

� � �

�

Problem 5.2

� � � � � � � �

� � � � � �

� � � �

3cos sin 2cos sin 1

3 2,
4 4 2

1
: cos sin 2

2
sin 7 cos

:[13]

x y x y x x

y x

Exact Solution y x x x

x x

Source

� � � �

� � �� � � � �� �
� �

� �

� �

Problem 5.3

� � � �
� � 5

5 1, 0 1

:

:[11]

x

y y x y

Exact Solution y x e x

Source

�

� � � � � �

� �

Problem 5.4
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� �

� � 20

20 24, 0 0,0 1.0

6 6
:

5 5
:[12]

x

y y y x

Exact Solution y x e

Source

�

� � � � � � �

� �

6. NUMERICAL RESULTS

In the following are tables showing the exact solutions, the approximate solutions, the maximum error
recorded for the proposed method and maximum errors obtained from the previous methods. The
computation was carried out for each problem with a prescribed step size in order to make for a good basis
of comparison with previous methods by other authors. The results reported in Tables 1, 2, 3 and 4
respectively, for each of the four test problems and their absolute errors of approximation obtained from
the proposed method are compared respectively, with results obtained for the same problems from hybrid
linear multistep formulae ([1] and [13]) and backward differentiation formulae ([11] and [12]). Note in
particular, that although in [12] Problem 5.4 is solved using the variable step size method with prescribed
tolerances based on a block backward differentiation formula, the performance of the new method using a
fixed step size of h–2 suggest a better accuracy over the results obtained in [12] for tolerance values of
10–2, 10–4 and 10–6 respectively.

7. CONCLUSION

An accurate and efficient one step block numerical algorithm of order p = 9 has been developed in this
paper for the solutions of initial value problems of first order ordinary differential equations. From the
analysis of the method, it has been ascertained that the block numerical algorithm is consistent, locally
stable with very low error constants and converges. Furthermore, the method is absolutely stable with a
very wide interval of absolute stability. The mode of implementation makes the method computationally
inexpensive. Therefore, we recommend the one step hybrid block numerical algorithm for the solutions of
initial value problems of firrst order ordinary differential equations.

Table 1
Absolute Errors in the New Method Compared to Errors in [1]

for Problem 5.1

X ExactResult Computed Result Error inmethod (25) Error in [1]

0.1 1.0050125 1.0050125 8.4377(-15) 4.0345(-13)

0.2 1.0202013 1.0202013 3.9524(-14) 9.2947(-13)

0.3 1.0460279 1.0460279 9.6589(-14) 1.6266(-12)

0.4 1.0832871 1.0832871 1.8407(-13) 2.6270(-12)

0.5 1.1331485 1.1331485 3.0931(-13) 4.1049(-12)

0.6 1.1972174 1.1972174 4.8295(-13) 6.3136(-12)

0.7 1.2776213 1.2776213 7.1920(-13) 9.6096(-12)

0.8 1.3771278 1.3771278 1.0387(-12) 1.4527(-11)

0.9 1.4993025 1.4993025 1.4695(-12) 2.1842(-11)

1.0 1.6487213 1.6487213 2.0508(-12) 3.2709(-11)
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Table 2
Absolute Errors in the New Method Compared to Errors in [13]

for Problem 5.2

X Exact Result Computed Result Error in method (25) Error in [13]

7
25
� 3.7511752 3.7511752 1.26852(-16) 2.61568(-13)

37
100
� 1.9982136 1.9982136 1.86700(-16) 3.27738(-13)

23
50
� -0.0540845 -0.0540845  3.21412(-16) 2.96670(-13)

47
100
� -0.2905834 -0.2905834 3.11545 (-16) 2.73614(-13)

12
25
� -0.5273457 -0.5273457 2.75062(-16) 2.16604(-13)

49
100
� -0.7639572 -0.7639572 3.51010(-16) 1.93289(-13)

2
� -1.0000003 -1.0000003 9.63645(-13) 1.07637(-03)

Table 3
Absolute Errors in the New Method Compared to Errors in [11]

for Problem 5.3

X Exact Result Computed Result Error in Method (25)

0.01 0.21752310 0.21752319 9.4061712(-08)

0.02 0.39561595 0.39561612 1.6453692(-07)

0.03 0.54142605 0.54142625 2.0480460(-07)

0.04 0.66080526 0.66080548 2.2350043(-07)

0.05 0.75854469 0.75854492 2.2712190(-07)

0.06 0.83856697 0.83856719 2.2051972(-07)

0.07 0.90408367 0.90408388 2.0728138(-07)

0.08 0.95772421 0.95772440 1.9002966(-07)

0.09 0.10016414 0.10016415 1.7065458(-07)

0.10 0.10375977 0.10375978 1.5049279(-07)

Table 4
Absolute Errors in the New Method for Problem 5.4

X Exact Result Computed Result Error in method (25) Error in [11]

0.01 0.96122943 0.96122943 8.10(-15) 5.03(-10)

0.02 0.92483742 0.92483742 1.67(-14) 3.90(-11)

0.03 0.89070798 0.89070798 2.42(-14) 4.27(-10)

0.04 0.85873076 0.85873076 3.10(-14) 8.00(-11)

0.05 0.82880079 0.82880079 3.71(-14) 7.40(-11)

0.06 0.80081822 0.80081822 4.25(-14) 3.17(-10)

0.07 0.77468809 0.77468809 4.73(-14) 2.80(-10)

0.08 0.75032005 0.75032005 5.15(-14) 3.70(-11)

0.09 0.72762816 0.72762816 5.54(-14) 3.77(-10)

0.10 0.70653066 0.70653066 5.86(-14) 2.86(-10)
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