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Analysis of facility protection strategies against uncertain

numbers of attacks: the Stochastic R-Interdiction Median

Problem with Fortification

Federico Liberatore∗, Maria P. Scaparra†and Mark S. Daskin‡

September 3, 2008

Abstract

We present the Stochastic R-Interdiction Median Problem with Fortification (S-RIMF).
This model optimally allocates defensive resources among facilities to minimize the worst-case
impact of an intentional disruption. Since the extent of terrorist attacks and malicious actions
is uncertain, the problem deals with a random number of possible losses. A max-covering
type formulation for the S-RIMF is developed. Since the problem size grows very rapidly with
the problem inputs, we propose pre-processing techniques based on the computation of valid
lower and upper bounds to expedite the solution of instances of realistic size. We also present
heuristic approaches based on heuristic concentration-type rules. The heuristics are able to
find an optimal solution for almost all problem instances considered. Extensive computational
testing shows that both the optimal algorithm and the heuristics are very successful at solving
the problem. A comparison of the results obtained by the two methods is provided as is a
discussion of the importance of recognizing the stochastic nature of the number of possible
attacks.

Keywords. Logistics, protection planning, combinatorial optimization, stochastic modeling.

1 Introduction

Today more than ever the protection of infrastructure has became very important. Recent events
have brought this issue to the forefront of public concern. In fact, identifying critical system com-
ponents and planning the strengthening of their security and protection are certainly key elements
for the sustainability and efficiency of service systems not only in case of intentional attacks, but
also when natural catastrophes occur.
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A variety of quantitative approaches have recently been developed to identify cost-effective ways
of increasing the robustness of infrastructure systems to external disruptions. A line of research
focuses on the study of protection strategies which entail a full re-design of the networks so that
they are intrinsically robust to attacks. For example, O’Hanley and Church [15] develop a resilient
design problem for a coverage-type service system. The objective of the problem is to optimally
locate a set of facilities to maximize a combination of initial demand coverage and the minimum
coverage level following the loss of one or more facilities. The authors propose an approach based
on the successive use of super-valid inequalities. Snyder and Daskin [22] extend the classical p-
median and uncapacitated fixed-charge location problems to take into account possible failures of
the facilities. The goal of the resulting reliability models is to choose facility locations that are both
inexpensive and reliable as it also considers the expected transportation cost after possible facility
failures. The programs are solved using an optimal Lagrangian relaxation algorithm. A similar
problem has been addressed by Berman et al. [4] who develop a more general model where the
facility disruption probabilities are not identical. The authors propose several exact and heuristic
solution approaches and analyze the impact of the disruption probabilities on the centralization
and co-location of the facilities. Finally, Lim at al. [14] study the design of robust supply systems
where both reliable and unreliable facilities can be located with different levels of investment. They
propose a continuous model which provides valuable insights about the relationship between the
failure probabilities and the optimal number of non-hardened sites. The robustness of these insights
is then validated through the use of a mixed integer program.

A different line of research dealing with security issues focuses on the identification of critical
components through the use of interdiction models. Interdiction models, which were first intro-
duced by Wollmer [23] in 1964, have been extensively studied over the past few decades, especially
within the context of network flow problems. The analysis of network interdiction models has been
performed with respect to different reliability measures, such as connectivity, distance (or cost) and
capacity. A survey of these models can be found in [9]. More recently, Grubesic and Murray in [11]
have addressed the problem of losing critical infrastructure elements that are geographically con-
nected and explore the topological complexities associated with network interconnections. Bell in
[3] illustrates a game between a router and a virtual network tester. The originality of the problem
is that the router wants to minimize the cost of the flow of packets or vehicles in the network while
the virtual network tester strikes the link to maximize the cost of the trip. Therefore the method
proposed identifies the components of the networks whose disruption would damage performance
the most. Lim and Smith [13] consider a network interdiction problem on a multicommodity flow
network. An attacker disables some of the arcs, according to an interdiction budget, with the ob-
jective of minimizing the maximum shipping profit. The authors consider both the cases where the
interdiction is discrete - either an arc is safe or destroyed - and continuous - the attack may reduce
the capacity of the arcs partially. Since interdiction problems identify critical facilities they can
be used to develop design protection strategies. Smith et al. exploit this idea in [21] where they
extend their previous work [13] by adding an additional design layer. The resulting problem is a
three-level, two-player game in which a designer first constructs a network. Next, as in the previous
work, an interdictor destroys a set of arcs and finally the designer decides the set of flows through
the network. Interdiction problems within the location analysis framework have been studied by
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Church et al. [9] who consider the problem of identifying the most critical facilities in supply sys-
tems with different service protocols. They propose two different models: the r-interdiction median
problem and the r-interdiction covering problem, which are based on the p-median problem and on
the max covering problem respectively.

The identification of critical system components is only the first step towards the development
of sound and economically efficient fortification strategies. The need for explicitly modeling pro-
tection efforts has been acknowledged in several recent works such as [6], [16] and [8]. Most studies
in this area use a game theoretic approach and formulate protection problems as bilevel defender-
attacker models. Brown et al. [6] provide an excellent introduction to bilevel and trilevel problems
that involve the presence of an intelligent attacker and a defender. They also describe some ap-
plications to electric power grids, subways, airports and other critical infrastructure. Qiao et al.
[16] develop a max-min model to allocate a security budget to a water supply network so as to
make the water infrastructure more resilient to physical attacks. Church and Scaparra [8] extend
their previous interdiction models [9] to explicitly include protection decisions. In two subsequent
works, the authors develop two different solution approaches for the resulting r-interdiction median
problem with fortification. The first approach [20] is based on a reformulation of the problem as
a maximal covering model with precedence constraints. The dimension of the model is reduced
using a linear interpolation search procedure that exploits properties of the coverage function. The
second approach [19] is a tree search algorithm that takes advantage of the bi-level formulation
of the problem. Zhuang and Bier [24] formulate basic equilibrium models for both sequential and
simultaneous games between an attacker and a defender. They also provide interesting insights
related to the effects of risk attitudes on the attacker and defender decisions, and to the issue of
balancing protection from terrorism and from natural disasters. In [2], Azaiez and Bier consider
a problem where the defender’s objective is to maximize the minimum expected cost of a feasible
attack, subject to a budget constraint on the defensive investment. Finally, Bier [5] discusses the
policy implications of a game-theoretic model of security investment where the attacker’s goals are
uncertain. Interestingly, one of Bier’s conclusions is that, as counterintuitive as it may seem, it is
preferable to announce which targets have been defended so that the attention of the attacker can
be diverted toward less damaging objectives.

In this paper we present the stochastic R-interdiction median problem with fortification, an
extension of the r-interdiction median problem with fortification were the number of possible losses
or attacks is uncertain. We formulate the problem and, as the dimension of the problem grows very
quickly with respect to the parameters, we propose some reduction methodologies based on the
computation of upper and lower bounds. The proposed reductions allow us to solve to optimality
problem instances of significant size. We also introduce three heuristic-concentration type rules
and, based on them, two heuristic algorithms that are able to find the optimal solution for almost
all the problems solved.

The reminder of the paper is organized as follows. In the next section we formulate the stochastic
R-interdiction median problem with fortification as a bi-level integer program. In Section 3 we
present the deterministic equivalent reformulation as a max-covering problem. The definition of
the lower and the upper bounds to the problem are the topic of Sections 4 and 5 respectively. The
resulting reduced model is shown in Section 6. The heuristic-concentration type rules are explained
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in Section 7. The algorithms proposed have been tested on some geographical data sets and the
results are displayed and discussed in Section 8. An extensive evaluation of the solutions obtained
and of the importance of utilizing the stochastic R-interdiction median problem with fortification is
the topic of Section 9. Finally, the paper concludes with a brief summary of the main contributions
of this work and some ideas for future research.

2 The Stochastic R-Interdiction Median Problem with Forti-

fication

Let N , indexed by i, represent the set of customers. Every customer i is characterized by a demand
ai. Let P represent the number of operating facilities in the system and let F , indexed by j, denote
the set of facilities. The distance between facility j and customer i is dij . Fortification resources are
limited and it is possible to protect exactly Q facilities. There is no certainty about the number of
interdictions that will take place. We assume that the attacker would be able to interdict at most R

facilities and that protected facilities cannot be interdicted. We associate with each r = 1, . . . , R a
probability pr that gives the likelihood that the attacker will be able to interdict exactly r facilities.
These probabilities must sum to 1:

R∑
r=1

pr = 1.

Finally, the set Tij , ∀i ∈ N, ∀j ∈ F is the set of existing facilities (not including j) that are farther
than j is from demand i:

Tij = {k ∈ F |k 6= j and dik > dij } , ∀i ∈ N, ∀j ∈ F.

The problem can be represented as a competitive discrete bi-level problem: an interdictor,
corresponding to the lower level program, wants to destroy facilities to do as much damage as
possible to the system while a defender, corresponding to the upper level program, decides which
facilities to protect to minimize the damage resulting from the attack.

The decision variables are the following:

zj =

{
1, if a facility located at j is fortified,
0, otherwise,

sj =

{
1, if a facility located at j is eliminated by interdiction,
0, otherwise,

xij =

{
1, if demand i assigns to a facility at j,

0, otherwise.

The bi-level formulation of the stochastic r -interdiction median problem with fortification (S-
RIMF) is:
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min Z? =
R∑

r=1

prWr (z) (1)

∑

j∈F

zj = Q (2)

zj ∈ {0, 1} ∀j ∈ F (3)

where for each r = 1, . . . , R, Wr (z) is the solution to the following optimization problem:

Wr (z) = max
∑

i∈N

aidijxij (4)

∑

j∈F

xij = 1 ∀i ∈ N (5)

∑

j∈F

sj = r (6)

∑

k∈Tij

xik ≤ sj ∀i ∈ N, ∀j ∈ F (7)

1− sj ≥ zj ∀j ∈ F (8)

sj ∈ {0, 1} ∀j ∈ F (9)

xij ∈ {0, 1} ∀i ∈ N, ∀j ∈ F (10)

Note that each lower level problem is an r -interdiction median problem (RIM) with the additional
conditional constraint (8) that forbids the interdiction of fortified facilities. The mathematical
programming model of RIM was first introduced in [9]. The objective function of the upper level
program is to minimize the expected cost of the worst-case interdictions across all the values that
r can have.

The objective function of the leader problem (1) minimizes the expected worst case demand
weighted distance where the expectation is taken over all possible values of the number of attacks.
Constraint (2) stipulates that the defender can only protect Q sites. The interdictor’s objective
(4) is to maximize the demand weighted distance that results from r attacks on unprotected sites.
Constraint (5) states that every demand node must be assigned. Constraint (6) permits exactly r

attacks. Constraint (7) is the closest assignment constraint that says that for any facility site j,
demands can only be assigned to locations further than j if site j is interdicted. Constraint (8)
allows the interdiction of undefended sites only. Constraints (3), (9) and (10) are standard binary
constraints on the key decision variables.

The deterministic version of the bi-level problem where r is fixed can be reformulated as a
single level mixed-integer program and solved using the solution approach presented in [20]. The
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resulting model is a max-covering problem with precedence constraints. Although this reformulation
requires enumerating all possible ways of losing r out of P facilities, the method described in [20]
is quite efficient and can solve problem instances of considerable size. Unfortunately, this kind of
reformulation cannot be adapted in a straightforward way to the stochastic version of the problem.
In this paper we present an alternative max-covering formulation that can be easily adjusted to
model the stochastic problem. Moreover the solution approach in [20] was tailored to the particular
structure of the max-covering formulation with precedence constraints and, hence, cannot be applied
to our new formulation. In this paper, we also propose a novel solution approach to solve the max-
covering formulation of the S-RIMF.

3 A Stochastic Max-Covering Type Formulation

Let Hr, indexed by h, be the set of all the interdiction patterns in which the attacker interdicts
exactly r facilities. Each pattern h has an interdiction set Ih and a cost ch associated with it.
The cost ch is calculated by assigning every customer i ∈ N to the closest non-interdicted facility
j ∈ F/Ih, as showed in Algorithm 1. Note that:

|Ih| = r, ∀h ∈ Hr, r = 1, . . . , R.

Algorithm 1 Calculation of cost ch associated to pattern h

input: N , F , ai ∀i ∈ N , dij ∀i ∈ N, j ∈ F , h, Ih

output: ch

begin
ch := 0
for i ∈ N do //loop over demands

j̄ = argminj∈F/Ih
{dij} //get index of closest non-interdicted site

ch = ch + aidij̄ //update cost
done

end

Scaparra and Church in [20] proved that the worst-case interdiction will occur for an interdiction
pattern attacking solely unprotected sites. We call an interdiction pattern h covered if any of the
facilities j ∈ Ih is fortified. Under this assumption, for each possible value of r the worst-case
interdiction pattern in response to a given fortification strategy is the uncovered interdiction pattern
with the highest cost.

We can now introduce the new max-covering formulation (MCP) of the deterministic version
of the bi-level problem where r is fixed. The formulation requires the following additional decision
variables:

yh =

{
1, if the interdiction pattern h is covered,
0, otherwise,

W r : cost of the worst-case inderdiction pattern when exactly r facilities are interdicted.
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The MCP is formulated as follows:

min W r (11)

∑

j∈F

zj = Q (12)

∑

j∈Ih

zj ≥ yr
h ∀h ∈ Hr (13)

W r ≥ cr
h (1− yr

h) ∀h ∈ Hr (14)

zj ∈ {0, 1} ∀j ∈ F (15)

0 ≤ yr
h ≤ 1 ∀h ∈ Hr (16)

The cardinality constraint (12) requires the number of fortifications to be exactly Q. Since
there is no benefit to fortifying less than Q facilities the cardinality constraint can be relaxed and
expressed as an inequality, rather than an equality:

∑

j∈F

zj ≤ Q. (17)

Constraints (13) are standard covering constraints. To cover an interdiction pattern h, at least one
of the facilities in the relative interdiction set Ih must be fortified. Constraints (14) are min-max
constraints and assure that the cost W r of the worst-case pattern is the cost of the most expensive
uncovered interdiction pattern. The objective (11) is to minimize this cost. Lastly, constraints (15)
and (16) impose the conditions of integrality and non-negativity over the relevant variables. The
solution to this program provides the set of optimal fortifications, zr, for a given r.

To extend the MCP to the stochastic case, it is sufficient to optimize over all the possible values
of r = 1, . . . , R at the same time and take into account the probabilities pr, ∀r = 1, . . . , R in the
objective function. The resulting formulation, called S-MCP, is:

min Z? =
R∑

r=1

prWr (18)

∑

j∈F

zj ≤ Q (19)

∑

j∈Ih

zj ≥ yh ∀h ∈ Hr, ∀r = 1, . . . , R (20)

Wr ≥ ch (1− yh) ∀h ∈ Hr, ∀r = 1, . . . , R (21)
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zj ∈ {0, 1} ∀j ∈ F (22)

0 ≤ yh ≤ 1 ∀h ∈ Hr, ∀r = 1, . . . , R (23)

The objective of this program (18) is to minimize the weighted sum of the costs Wr associ-
ated with the worst-case interdiction patterns for every feasible value of r. Since the weights are
represented by the probabilities pr, the program minimizes the expected cost of the worst-case
interdiction pattern across all the possible values of r. When solved to optimality, the program will
find the optimal fortification set z? that minimizes this expected cost.

The model has R + P +
∑R

r=1 |Hr| = R + P +
∑R

r=1

(
P

r

)
variables and 1 + 2

∑R
r=1 |Hr| =

1 + 2
∑R

r=1

(
P

r

)
constraints. It is straightforward to see that the program grows linearly with

respect to the number of interdiction patterns which, in turn, grows exponentially with respect to P

and R. Thus for high value of P and, in particular, of R the problem can easily become intractable.
In the next section, we show how the dimension of the program can be significantly reduced by
removing some of the interdiction patterns and by fixing some variables to their optimal values.

4 A Lower Bound

In the previous section we showed that the dimension of the stochastic model grows very quickly.
By calculating a lower bound to the optimal objective value for every occurrence of r (i.e. for
every possible scenario) it is possible to remove from the model many interdiction patterns without
affecting the solution.

To this end we solve independently R MCPs, one for each possible value of r. The solution of
this program provides the set of optimal fortifications, zr, for a given r. Since in this program we
optimize only for a single scenario, the value of the optimal solution to this problem W r is a lower
bound to Wr:

Wr ≥ W r.

Once we know all the optimal values W r, 1 ≤ r ≤ R, we can compute a lower bound to the value
of the stochastic max-covering problem:

Z =
R∑

r=1

prW r.

This approach corresponds to the resolution of the Wait-and-See problem, as shown in [12].
As already stated, each W r is a lower bound for the corresponding Wr. Therefore we can remove

from the original stochastic problem all the h ∈ Hr such that the relative cost cr
h is less than W r,

since those patterns will not affect the value of the optimal solution. The resulting reduced sets of
interdiction patterns are:
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Hr = Hr \
{
h

∣∣cr
h < W r

}
, r = 1, . . . , R.

5 An Upper Bound

We can take advantage of the solutions obtained during the calculation of the lower bound (Section
4) to get a useful upper bound on the solution value of the S-MCP. We apply every fortification
set zr to the stochastic r -interdiction median problem with fortification and calculate the objective
value. To do so we need to solve R independent RIM problems with the additional constraint
(8) that forbids the interdiction of fortified facilities zr and objective function ZRIM

m (zr). Recall
that the RIM for a particular value of m (the number of inderdicted sites) will give the optimal
interdictions of m sites given that the sites in fortification pattern zr are fortified. Once we know
the values ZRIM

m (zr) , m = 1, . . . , R of the solutions to the RIM programs, we can calculate the
value of the stochastic r -interdiction median problem with fortification relative to zr:

Z̃r =
R∑

m=1

pmZRIM
m (zr) .

The upper bound Z̃ is given by the best (lowest) Z̃r, r = 1, . . . , R:

Z̃ = min
r=1,...,R

Z̃r.

Z̃ can be used by the branch-and-bound optimization algorithm of CPLEX to reduce the opti-
mization time. It can also be used to calculate an upper bound on each W ?

r ; i.e. on the value of
Wr, r = 1, . . . , R in the optimal solution to S-MCP. To this end, consider the following sequence of
inequalities:

Z̃ ≥ Z? =
R∑

m=1

pmW ?
m ≥

R∑
m=1,
m 6=r

pmWm + prW
?
r .

Hence:

W ?
r ≤

Z̃ −∑R
m=1,
m 6=r

pmWm

pr
.

Therefore:

W̃r =
Z̃ −∑R

m=1,
m 6=r

pmWm

pr

is an upper bound for W ?
r .

We can calculate the upper bound of the relative worst-case interdiction pattern W̃r for every
scenario r = 1, . . . , R . These upper bounds are very useful, since they can be used to fix some
variables and reduce the number of constraints in the stochastic model. Let us define the following
set of fixed interdiction patterns as:

9



H̃r =
{

h
∣∣∣ch > W̃r

}
, r = 1, . . . , R.

In the original model we can fix to 1 the variables yh corresponding to interdiction patterns belonging
to H̃r. In fact, any pattern h ∈ H̃r must be covered in an optimal solution to (18)-(23). It follows
that the constraints (20) relative to these patterns become:

∑

j∈Ih

zj ≥ 1 ∀h ∈ H̃r, r = 1, . . . , R,

and that the associated constraints (21) can be removed from the model.

6 The Reduced Stochastic Max-Covering Model

The resulting reduced model RS-MCP is:

min Z? =
R∑

r=1

prWr (24)

∑

j∈F

zj ≤ Q (25)

∑

j∈Ih

zj ≥ 1 ∀h ∈ H̃r, r = 1, . . . , R (26)

∑

j∈Ih

zj ≥ yh ∀h ∈ Hr \ H̃r, r = 1, . . . , R (27)

Wr ≥ ch (1− yh) ∀h ∈ Hr \ H̃r, r = 1, . . . , R (28)

zj ∈ {0, 1} ∀j ∈ F (29)

0 ≤ yh ≤ 1 ∀h ∈ Hr \ H̃r, r = 1, . . . , R (30)

Computational experiments (see Section 8) proved that, thanks to the pre-processing on the
interdiction patterns and the bounds, the solution time can be drastically reduced.

7 A Heuristic Approach

In this section we discuss three heuristic rules that can be used to reduce the search space and
speed up the computation. Although the use of these rules within a solution algorithm does not
guarantee that the optimality of the solution is preserved, they can be used to develop efficient
and competitive heuristics for the S-MCP. The counterexamples that show that the rules do not
preserve the optimality are discussed in detail in Section 8.
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All the rules are based on an idea similar to heuristic concentration [18]. As Rosing and Hodgson
illustrate in [17] the heuristic concentration procedure is based on a two-stage approach:

1. Multiple runs of some heuristic for the problem are used to produce a relatively small con-
centration set,

2. The problem is solved - either heuristically or to optimality - over the reduced search space
of the concentration set

The rules used in our work generate different concentration sets which are subsequently used to fix
some variables.

First Rule: Always Fortified. Let F r be the set of facilities which are fortified in the optimal
solution to the deterministic MCP with exactly r interdicitions; i.e. F r =

{
j
∣∣zr

j = 1
}
. By solving

R deterministic MCPs, one for each value of r, we obtain R different fortification sets. If these sets
have some facilities in common, it is reasonable to think that the optimal fortification set of the
S-MCP, z?, may contain them. Then let

FAF =

{
R⋂

r=1

F r

}
.

By substituting the original cardinality constraint (19) in the formulation of the S-MCP with

∑

j∈F/F AF

zj ≤ Q− ∣∣FAF
∣∣

and by setting

zj = 1 ∀j ∈ FAF

we can impose the fortification of the facilities contained in the set FAF .

Second Rule: Action Set. Let FAS , referred to as the action set, be the set of facilities built
from the union of the fortification sets F r resulting from the optimization of R independent MCPs:

FAS :=

{
R⋃

r=1

F r

}
.

To limit the search space to the facilities identified by the action set, we need to substitute the
cardinality constraint (19) with the following

∑

j∈F AS

zj ≤ Q

and to fix the decision variables corresponding to the facilities not included in the action set

zj = 0 ∀j ∈ F/FAS .
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Third Rule: Reaction Set. The third rule was born from the idea of extending the action
set to include also the facilities belonging to the worst-case interdiction patterns. Let Ir be the
interdiction set Ih such that ch = W r; i.e. Ir is the worst-case interdiction pattern in response to
the optimal fortifications zr

j of the deterministic MCP with exactly r interdictions. The reaction set
FRS is defined as the set of facilities which are interdicted in response to the optimal fortification
strategy:

FRS :=

{
R⋃

r=1

Ir

}
.

As with the second rule, we can reduce the search space by replacing constraint (19) with

∑

j∈F AS∪F RS

zj ≤ Q

and fixing the remaining variables

zj = 0 ∀j ∈ F/
{
FAS ∪ FRS

}
.

The three conjectures illustrated can be combined to develop different variants of heuristic con-
centration type solution approaches. The lower bound and the upper bound illustrated respectively
in Section 4 and in Section 5 can still be applied when using these rules. In fact, a lower bound
to the optimal solution is also a lower bound for any primal heuristic. The upper bound is the
best solution to S-MCP among all the possible solutions to the deterministic MCPs. All the rules
optimize over a set of facilities that contains all the fortification sets F r. Therefore, since the upper
bound is calculated using only facilities included in the fortification sets F r, its value can not be
less than the value found using any of the rules.

8 Computational Tests

In this section we present the computational tests that have been run to evaluate the performance
of the methodologies presented in this paper. We first provide some generic information about how
the experiments were conducted, including information on the different variants of the algorithms
tested, the data sets used in the experiments, and the parameter settings. We then describe the
branching priority strategy that has been adopted in the branch-and-cut MIP solver. The last
subsection deals with the analysis of the computational times of the tests.

Tools and experiments. In this work we developed an algorithm that incorporates all the
functionality described in this paper. The algorithm has been implemented in C++ and compiled
using Microsoft Visual C++ .NET 2003. To optimize the MIP problems we used the generic MIP
solver CPLEX 9.1. The bounds and the rules can be easily turned on and off using compiler
directives. From the original algorithm we obtained four different optimization programs: one that
solves the stochastic max-covering formulation (S-MCP), one that solves the reduced formulation
using the bounds (RS-MCP), a heuristic that exploits the rules Always Fortified and Action Set
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(Heur1) and, finally, another heuristic that makes use of all the rules (Heur2). Both the heuristics
also use the bounds.

The tests have been run on a computer equipped with an Intel Core 2 CPU 6700 @ 2.66 GHz, 2
GB of RAM and Windows XP Professional operating system. All the programs are single-threaded,
use only one processor at a time and use the same configuration of the CPLEX parameters. We
tested the algorithms using three different data sets: London, randompoints3 and USCities. The
data set London (Ontario) has 150 nodes and was first introduced in [10] while the data set USCities
contains the 263 largest cities in the United States according to the 2000 census [1]. The third data
set - randompoints3 - has been generated specifically to find counterexamples to the heuristic rules.
250 points were generated with integer-valued X and Y coordinates uniformly distributed between
0 and 249 (inclusive). Care was taken to ensure that no two points shared the same coordinates.
Demands were also integer valued and were uniformly distributed between 100 and 105 inclusive.

The tests have been run over a wide number of combination of the parameters P , Q and R. P

takes on values of 40, 50 and 60. The set of facilities considered correspond to the optimal solutions
to the P-Median Problem. The value of R is kept relatively small, ranging between 2 and 5. Q

was set to a proportional value of P : 10%, 15% and 20% (rounded up to the next integer when
fractional). Every test has a computational time limit of 1 hour and a physical memory limit of 1
GB.

Two different probability distributions pr have been employed:

pr = 2
r

R (R + 1)
, (31)

and

pr = 2
R− r + 1
R (R + 1)

. (32)

The function (31) is monotonically increasing. With this choice, higher probabilities are associated
with higher values of r, to indicate that more emphasis is placed on countering scenarios with a large
number of attacks. The second function (32) is monotonically decreasing and consequently assigns
higher probabilities to lower values of r. This distribution has been chosen to model the average
behaviour of terrorist attacks that generally tend to be focused on a small number of targets. Since
both distributions produce a similar trend in the solution time of the algorithms, for the sake of
brevity only the results corresponding to the first probability function are reported.

Branching priority heuristic. To calculate the bounds and the concentration sets for the rules
it is necessary to solve R independent MCPs, one for each possible value of r. Every problem
returns the corresponding optimal fortification sets F r and the interdiction set Ir. Following the
same idea of the heuristic rules, it is reasonable to assume that a facility that appears frequently in
the deterministic fortification sets has a higher probability of appearing in the optimal solution of
the stochastic problem. Therefore the information provided by the fortification sets can be exploited
to produce a heuristic ordering for the branching variables. To each facility j ∈ F we associate a
priority value φj that represents the number of times that the corresponding facility is fortified in
the optimal solution of each MCP:
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φj =
R∑

r=1

zr
j ∀j ∈ F.

The priority coefficients φj are subsequently provided to CPLEX.

Bounds and rules: what we achieved. Tables 1, 2 and 3 display the value of the optimal
solution and the computation time of the algorithms for the data sets London, randompoints3 and
USCities respectively. The first three columns are the parameters P , Q and R. The fourth column
contains the objective value Z? of the optimal solution for each instance. Next we have the average
computational times (expressed in seconds) of the algorithms calculated over five independent runs
of each algorithm. An asterisk is placed next to the solution time when the algorithm found
a suboptimal solution. A dash indicates that the algorithm has not been able to complete the
optimization because the instance exceeded either the time or the memory limit. In the last row
are shown the average solution times for RS-MCP and the heuristic algorithms.

The most noticeable observation is that S-MCP was able to solve within one hour only a very
limited number of instances while, thanks to the new bounds and the reductions, RS-MCP could
solve almost all the instances. Moreover, RS-MCP was able to find the optimal solution in only a
fraction of the time required by the S-MCP formulation when the latter could find the solution. Only
two instances are still unsolved by all the four algorithms: London and USCities with parameters
P = 60, Q = 12 and R = 5 where the algorithms were interrupted because of the memory limit.
Therefore the reductions proved to be very useful and effective. By using the bounds it is indeed
possible to solve instances of realistic dimension in a very short time.

Heur1 and Heur2 could not find the optimal solution only in three cases. Table 4 shows detailed
information about these instances. The first four columns provide the data sets and the parameters
P , Q and R. The last three columns are respectively the optimal solution value Z?, the solution
value found by the heuristics and the corresponding gap. The heuristic algorithms found the same
solution in all three instances. The gap expresses in percentage terms how far off the heuristic
objective function value is from the optimum, and is calculated as follows:

GAP = 100 · Heur− Z?

Z?
.

The results shown in Table 4 confirm the effectiveness of the heuristic rules illustrated: in fact,
although the algorithms could not reach the optimum in three instances, they found solutions close
to optimality as the gap is very small in all cases. Furthermore, by comparing the average solution
times it can be noticed that both the heuristics improved the average solution time when compared
to RS-MCP, and Heur2 is slightly slower than Heur1. As expected, the use of the third rule -
Reaction Set - is computationally more expensive because it extends the solution space to all the
facilities included in the interdiction sets Ir and therefore the solution time increases. Interestingly,
despite of this enlargement of the search area, for the tests reported in this paper Heur2 solved
to optimality exactly the same number of instances solved to optimality by Heur1. At any rate,
both the algorithms proved to be useful since on average they provided significant dimension and
computation time reductions, especially on the data set USCities. Furthermore, the reductions are
more significant for higher values of P . (Although the solution times are calculated considering
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the average time over five executions, they can still be biased by memory swapping time, time to
access the physical memory and other details related to the operating system. Thus differences of
tenths of a second are completely unimportant. For the sake of correctness we decided to leave the
solution times unaltered anyway. This explains why for some instances Heur2 seems to outperform
Heur1).

The first heuristic rule and the bounds can be used to fix the variables relative to some of the
interdiction patterns h ∈ Hr and remove the related constraints. Since the number of variables and
constraints strongly depends on the number of interdiction patterns, it is desirable to reduce them
as much as possible. Table 5 shows the percentages of interdiction patterns that are still free in
the problem when only the bounds are used - column RS-MCP - and when the bounds are used
in conjunction with the first heuristic rule - column Heur - for earch data set. The last row of
the table shows the average percentage of remaining free interdiction patterns for each data set.
Using the bounds alone reduces the number of interdiction patterns by more than 75%. When the
bounds are used in conjunction with the heuristic rule Always Fortified, the average number of
remaining decision patterns drops to less than 0.2%. Moreover this configuration is more effective
as the number of facilities P and the number of interdictions R grow. The trend of the reduction of
patterns when only the bounds are used is less predictable. In the data set London and USCities the
percentage of remaining patterns is generally higher for higher P and R values, whereas in the data
set randompoints3 there is no evident trend. For this data set, the reduction provided by the bounds
is very effective in the instances with parameters P = 50 R = 5 Q = 5 and P = 50 R = 8 Q = 5. In
these two cases, only 0.006% and 0.028% of the total number of patterns can not be fixed by using
the bounds. Using the heuristic rule Always Fortified does not give any further contribution.

9 Solution Analysis

In this section we provide some insights gleaned from the analysis of the solutions of the S-RIMF.
Some considerations of how the solution time is affected by the parameters P , Q and R is the
topic of the first subsection. The next subsection presents the counterexample that proved that
the heuristic rules introduced in Section 7 do not preserve the optimality of the solutions. The
third subsection explores the benefits of optimizing the stochastic problem as compared to solving
a deterministic problem with a number of interdictions r equal to the expected value of the number
used to model the behavior of the attacker. Finally, the section concludes with an analysis of
how sensitive the optimal solutions are to accurate estimations of the probabilities and provides a
graphical comparison of the solutions to one problem instance.

Exponential regression. By applying exponential regression to the results shown in Table 1,
2 and 3 it is possible to determine how each parameter affects the computation time. For the
algorithms RS-MCP, Heur1 and Heur2 we calculated the parameters of the exponential regression
function:

y = α · P β ·Qγ ·Rδ,
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where y represents the solution time. Table 6 shows the values of the parameters and the correlation
coefficient R2. The standard errors for the estimated values are reported in parentheses (Note: be-
cause of the exponential nature of the regression function used, the standard error associated to the
coefficient α should be compared to ln α and not α). All the functions have a very high correlation
coefficient, higher than 0.80. The exponents β, γ, and δ can be used to identify the parameters that
have more impact on the solution time. The computational time is mostly influenced by the number
of facilities P ; in fact the β coefficients vary between 6.94 and 8.56. Furthermore, the p-value for
β in each regression is less than 0.001, indicating that the estimated exponents are significantly
different from 0. On the other hand, the number of fortifications Q affects the solution time the
least as the associated coefficient, γ, takes relatively small values. The number of interdictions R

has a considerable impact on the solution time of the exact method (δ varies between 3 and 4) while
its impact on the heuristic time is somewhat lower.

Counterexamples to the heuristic rules. In this subsection we present the computational
tests that disproved the optimality of the conjectures that led to the heuristic rules introduced
in Section 7. The counter-example to the rule Always Fortified has been found in the solution of
an instance of the data set USCities with parameters P = 40, Q = 6, R = 2 and the increasing
probability distribution. The optimal fortification sets F r and the corresponding Always Fortified
set are showed in Table 7. The Always Fortified set contains the facilities 1, 3, 6, 23 and 154.
As showed in Table 8, the optimal fortification set corresponding to the instance does not include
facility 23. In fact, the best solution found after imposing the fortification of the facilities of FAF

correspond to F 2, and is a suboptimal solution. The difference in percentage between the values of
the two solutions is 0.137%.

Table 9 displays the optimal fortification sets F r and the associated worst-case interdiction sets
Ir corresponding to the solutions of the MCP on the data set randompoints3 with parameters
P = 30, Q = 4 and r = 1, . . . , 4. Table 10 shows the fortification sets and the solution values
obtained solving S-MCP on the same instance, using the monotonically decreasing probability
distribution and parameter R = 4. The two columns are, respectively, the results related to the
S-MCP and a heuristic algorithm that employs only the heuristic rule Action Set. By comparing
the solution values it can be easily seen that the solution found with the heuristic concentration
approach is suboptimal. In fact, facility 115 is contained only in the optimal fortification set but
not in the Action Set. Interestingly this facility is in the interdiction set for r = 4.

Tables 11 and 12 show the results for instance randompoints3 with parameters P = 30, Q = 3,
R = 3 and the monotonically decreasing probability distribution. This provides a counterexample
to the third heuristic rule: Reaction Set. In this instance, facility 115 is in the optimal fortification
but is not present in either the Action Set or in the Reaction Set.

How important is to model uncertainty in the number of attacks? In the S-MCP the
impact of the attacks is evaluated using the expected cost objective function (18). In this subsection
we investigate the importance, in terms of solution cost, of solving the stochastic problem compared
to using the optimal fortification set of the deterministic problem where the number of attacks is
exactly the expected number of attacks of the stochastic case. When R = 4, the expected value of the
number of attacks is: E (R) = 3 for the increasing probability case, and E (R) = 2 for the decreasing
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probability case. It is possible to solve the r-Interdiction Median Problem with Fortification with
a number of attacks r equal to the expected number of interdictions, and subsequently to evaluate
the optimal fortification set FE(R) by using the stochastic objective function. The resulting solution
value is Z̃E(R). Tables 13 and 14 show a comparison between the optimal stochastic fortification set
F ? and the corresponding fortification set FE(R) using the USCities data set and, respectively, the
increasing probability and the decreasing probability distributions. The first three columns show the
parameters P , Q and R used in the instances. The next columns present: the optimal stochastic
objective function value Z?, the optimal stochastic fortification set F ?, the stochastic objective
function value Z̃E(R) and the corresponding fortification set FE(R). To highlight the differences
between the two fortification sets, the sites fortified in the expected value solution, FE(R), that do
not appear in the optimal fortification set, F ?, are shown in italics. The last column displays the
gap between Z? and Z̃E(R), and is calculated as follows:

GAP =
Z̃E(R) − Z?

Z?
.

The last two rows show the average and maximum gap. The results suggest that modeling the
uncertainty in the number of attacks is rather important. The observed gaps were as high as 13.86%
when increasing probabilities were used, and as high as 7.44% when decreasing probabilities were
used.

How sensitive is the solution to the accurate estimation of the attack probabilities? In
this work, we used two probability distributions (monotonically increasing (31) and monotonically
decreasing (32) in the number of attacks) to model two antithetical offensive behaviors. We now
want to analyze the possible impact on the solution costs of misestimating the attack probabilities
pr. To this end, we considered the fortification sets obtained by optimizing the S-MCP for a certain
probability function. We then calculated how the fortification sets would perform if they were used
for an actual protection plan with a different distribution. Table 15 displays the results of the tests
done on the data set USCities. The tests have been run on the same combination of parameters
explained in the first subsection of Section 8. The columns determine the probability distribution
used for the optimization, while the rows define which probability may take place in the “real
world”. Every cell shows two values: the first one is the average solution cost in percentage, and
the second one is the maximum percentage solution cost found. These results suggest that, for the
instances considered, the probabilities do not seem to have a great influence on the final cost of
the network after the attacks take place. In fact, the highest percentage cost is obtained when a
protection plan obtained through the use of a decreasing probability is used to counter attacks in
an increasing probability environment. This maximum cost is only 105.14% of the optimal solution.
Also the averages are very close to the optimality: 100.60% when optimizing using the decreasing
probability, and 100.38% when optimizing using the increasing probability.

A visual insight. Figures 1 and 2 display the graphical representations of the fortification sets
and the interdiction sets associated to the solutions to the instance of the data set USCities with
parameters P = 40, Q = 4 and R = 3. Each figure shows a political map of the United States of
America. In each map the demands are represented as small diamonds and are connected to the
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corresponding facility by a line. In the map are also reported the names of the fortified facilities
and, in a box, those of the interdicted ones. Figure 1 contains the solutions associated with the
increasing probability function, whereas the solution corresponding to the decreasing probabilities
are in Figure 2. The graphs are sorted from the top to bottom by increasing number of interdictions.

Note that the two protection plans differ by one facility (out of four). When the increasing
probabilities are used, New York, NY, Los Angeles, CA, Phoenix, AZ and Hayward, CA, are
protected. On the other hand, when the behavior of the attacker is modeled using the decreasing
probability function, Los Angeles, CA, is replaced by Chicago, IL.

From observing the interdiction plans, we can infer some interesting considerations. When the
decreasing probability function is used, and therefore higher emphasis is given to a small number of
attacks, the interdicted facilities tend to be clustered. In fact the assaulted facilities are grouped in
the Northwest (Seattle and Portland) when r = 2, and Southern California when r = 3. Moreover,
the optimal interdiction sets for a given r are not subsets of the optimal interdictions for higher
values of r: there are no overlaps between the interdiction sets. When the increasing probabilities
are used, and thus higher emphasis is given to the scenario with r = 3, the fortification set includes
Los Angeles, CA, instead of Chicago, IL. Los Angeles, CA, was one of the three cities in California
interdicted when r = 3 with decreasing probabilities. In this way, the protection plan counters
the most probable worst-case attack. As Chicago, IL, is no longer protected, it becomes the most
critical facility for r = 1. It is also in the interdiction set for r = 2 with Dallas (TX). When
r = 3 the most vulnerable area is Texas (Dallas, San Antonio and Huston). When the increasing
probability function is used, the interdiction patterns for different r values overlap.

10 Conclusions

Building upon the preliminary research of Scaparra and Church [8], our study took a step forward in
the development of the interdiction problems with fortification. First, we extended the r-interdiction
median problem with fortification to the stochastic case using a max-covering formulation that
requires neither precedence constraints nor ordering of the interdiction patterns as required by
Scaparra and Church [20]. Second, we developed bounds that exploit the stochastic nature of
the problem to reduce the dimensionality of the model. The resulting reduced formulation was
extensively tested and the experiments demonstrated that the bounds found are extremely effective:
they drastically reduced the dimension of the solution space and the computational times, and
allowed us to solve instances of realistic size within one hour. Third, we proposed three rules that
can be used to develop heuristics for the problem and derived two related algorithms. By finding
counterexamples we showed that none of these rules preserves the optimality of the solutions.
Nonetheless, in our tests both heuristic algorithms are faster than the optimal algorithm - especially
for bigger instances - and find the optimal solution about 97% of the time. Furthermore, these rules
can be applied to any stochastic problem with one stochastic variable that can take a finite number
of discrete values. The last part of this paper analyzed the stochastic nature of problem. This
analysis shows that the impact of taking into account the uncertainty in the number of attacks
in the optimization process may be substantial. Despite that, the solutions obtained are not very
sensitive to specific the probability distribution used.
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Figure 1: Solution sets for USCities P = 40, Q = 4 and R = 3. Increasing probability case.

(a) 1 interdiction in Chicago, IL.

(b) 2 interdictions in Chicago, IL and Dallas, TX.

(c) 3 interdictions in Dallas, TX, San Antonio, TX and Houston, TX.
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Figure 2: Solution sets for USCities P = 40, Q = 4 and R = 3. Decreasing probability case.

(a) 1 interdiction in Dallas, TX.

(b) 2 interdictions in Seattle, WA and Portland, OR.

(c) 3 interdictions in Los Angeles, CA, San Diego, CA, and Anaheim, CA.
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Since interdiction problems with fortification are a very recent field of research, there are plenty
of research opportunities to be pursued. An interesting variation, that is currently being explored,
is to minimize the amount of resources used to protect the facilities while keeping the impact of
the attacks on the performances of the system under a given percentage from the optimal state. In
addition, we plan to explore objective functions other than the expected cost objective analyzed
in this paper, including the conditional value at risk objective studied in [7]. We hope that this
work will be a useful source of ideas for future research on stochastic problems and will contribute
further in the development and solution of more complex models for fortification and interdiction
problems.
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Table 1: Data set London - Algorithms solution time comparison.
Time (s)

P Q R Z? S-MCP RS-MCP Heur1 Heur2
40 4 2 73953.98 0.31 0.03 0.04 0.06
40 4 3 77944.60 115.00 0.13 0.13 0.13
40 4 4 82217.60 - 0.56 0.54 0.59
40 4 5 86396.73 - 4.07 3.89 4.30
40 6 2 73781.74 1.58 0.03 0.03 0.03
40 6 3 77685.54 462.70 0.11 0.11 0.12
40 6 4 81640.34 - 0.55 0.52 0.57
40 6 5 85522.47 - 5.54 5.36 5.97
40 8 2 73401.42 2.70 0.03 0.03 0.03
40 8 3 77076.18 794.40 0.11 0.11 0.12
40 8 4 80963.72 - 1.25 1.19 1.33
40 8 5 84697.62 - 27.55 20.36 23.17
50 5 2 58529.73 1.80 0.03 0.03 0.03
50 5 3 61915.36 1007.00 0.13 0.12 0.12
50 5 4 65155.98 - 1.14 1.10 1.11
50 5 5 68335.60 - 16.85 16.43 16.50
50 8 2 57753.83 3.30 0.04 0.04 0.04
50 8 3 60726.85 2781.00 0.13 0.13 0.13
50 8 4 63757.20 - 1.58 1.50 1.49
50 8 5 66875.69 - 40.36 39.55 39.59
50 10 2 57283.29 8.41 0.05 0.04 0.04
50 10 3 59772.23 3333.00 0.17 0.17 0.17
50 10 4 63065.32 - 2.49 2.12 2.12
50 10 5 66035.96 - 718.12 167.48 170.46
60 6 2 45365.71 4.59 0.03 0.05 0.03
60 6 3 48207.24 - 0.17 0.17 0.17
60 6 4 50797.93 - 2.13 2.09 2.08
60 6 5 53403.87 - 443.84 443.00 443.14
60 9 2 44776.85 14.31 0.44 0.05 0.03
60 9 3 47383.84 - 0.19 0.19 0.18
60 9 4 50014.09 - 4.38 2.37 2.38
60 9 5 52377.06 - 266.42 232.34 232.32
60 12 2 44225.01 27.89 0.40 0.05 0.04
60 12 3 46830.21 - 0.36 0.28 0.28
60 12 4 48902.84 - 7.66 7.00 7.00
60 12 5 - - - - -
Average - - 44.20 27.10 27.31
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Table 2: Data set randompoints3 - Algorithms solution time comparison.
Time (s)

P Q R Z? S-MCP RS-MCP Heur1 Heur2
40 4 2 322444.00 0.72 0.04 0.03 0.03
40 4 3 336768.50 181.60 0.14 0.13 0.14
40 4 4 354644.50 - 0.81 0.78 0.81
40 4 5 372024.33 - 12.24 11.99 12.45
40 6 2 320528.00 1.64 0.03 0.04 0.03
40 6 3 335450.67 593.90 0.13 0.11 0.13
40 6 4 351375.60 - 0.79 0.74 0.76
40 6 5 365763.80 - 13.16 12.71 13.18
40 8 2 318973.67 13.69 0.04 0.04 0.03
40 8 3 331940.00 720.20 0.11 0.11 0.11
40 8 4 347074.20 - 0.72 0.64 0.67
40 8 5 364153.93 - 64.28 41.82 43.42
50 5 2 266237.00 2.34 0.03 0.03* 0.03*
50 5 3 278181.33 1435.00 0.16 0.14 0.14
50 5 4 290231.60 - 2.71 2.64 2.64
50 5 5 303348.40 - 56.32 56.33 56.35
50 8 2 265093.00 18.74 0.03 0.03 0.04
50 8 3 275298.17 - 0.16 0.14 0.14
50 8 4 286547.90 - 2.68 2.52 2.52
50 8 5 299296.67 - 74.16 68.56 68.46
50 10 2 263700.33 24.14 0.03 0.03 0.04
50 10 3 274328.33 - 0.19 0.17 0.16
50 10 4 284899.30 - 2.68 2.68 2.64
50 10 5 296662.93 - 233.06 227.22* 227.40*
60 6 2 225900.33 18.55 0.03 0.04 0.04
60 6 3 235483.17 - 0.24 0.24 0.24
60 6 4 243768.20 - 3.06 3.00 3.00
60 6 5 252756.07 - 1323.80 1319.60 1319.00
60 9 2 224423.33 46.01 0.05 0.07 0.04
60 9 3 232261.33 - 0.25 0.25 0.25
60 9 4 241140.40 - 11.00 9.88 9.88
60 9 5 250045.27 - 715.64 619.82 618.94
60 12 2 222201.33 58.42 0.05 0.04 0.05
60 12 3 229879.83 - 0.29 0.25 0.25
60 12 4 237647.20 - 12.73 9.94 9.92
60 12 5 244826.80 - 900.98 788.90 787.70
Average - - 95.36 88.38 88.38

24



Table 3: Data set USCities - Algorithms solution time comparison.
Time (s)

P Q R Z? S-MCP RS-MCP Heur1 Heur2
40 4 2 3383035777.67 0.27 0.03 0.03 0.03
40 4 3 4019125339.00 41.10 0.11 0.09 0.10
40 4 4 4476779495.50 - 0.67 0.59 0.60
40 4 5 4866585540.33 - 4.81 4.41 4.48
40 6 2 3286216658.33 0.39 0.04 0.03* 0.03*
40 6 3 3760914991.00 79.93 0.13 0.11 0.11
40 6 4 4109323708.20 - 0.94 0.83 0.84
40 6 5 4448644420.20 - 14.00 10.22 10.35
40 8 2 3120104252.33 0.48 0.04 0.03 0.04
40 8 3 3450922837.50 116.60 0.14 0.13 0.13
40 8 4 3782176529.30 - 2.12 1.79 1.77
40 8 5 4059997875.00 - 37.75 29.68 29.77
50 5 2 2428424600.33 0.61 0.05 0.03 0.05
50 5 3 2795869185.00 291.10 0.16 0.14 0.16
50 5 4 3063770060.60 - 1.42 1.34 1.35
50 5 5 3365535167.40 - 15.23 14.34 14.36
50 8 2 2286362847.33 0.91 0.05 0.03 0.04
50 8 3 2687197980.83 1471.00 0.19 0.16 0.17
50 8 4 2931244316.40 - 1.95 1.78 1.78
50 8 5 3165552184.60 - 77.89 42.80 42.81
50 10 2 2228271926.00 1.48 0.05 0.03 0.05
50 10 3 2446813824.17 1296.00 0.23 0.20 0.22
50 10 4 2594055200.10 - 3.66 3.38 3.43
50 10 5 2763407634.73 - 321.76 318.46 318.78
60 6 2 1889173705.67 1.20 0.04 0.04 0.03
60 6 3 2119472868.67 507.50 2.05 0.23 0.23
60 6 4 2439201722.40 - 3.15 2.79 2.72
60 6 5 2706738479.53 - 38.84 35.41 35.36
60 9 2 1801763821.00 1.81 0.34 0.03 0.03
60 9 3 1970406925.50 - 1.61 0.27 0.27
60 9 4 2234785151.30 - 21.02 3.54 3.52
60 9 5 2418063692.67 - 498.24 79.44 79.16
60 12 2 1696507683.67 1.97 0.41 0.03 0.04
60 12 3 1841699671.83 - 1.43 0.34 0.34
60 12 4 2007633404.70 - 9.69 8.61 8.60
60 12 5 - - - - -
Average - - 30.29 16.04 16.05

Table 4: Optimal and heuristic solutions GAP.
Data Set P Q R Z? Heur GAP

randompoints3 50 5 2 266237.00 266261.33 0.009%
randompoints3 50 10 5 296662.93 296676.87 0.005%

USCities 40 6 2 3286216658.33 3290718099.00 0.137%
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Table 5: Comparison of the percentage of free interdiction patterns.
London USCities randompoints3

P Q R RS-MCP Heur RS-MCP Heur RS-MCP Heur
40 4 2 10.122% 0.488% 19.024% 0.244% 14.634% 0.366%
40 4 3 14.308% 0.075% 14.364% 0.131% 14.327% 0.093%
40 4 4 18.719% 0.012% 18.731% 0.024% 9.752% 0.035%
40 4 5 23.048% 0.003% 23.056% 0.011% 12.132% 0.006%
40 6 2 10.610% 0.976% 23.537% 0.366% 19.268% 0.488%
40 6 3 14.346% 0.112% 27.121% 0.075% 20.981% 0.168%
40 6 4 18.729% 0.022% 34.686% 0.031% 27.027% 0.020%
40 6 5 23.051% 0.006% 32.905% 0.056% 23.053% 0.009%
40 8 2 23.902% 0.732% 28.049% 0.610% 23.902% 0.732%
40 8 3 21.084% 0.271% 33.196% 0.252% 27.168% 0.121%
40 8 4 27.090% 0.082% 41.775% 0.091% 27.065% 0.058%
40 8 5 32.875% 0.026% 49.538% 0.079% 23.081% 0.036%
50 5 2 11.843% 0.314% 11.843% 0.314% 15.451% 0.235%
50 5 3 11.574% 0.062% 11.583% 0.072% 16.958% 0.038%
50 5 4 15.192% 0.014% 15.186% 0.008% 15.191% 0.013%
50 5 5 18.764% 0.005% 18.760% 0.001% 0.006% 0.006%
50 8 2 22.745% 0.392% 22.667% 0.314% 19.294% 0.471%
50 8 3 27.114% 0.048% 17.044% 0.125% 22.175% 0.072%
50 8 4 34.639% 0.020% 22.115% 0.032% 22.109% 0.026%
50 8 5 34.597% 0.008% 18.822% 0.062% 0.028% 0.028%
50 10 2 26.275% 0.471% 26.275% 0.471% 22.902% 0.549%
50 10 3 36.388% 0.038% 31.943% 0.129% 11.851% 0.340%
50 10 4 45.687% 0.110% 40.418% 0.131% 7.913% 0.090%
50 10 5 41.681% 0.163% 47.921% 0.074% 9.811% 0.042%
60 6 2 13.005% 0.219% 9.945% 0.273% 9.945% 0.273%
60 6 3 4.996% 0.083% 9.839% 0.178% 4.990% 0.078%
60 6 4 6.589% 0.043% 6.615% 0.069% 6.558% 0.012%
60 6 5 8.198% 0.021% 8.192% 0.015% 8.189% 0.012%
60 9 2 22.022% 0.219% 19.180% 0.328% 16.230% 0.383%
60 9 3 23.010% 0.055% 23.024% 0.069% 14.358% 0.108%
60 9 4 24.360% 0.094% 29.660% 0.090% 18.705% 0.037%
60 9 5 23.022% 0.096% 35.757% 0.042% 8.212% 0.035%
60 12 2 30.546% 0.219% 27.814% 0.273% 27.814% 0.273%
60 12 3 34.932% 0.058% 31.090% 0.042% 31.218% 0.169%
60 12 4 43.833% 0.012% 34.690% 0.099% 34.683% 0.093%
60 12 5 - - - - 41.477% 0.039%
Average 22.826% 0.159% 24.753% 0.148% 17.457% 0.154%
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Table 6: Coefficients of exponential regression .
Algorithm Instance α β γ δ R2

London 5.32 E-11 (5.45) 7.10 (0.77) 1.20 (1.52) 3.27 (0.65) 0.81
RS-MCP randompoints3 7.84 E-12 (5.22) 8.56 (0.62) 0.51 (0.74) 3.72 (1.47) 0.86

USCities 1.10 E-11 (4.08) 6.94 (0.49) 1.46 (0.58) 3.68 (1.14) 0.88
London 6.01 E-10 (4.70) 7.24 (0.56) 0.54 (0.67) 2.88 (1.31) 0.85

Heur1 randompoints3 4.47 E-12 (5.25) 8.41 (0.62) 0.38 (0.74) 3.96 (1.48) 0.86
USCities 5.00 E-08 (3.59) 7.41 (0.43) 1.05 (0.51) 1.44 (1.00) 0.91
London 3.83 E-09 (4.74) 7.38 (0.56) 0.53 (0.67) 2.37 (1.32) 0.85

Heur2 randompoints3 4.86 E-12 (5.16) 8.46 (0.61) 0.39 (0.73) 3.92 (1.46) 0.87
USCities 1.07 E-07 (3.67) 7.21 (0.44) 1.13 (0.53) 1.28 (1.02) 0.90

Table 7: Fortication sets and interdiction sets for MCP, data set USCities, parameters P = 40,
Q = 6 and r = 1, 2.

r F r

1 1 3 6 8 23 154
2 1 3 6 23 28 154

FAF 1 3 6 23 154

Table 8: Optimal solution for S-MCP and solution found using the Always Fortified rule on data
set USCities and parameters P = 40, Q = 6 and R = 2.

S-MCP Heur GAP
Fortification Set 1 3 6 8 24 154 1 3 6 23 28 154 -
Solution Value 3286216658.33 3290718099 0.137%

Table 9: Fortication sets and interdiction sets for MCP, data set randompoint3, parameters P = 30,
Q = 4 and r = 1, . . . , 4.
r F r Ir

1 191 220 221 238 45
2 103 191 220 238 95 110
3 31 95 103 191 78 201 238
4 31 191 218 220 45 103 115 211

Table 10: Optimal solution for S-MCP and solution found using the Action Set rule on data set
randompoint3 and parameters P = 30, Q = 4 and R = 4.

S-MCP Heur GAP
Fortification Set 115 220 238 191 31 103 191 238 -
Solution Value 419738.70 420799.81 0.253%

Table 11: Fortication sets and interdiction sets for MCP, data set randompoint3, parameters P = 30,
Q = 3 and r = 1, . . . , 3.
r F r Ir

1 191 221 238 220
2 103 191 238 220 221
3 31 103 191 51 55 110
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Table 12: Optimal solution for S-MCP and solution found using the Action Set and Reaction Set
rules on data set randompoint3 and parameters P = 30, Q = 3 and R = 3.

S-MCP Heur GAP
Fortification Set 115 191 238 31 103 191 -
Solution Value 410457.17 411363.01 0.220%
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Table 15: Evaluation of the protection plan in the USCities data set: average and maximum solution
cost in percentage.

Used for protection plan
Increasing probability Decreasing probability

Real Increasing probability 100% / 100% 100.60% / 105.14%
world Decreasing probability 100.38% / 102.00% 100% / 100%

31



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
   
 
  
 
  
 
 
 

http://www.kent.ac.uk/kbs/research-information/index.htm 


