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ABSTRACT: An efficient one step Adam type implicit block numerical algorithm developed by simultaneous
employment of interpol ation and coll ocation techniques is proposed i n this paper. Non mesh pointswere introduced
to upgrade the order of consistency and improve the rate of convergence of the method. Further analysisrevealed a
wideinterval of absolute stability. The method isimplemented asa block to i mprove effi ciency and reduce computational
cost. Comparison of the new method with previous methodsin terms of absol ute error s of approximation established
an improvement over those methods.
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1. INTRODUCTION

Differential equations usually arise from the mathematical modeling of real life phenomena such as in
dynamical systems. For example, in chemical reactor dynamics, predator-prey problems, atmospheric fluid
dynamics, biological dynamics, finance, electrical circuits and mechanical systems, etc. Very often, closed
form solutions can not be obtained for these equations hence, the need for numerical approximations.
However, the development of accurate numerical approximationsisnot usually an easy task and furthermore,
thereisusually atrade off between accuracy, stability and efficiency. Some of the several numerical methods
proposed include the Runge-Kutta type methods [7, 9, and 10], the Adam type methods[1, 2, 3, 4, 5, and
6] and the backward differentiation formulae [11, 12].

The aim in this paper is to develop a stable, accurate and efficient method for the solution of initial
value problems (1VP) of first order ordinary differential equations (ODES) of the form:

F(xy,y)=0, y(to)=v;te [t,T], @)
where (T <) € R.

Conventionally, higher order ODESs are sometimes reduced to a system of first order ODEs before their
solutions are sought. Many times problems in this class are mildly stiff or outright stiff problems. By stiff
problems, we mean problems that correspond to physical processes whose components have disparate
time scales or whose time scale is small compared to interval over which it is studied. For example, in
chemical kinetics where reactionstake place at different speeds. The motivation for this paper is therefore,
to develop an accurate numerical algorithm for the solution of initial value problems of first order ODEs of
any nature. In what follows, we shall assume standard conditions for the existence and uniqueness of the
solutions of (1). Some of the other methods proposed for the solution of (1) can be seenin[1, 11, 13, and
12]. Inthe sections that follow, we shall describe the method of derivation, then an analysis of the properties
of the method is presented. Furthermore, numerical experiments are conducted on sample problems and
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comparisons of the numerical results, with respect to the absolute error of approximation, with other proposed
methods are presented in tables.

2. DERIVATION OF THE METHOD
Let (t), ={t,:n=0,...,N}, with afixed step size h, be the time discretization of the interval [t,, T] such
that t,,, =t,+h,n=0,..,N -1, defined asasequence t, <t, <--- <t , <t, =T of mesh points. Following
[3], consecutive mesh points, say {(tn,tnﬂ) 'n=01...,N —1} , are further partitioned into q so called non
mesh points given by t.,, .1, =g u=12...,q.
Let
Po(x) =2 ax @
i=0

be a power series polynomial completely determined by m+1 unknown parameters a, i = 0,1,..., m. Now,
interpolate (2), Stormer-Cowell style, at the non mesh points, tan and collocate (2) at all points,

thjr ] = O(MU )l vV u. These procedures together give rise to a system of m+1 equations:

ZOI &%, = Yo S=0 (33)

I(I _1)a1'xri1+r = fn+r’r = O’Mu'l (3b)

m
i=0

wherem=(s+r) -1 and s, r represent the interpolation and collocation points respectively. Equations (3a)
and (3b) together satisfy the matrix equation:

AX=B 4
where A is an (m+1)x(m+1) coefficient matrix, (note that the coefficients here are the points,
t..;» 1 =0(n,)Lvu), obtained from the interpolation and collocation equations; X and B are column

matrices of the unknown parameters to be solved for, that is, a;, j =0(,)1. The solutions so obtained

when substituted back into (2) give rise to an algebraic equation from where a continuous implicit hybrid
multistep method is obtained, after some algebraic manipulations as follows:

yn+j = Otuq (Z) yn+Hq + hZJ: Bj (Z) f“+j (5)

where j =0(u, )1,V u. The coefficients a., (2) and B,(2) are continuous for all values of z[0, 1] and are
obtained by evaluating the transformation:

2= (6)
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In what follows, for reasons of accuracy, stability and convergence desired, we make g = 7, that isa

choice of seven non mesh points. Hence, the coefficients ., (z) and B, (z),V j wereobtained asfollows:

a%(z) =1 (7

By (2) = 13102 2 8192 £ 53248 S
2835 35 105
3072 , 34208 5 1068 _,
- z + z - z
5 75 5 (8)
59062 , 761 _, 149527
+ r’——7+2+————
945 70 4147200

1048576 . 16384 , 1196032
By(2)=- 2835 2+ 9 Z- 315 z
117760 . 673792 . 11168 ,
+ zZ — Z + Z
27 225 9 9)
30784, .., 408317
105 2073600

524288 , 278528 ; 3915776 ,
B.(z)= A 2+ z
: 405 45 315
366592 o 1956992 ; 146824 _,
- 2’ + - z
27 225 45 (10)
VB2 5 o, 24353
2073600
B, (Z) _ 1048576 2 180224 £ 2441216 S
8 405 15 105
72704 o 1097728 _; 25504 _,
+ z° - Z+ z
3 75 5 (11)
128192 £ 224 2 542969
135 3 2073600

262144 , 131072 , 1712128
(z) = z2- 2+ z
81 9 63
733184 , 703552 . 46624 ,
- 2+ yA Z
27 45 9 (12)

L2764 5 Lo, 343
25920

B

N




m T. A. ANAKE, M. C. AGARANA, S. A. BisHor AND O. J. ADELEKE

p. ()= 1048576 o 507904 ;6406144 ,
: 405 45 315
2642944 , 2443264 156512 ,
+ VARS Z + y4
135 225 45
3008 , 224 , 368039
- Z+ z-
5 5 © 2073600
B, (2)= 320288 o 16384, 090424
i 405 3 105
26624 ; 358784 5 0 s
3 75
, 34288 ; 56 , 261023
135 © 3 2073600
B, (2)= 1048576 475136 ;114683 ,
: 2835 315 45
62464 , 274432 , 16864 ,
+ VAR Z + y4
27 225 45
6592 , 32 , 111587
——— 7+ =7
105~ 7" 2073600
B, (7) = - L0456 s 106496 ;204800 ,
2835 63 63
461824 , 482176 , 36572 ,
+ VARS Z + y4
135 225 45
56834 , 1487 , 8183
- Z+ Z-t+——
315 70 4147200

(13)

(14)

(15

(16)

Furthermore, evaluating (6) at the point t=t,,;, j=0,s4,..., 441,1 respectively, gives the values

1131537

I=—,— =, oo and 1 respectively, yielding eight discrete schemes. To derive the block method, we

8'4'8'2'8'4’8

obtained an additional scheme from differentiating (5) and evaluating (6) at t =t

The block method comprises of a set of eight independent solutions (both at the mesh and non mesh

points) as follows:

, = Y, +=—————[-33053f, , +
Yout = Y0 290304001 "
312874f , -1291214f . +
3146338f, , ~5033120f,, +
5595358, , — 4604504, , +

44670941, +10700171,]

(17)
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h

1 = n +
Yot = I 507200
7624f , ~31154f _ +

74728f . -116120f , +
120088f , —42494f , +
182584 f , +32377f,]

[-833f ., +

(18)

h

3 = n+
Yoz = " 358200
3402 , ~14062f , +

344341, . ~56160f, , +
79934f . +3438f .+
70902f , + f ]

1
n+i

[-369f ., +

(19)

=Y + -107f ., +
Yoot = Yo+ 113000107 T
976f , —3956f . +
92321, , ~9080f, , +
32752f . +244f  +

22576, +4063f,]

(20)

Yoy =% * 1161216 "

11450f , 491501 , +
170930f, . —4000f, , +
3183501, , +7550f, , +
230150f, , +417051, ]

(21)

h
3= Yn +
Yoy =¥ 11200
72f , +158f ., +2664f .

-360f , +3224f . +18f , (22)
+2232f , +401f ]

[_9 fn+l +
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, =Y, +—————[-8183f,, +
Yoy =0 J1a7200" "

223174f , +522046f _ +
736078f, . +54880f, , +
1085938f, , + 48706, , +

816634f , +149527f,]

(23)

h
=y + 989 f
yn+1 yn 28350 [ n+1

~928f ,+10496f . —4540f ,
+10496f . -928f , +5888f , (24)
+989f, ]

+5888f ,

Which in compact form can be written as:
AY,, =By, +h'[CF (y,)+DF(Y,)] (25)

where A B,C and p are coefficients matrices associated respectively With Y =(Yn:., Yt s Yoew» Yoet) s
ym:(ym,y,’n)T F (Yn)=( freu fml)T ,F(Ym)=(f,) andy =1, coincideswith the order of (1).

3.ANALYSISOF THE METHOD

In this section, the order of the consistency, local error term, convergence and stability of the method (25)
are determined.

3.1. Order and Local Error Term
Following [3] and [10], the linear difference operator associated with the block method is defined as:

[ y(x),h]=AYn—Byn—h[CF (ym)

~DF (Y,) (26)

Now, expanding (26) in Taylor seriesabout x, and collecting termsin powers of hyieldsthe following:

e[ y(%.).h]=Gy(x)+ahy™ (x,)
+Th2 Y (X )+
+5,h Yy () (27)
+Cpuh p+1y( - ( Xn)

where yP(x ) represents the pth derivative of y with respect to x_ and the G,i=0,..., p, p+1,... are vector
coefficients.
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Definition 3.1
1. Theblock method (25) and the associated linear difference operator (26) have order equal to p if
G=G="-=C,=0 and T, #0.

2. Theterm C,,; iscalled the error term and implies that the local truncation error of (25) is given
by the term:

Ta=Cpuah®y'? (x,)+0(h*?) (29)

From our computation, the block method (25) is of uniform order p = 9 with local error term given as
C,.. = (7.3505x10"*, 5.9871x10 2,6.4964x10™* 6.1760x10%?; 6.4964x10 2; 5.9871x10 ;7.3505x10°2; 0)"

3.2. Sability of the Method
The region of stability and zero stability of the method (25) is investigated in this section.

Consider the scalar test equation:
y'=ay, A<O0 (29)

Furthermore, let 1 = ).h then, applying (29) to (25) , (see [12]), givesthe stahility polynomial

H(z,ﬁ)_— 4 ~ 761h7Z’ ~
150004944 2642411520
29531h°z" 89h°z’ 1069h*Z’
3063617280 655360 589824
oh®*z’ 91h*zZ’" hz’ |
- — ———Z7'+
512 768 2
héz 761h7 7
150994944 2642411520
29531h°Z2* 89h°Z 1069h*Z® (30)
3063617280 655360 589824
oh®z 91h’Z hZ¥

512 768 2

=0

From (30), it can be established that the method is zero stable since as h—0 the equation reducesto the
first characteristic polynomia of (25) as follows:

2-7=0 (31)
with z= 0 or 1 satisfying the root conditions for zero stability, [10].
From our computation, the method is found to have an interval of absolute stability of (—12000,0).
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3.3. Congistency and Convergence

It can be deduced that the block method (25) is consistent from the fact that the order of the method is
greater than one.

Convergence for the method is considered in the light of the result by [8]. That is, our claim for
convergence follows from the fact that the method (25) is consistent and zero stable.

4. IMPLEMENTATION

Implementation of the block formula (25) is according to [5]. A single application of the block formula
generates simultaneously, approximate solutions at the step points t, t_,, and all the non mesh points
t..,.,.U=1...,q. The procedureisablock by block procedure whereinitial conditions are obtained explicitly
a t,,,n=0,1...,N-1 using the computed valuesy,,,. The starting values for subsequent blocks are then
computed from the previous block for the implementation of the method over the subintervals:

[tO,tl]! [tl,tz],---, [tN—latN] .

5. TEST PROBLEMS
In this section, the proposed block method is tested on the following sample stiff problems:
Problem 5.1

y'=xy, y(0)=1
Exact Solution: y(x) = e
Source: [1
Problem 5.2
cos(x)y'+sin(x)y=2cos’(x)sin(x)-1
T T T
—|=3J2, =<x<=
Y(LJ 3J2 2 X 5
Exact Solution: y(x) = —%cos(x)sin(Zx)
—sin(x)+7cos(x)
Source:[13]
Problem 5.3

y'=-5(y-x)+1, y(0)=1
Exact Solution:y(x) =€ +x
Source:[1]]

Problem 5.4
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y'=-20y+24, y(0)=0,0<x<1.0

Exact Solution:y(x) = g —gezox

Source:[12]

6. NUMERICAL RESULTS

In the following are tables showing the exact solutions, the approximate solutions, the maximum error
recorded for the proposed method and maximum errors obtained from the previous methods. The
computation was carried out for each problem with a prescribed step sizein order to make for agood basis
of comparison with previous methods by other authors. The results reported in Tables 1, 2, 3 and 4
respectively, for each of the four test problems and their absolute errors of approximation obtained from
the proposed method are compared respectively, with results obtained for the same problems from hybrid
linear multistep formulae ([1] and [13]) and backward differentiation formulae ([11] and [12]). Note in
particular, that although in [12] Problem 5.4 is solved using the variable step size method with prescribed
tolerances based on a block backward differentiation formula, the performance of the new method using a
fixed step size of h™2 suggest a better accuracy over the results obtained in [12] for tolerance values of
1072, 10* and 107 respectively.

7. CONCLUSION

An accurate and efficient one step block numerical algorithm of order p = 9 has been developed in this
paper for the solutions of initial value problems of first order ordinary differential equations. From the
analysis of the method, it has been ascertained that the block numerical algorithm is consistent, locally
stable with very low error constants and converges. Furthermore, the method is absolutely stable with a
very wide interval of absolute stability. The mode of implementation makes the method computationally
inexpensive. Therefore, we recommend the one step hybrid block numerical algorithm for the solutions of
initial value problems of firrst order ordinary differential equations.

Tablel
Absolute Errorsin the New Method Compared to Errorsin [1]
for Problem 5.1

X ExactResult Computed Result Error inmethod (25) Error in[1]
0.1 1.0050125 1.0050125 8.4377(-15) 4,0345(-13)
0.2 1.0202013 1.0202013 3.9524(-14) 9.2947(-13)
0.3 1.0460279 1.0460279 9.6589(-14) 1.6266(-12)
0.4 1.0832871 1.0832871 1.8407(-13) 2.6270(-12)
0.5 1.1331485 1.1331485 3.0931(-13) 4,1049(-12)
0.6 1.1972174 1.1972174 4.8295(-13) 6.3136(-12)
0.7 1.2776213 1.2776213 7.1920(-13) 9.6096(-12)
0.8 1.3771278 1.3771278 1.0387(-12) 1.4527(-11)
0.9 1.4993025 1.4993025 1.4695(-12) 2.1842(-11)
1.0 1.6487213 1.6487213 2.0508(-12) 3.2709(-11)
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Table2
Absolute Errorsin the New Method Compared to Errorsin [13]
for Problem 5.2

X Exact Result Computed Result Error in method (25) Errorin[13]
% 3.7511752 3.7511752 1.26852(-16) 2.61568(-13)
% 1.9982136 1.9982136 1.86700(-16) 3.27738(-13)
% -0.0540845 -0.0540845 3.21412(-16) 2.96670(-13)
% -0.2905834 -0.2905834 3.11545 (-16) 2.73614(-13)
122—g -0.5273457 -0.5273457 2.75062(-16) 2.16604(-13)
% -0.7639572 -0.7639572 3.51010(-16) 1.93289(-13)
3 -1.0000003 -1.0000003 9.63645(-13) 1.07637(-03)
Table3
Absolute Errorsin the New Method Compared to Errorsin [11]
for Problem 5.3
X Exact Result Computed Result Error in Method (25)
0.01 0.21752310 0.21752319 9.4061712(-08)
0.02 0.39561595 0.39561612 1.6453692(-07)
0.03 0.54142605 0.54142625 2.0480460(-07)
0.04 0.66080526 0.66080548 2.2350043(-07)
0.05 0.75854469 0.75854492 2.2712190(-07)
0.06 0.83856697 0.83856719 2.2051972(-07)
0.07 0.90408367 0.90408388 2.0728138(-07)
0.08 0.95772421 0.95772440 1.9002966(-07)
0.09 0.10016414 0.10016415 1.7065458(-07)
0.10 0.10375977 0.10375978 1.5049279(-07)
Table4
Absolute Errorsin the New Method for Problem 5.4
X Exact Result Computed Result Error in method (25) Errorin[11]
0.01 0.96122943 0.96122943 8.10(-15) 5.03(-10)
0.02 0.92483742 0.92483742 1.67(-14) 3.90(-11)
0.03 0.89070798 0.89070798 2.42(-14) 4.27(-10)
0.04 0.85873076 0.85873076 3.10(-14) 8.00(-11)
0.05 0.82880079 0.82880079 3.71(-14) 7.40(-11)
0.06 0.80081822 0.80081822 4.25(-14) 3.17(-10)
0.07 0.77468809 0.77468809 4.73(-14) 2.80(-10)
0.08 0.75032005 0.75032005 5.15(-14) 3.70(-11)
0.09 0.72762816 0.72762816 5.54(-14) 3.77(-10)
0.10 0.70653066 0.70653066 5.86(-14) 2.86(-10)
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