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PRESSURE ROLLING CONTACT: STEADY STATE 

FLOW ANALYSIS AND COMPARISON WITH 

EXPERIMENTAL DATA 

ERIC HANUS, HABIBOU MAITOURNAM and KY DANG VAN 
Laboratoire de Mecanique des Solides, CNRS URA 3 17, Ecole Polytechnique, 

91128 Palaiseau Cedex, France 

Abstract-In the present work the pressure rolling treatment has been modelled by a direct stationary 
method which gives the stabilized mechanical state after complete rolling. One important input to the 
model is the pressure distribution at the contact between the roller and the sample. Due to the conforming 
geometries of the bodies in contact it is found that the pressure distribution differs from the one calculated 
with the Hertz theory. The numerical outputs from the pressure rolling model have been compared to 
experimental data, i.e. the residual stresses measured by X-ray diffraction. A good agreement between 
experimental and numerical results is obtained for the penetration depth and the residual stress prof It is 
found that friction has a strong influence on the surface residual stress.

I. INTRODUCTION 

First introduced in the railroad industry, pressure rolling is a mechanical surface treatment 
in which a load is applied by contact of a rotating tool-the roller-to a workpiece. 
According to the load intensity three applications for pressure rolling may be distinguished. 
At low load levels the treatment smooths down ruggedness thus enhancing the surface 
finish. To cover the whole sample surface, sliding motion can be coupled to rolling. Flavenot 
and Lu (1988) measured a ruggedness of 0.4 flm after pressure rolling against 15.4 flm after 
shot peening a stainless steel. At intermediate loads the smoothing effect can be used to 
improve the dimensional margins. In this connection tolerances lower than 0.02 mm can 
be achieved (Benamar et a!., 1991). Finally, pressure rolling under large loads is a way to 
increase the fatigue strength of conventional materials (Brand et al., 1980; Mahnig, 1981) 
or even of recently developed metal matrix composites. A 30% improvement has been 
observed on a pressure rolled 2014+ 15% SiC particles (Hanus and Ericsson, 1995a). As 
for shot peening the underlying mechanism is surface plastic deformation which generates 
compressive residual macrostresses and local work hardening. 

Even though pressure rolling is well implanted in the mechanical industry, its use and 
development rely essentially on an empirical knowledge. One can nevertheless mention the 
work of Braham (1991) who proposed a numerical model based on the simplified analysis 
of inelastic structures (Zarka, 1980; Zarka et al., 1988). This very fast method which goes 
straight to the stabilized state is however approximate since the solution that one builds 
under the maximum applied load with purely elastic calculations, is not guaranteed to be 
the exact one. It is therefore of interest to model efficiently the complete deformation 
process associated with this mechanical treatment. 

This study on the pressure rolling treatment presents the numerical results obtained 
with the direct stationary method developed by Dang Van and Maitoumam (1993) and 
compares the major outputs concerning the residual stresses with experimental data avail­
able for a particulate reinforced metal matrix composite (Hanus and Ericsson, 1995b). 
Special attention has been paid on parameters such as the pressure distribution at the 
contact and the friction. 
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Fig. 1. The specimen and roller geometries (the rolling track is coloured in black). Distances in mm. 
Rolling occurs along the hoop direction. 

2. EXPERIMENTAL DETAILS 

The material under investigation is a 2014 aluminium alloy reinforced by 15.5 volume 
percent of silicon carbide particles. Details concerning the chemical composition of the 
alloy, the characteristics of the reinforcement phase and the microstructure have been 
reported in former studies (Hanus and Ericsson, 1995b; Hanus, 1993). 

The geometries of the specimen and of the roller are presented in Fig. 1. The roller 
geometry was designed in order to match the sample groove. As a consequence the two 
radii of curvature Rr1 and Rs1 are in absolute value very close: 12.70 against 12.65 mm. 

The samples were heat treated to peak hardness prior to rolling under 9200 N. The 
peak hardness conditions (T6) were a solution treatment of 2 hr at 500°C, subsequent water 
quenching and ageing for 14 hr at 180°C (Hanus, 1993). 

The rolling procedure is performed according to a specific loading history consisting 
typically of three cycles to reach the maximum applied load, ten cycles at stabilization and 
then unloading in three cycles. A specific lubricant is added while rolling, as recommended 
by the manufacturer Hegenscheidt. Concerning the friction coefficient between the hard 
steel roller and the composite sample no dynamic value was found in the literature. By 
analogy with the lubricated rolling contact of steel pieces, its value was fixed by default to 
0.1. 

Figure 2 shows the macrostructure of a rolled specimen. As usual the rolled zone is 
brighter than the machined surface. From this photograph one also notices the presence of 
two whiter lines equally distant from the track center. These wear lines, already observed 
by Heathcote (1921) in unlubricated ball-bearing races, are lines of no slip. 

The macrograph of Fig. 3 represents a cross section of a pressure rolled sample. To 
prevent any artefact the polishing was performed unidirectionally from the top to the bottom 
of the picture. It clearly shows the plastically deformed region induced by pressure rolling 
which is about 900 microns deep. 

Rather curious is the surface mismatch at the right hand side of the track. Even though 
it is not seen on the left hand side this little step is observed on all the pressure rolled 
specimens, which suggests that local lateral plastic flow has occurred perpendicularly to the 
rolling track. Such a progressive extrusion attributed to local plastic ratchetting has already 
been reported with continuous sliding. Two ways in which the process can be driven may 
be identified: 

-<:yclic stressing of the soft surface by the stress concentrations which occur at the 
edges of a hard slider (Akagaki and Kato, 1987), and 

-pummelling of the soft surface by the asperities of the hard surface (Kapoor and 
Johnson, 1994). 

In the present case the pummelling of the ridges generated during machining-turn­
ing-by the asperities of the hard roller may explain the formation of the step. 
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Fig. 2. Surface of the sample after pressure rolling. The arrows point towards the two wear lines. 
The dark ellipse is due to the lighting configuration and is therefore to be forgotten. 

Fig. 3. Size of the plastically deformed zone generated by pressure rolling. The circular window 
displays the surface step. 
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Table I. Mechanical parameters derived from cyclic compressive 
testing. Young's modulus E, Poisson's ratio v, yield stress (Jet and 

tangent modulus E, 

Material E (GPa) 

2014+SiC 100.3 

v (Jel (MPa) 

0.3 380 

E, (GPa) 

29.5 

Due to the large difference in coefficient of thermal expansion between the metallic 
matrix and the ceramic phase, tensile residual micro stresses in the matrix of the composite 
are generated during heat treatment to T6. They induce a significant difference in mechanical 
properties observed between monotonic tension and monotonic compression: the 0.2% 
yield stress is 50 MPa larger in compression than in tension (Persson et al., 1993). This 
dissymetry should not be forgotten when choosing the proper mechanical data. But pressure 
rolling is also a repeated rolling contact process, it is thus important to follow the evolution 
with cycling of the mechanical parameters. The cyclic stress-strain curve was therefore 
determined by using the multiple step testing, wherein the same sample is subjected to a 
series of alternating strains in blocks of increased magnitude. No significant cyclic hardening 
was observed in tension, but cyclic softening was measured in compression. By inspection 
of the hysteresis loop (CJ, t:) it was found that the hardening is of kinematic nature. The 
data used in the present study are those corresponding to cyclic compressive testing. They 
are shown in Table 1. Using the cyclic data is indeed of prime importance since with the 
direct stationary method which is described in the next section, one shall directly get the 
strain and stress states after the whole pressure rolling history. 

3. THEORY 

3.1. The steady-state method 
The particularity of this approach is to analyse the rolling problem in an orthogonal 

reference frame (r, (), z) associated with the moving load transmitted by the roller. Assuming 
constant angular velocity w all the physical properties are no longer time dependent but 
position dependent along the rolling direction (): 

for any tensor M, 
dM 

dt 

oM 
-w ­

oe (1) 

Under the further small strains hypothesis it is possible to derive all the equations 
of the evolution problem in elastoplasticity: equations of motion, boundary and initial 
conditions, constitutive laws and possible stabilized state (Dang Van and Maitournam, 
1993). In practice the main difference with a classical method lies in the determination of 
the plastic strain rather than its rate and of the internal parameters such as hardening. For 
instance the plastic strain which is calculated from: 

can be rewritten with eqn (1): 

which, after integration, leads to: 

deP of-=Jc ­
dt oa 

dt:P of-=Jc*­
d6 00" 
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fzn ( aj) sP(r, 8, z)= 8 A.*aa (r, (, z) d(+sP(r, 2n, z)

where A.* is given by the consistency condition:

A.*= '5.. /- aj :a e) 
h \ aa . 

in which h is the hardening modulus, f the function associated to the plasticity criterion, 
( ·) means the positive part, and K is defined according to : 

K = I iff= 0 and K = 0 iff< 0 

The assumption of a stabilized mechanical state for repeated rolling gives the comp­
lementary continuity equation: 

rzn 
J o s;e d8 = 0 

This original approach is very different from the one proposed by Bhargava et al. (1985a, 
1985b, 1988). In their study they used a finite element method with incremental translations 
of the loading. Their approach is obviously time consuming and rather cumbersome. 

For computation the afore-mentioned equations are discretized over a finite mesh. The 
first step consists of determining the elastic response of the specimen to the loading. An 
initial strain field and its associated self-equilibrated stress field can be taken into account 
so that influence from prior treatments, for example quenching, may be introduced. If the 
plasticity criterion, e.g. von Mises criterion, is violated, projection of the stress field onto 
the elastic convex is performed. The solution one then gets is schematically represented in 
Fig. 4(a) (for the sake of clarity a two-dimensional representation has been chosen). If it is 
plastically admissible, the algorithm is stopped. Otherwise one may choose between two 
options: 

-reiterate the projections until the plastic admissibility of the stress field is reached, 
or 

-reinitialize the mechanical fields ahead of the loading and repeat that double loop: 
projection/initialisation until that the criterion of plasticity is satisfied. 

The first case leads to the exact solution after one single pass of the roller which was 
proven to be unique (Dang Van and Maitournam, 1993). Following the second way, 
depicted in Fig. 4(b ), gives directly the stabilized mechanical state after complete rolling. 
In the following all the calculations are using this so-called direct stationary method. 

So far the problem of cyclically loaded structure has been reduced to a quasi-single 
pass of the roller. But it still remains three-dimensional due to the geometry of the contact. 
Using the development in Fourier series described by Zienkiewicz (1977) it is possible to 
further model the whole process by a succession of two-dimensional calculations (Mai­
tournam and Dang Van, to be published). 

a) 

+oo I 
e = e 

b) 

Fig. 4. Description of the single-pass algorithm (a) and direct algorithm (b). 
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3.2. The contact 

3 .2.1. Pressure distribution. Regarding the contact a convenient assumption is to 
consider that it can correctly be described by the Hertz theory (Johnson, 1985; Hills et a!., 
1993). This theory gives indeed analytical expressions for the contact area and the pressure 
distribution which both are elliptical. It just requires the knowledge of the total applied 
force and the elastic constants of the two bodies in contact. To check its validity in the case 
of pressure rolling we need to go through all its assumptions which are: 

(i) the surfaces are continuous and non conforming, i.e. the dimension of the contact 
is small compare to the radius of curvature, 

(ii) each solid can be considered as an elastic half-space, and 
(iii) the surfaces are frictionless. 

As shown in Fig. 1 the surfaces of the specimen and the roller are locally quadratic 
and therefore the surfaces can be considered as continuous. Regarding the elastic character 
of the bodies, the hard steel roller does not undergo any plastic deformation during pressure 
rolling but of course the metal matrix composite does. However when modelling one's 
attention is just focused on the stabilized state. If this one is characterized by an elastic 
shakedown then the material response to the loading is entirely elastic and the assumption 
is validated. If the shakedown is plastic, i.e. the specimen response follows a closed plastic 
hysteresis loop, Barghava et a!. (1985a) showed in the rolling case that the increase in 
contact area can be neglected even though the ratio of the Hertz maximum pressure to the 
shear yield stress is large ( � 5). 

Although some restrictions may be relaxed, the one concerning the non-conforming 
half-space can not be overcome. Data from Fig. 1 (Rrl and Rsl) clearly indicate that the 
contact exhibits an important conformity, i.e. the contact surface can not be assimilated to 
its tangent plane. It is thus necessary to look into more details at the effective pressure 
distribution applied to the specimen. The approach chosen here is to simulate with a finite 
element program the effective pressure distribution at the contact. 

3.2.2. Tangential loading. As mentioned in the former section the roller imprint may 
be separated into three bands. In the outer regions microslip occurs forwards, i.e. the net 
tangential force applied to the specimen is opposite to the rolling direction, while in the 
central part microslip occurs backwards. This phenomenon is correlated to the close 
conformity of the contact area which is no longer plane but shares the transverse curvature 
of the roller and the sample. Surface points at a given longitudinal position (z-axis in Fig. 
1) have different peripheral speeds depending on whether they belong to the roller or to the
specimen, inducing thus microslip. Following Johnson (1985) one can analyse this particular 
situation by the strip theory illustrated in Fig. 5. Note that in the present study the pressure 
distribution and the contact area are no longer described by ellipses. 

For each strip the Carter theory (Carter, 1926) is applied: a stick region at the leading 
edge, whose center is located at x = - d, is followed by a slip region at the trailing edge. 
The evolution of the stick region size is given by : 

where y is determined optically and r is the conformity factor equal to 22 for the present 
geometries (Johnson, 1985). Constants a and bare given by the finite element calculations. 

4. RESULTS AND DISCUSSION 

4.1. The conforming contact 
To get an idea of the shape of the contact area, one can draw contours of equal distance 

between the two surfaces described in Fig. 1. In a cartesian frame centered on the middle 
of the groove, whose z-axis is parallel to the specimen axis and whose x-axis points towards 
the center of the roller, this distance, D, is given by: 
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Fig. 5. Strip theory applied to a ball rolling in a conforming groove. Pure rolling takes place on two 
lines aty= ±yb(Johnson, 1985). 

D = Rs2+Rr2- [(Rr2-Rrl +(Rr l 2 -z2)112)2-y2] 112- [(Rsl + Rs2

_ (Rsl2 _ z2) 112)2 _ y2] 112

As shown in Fig. 6 the contact area is not elliptical as it would be a Hertzian contact but 
closer to an "eight form" especially when large displacements are involved. 

As, during contact, the surfaces will deform it cannot be assumed that the shape will 
be the one given by Fig. 6. Furthermore lacking any analytical analysis the problem was 
treated by a finite element model wherein the roller is described by a rigid body and the 
specimen by an homogeneous isotropic elastic body. 

The calculations were performed using the Castem 2000 code developed by the Com­
missariat at l'Energie Atomique and run on Hewlett Packard work stations of 64 MB 
random access memory. Since the roller was considered as rigid only the specimen geometry 

2.5,------,-------.------,-------�------�------�· 

z (mrn) 
Fig. 6. Contours of the distance separating the specimen to the roller. Only one quadrant of the 

contact area is drawn (0, 0) is the center of the groove. Distance in mm. 
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Fig. 7. Three-dimensional mesh of the groove. Arrow I points towards the point of first contact. 
Arrow 2 indicates where the displacement was blocked by the secondary roller. 

was discretized. The three-dimensional mesh adopted in this section is represented in Fig. 
7. Due to symmetry just one quarter of the sample needed to be examined. Further reduction
could not be done because of boundary conditions: to sustain the load applied by the roller 
the specimen was blocked by two other small rollers placed at ± 120° in the hoop direction 
on the sides of the specimen (out of the groove) so that bending was allowed. Nodes in 
both radial and orthoradial directions were concentrated close to the contact area. A cross­
section consisting typically of 180 nodes was repeated 12 times in the hoop direction. 

By prescribing the upper surface of the groove to be perpendicularly displaced, to a 
given extent, according to the roller surface geometry, one can calculate by integration of 
the stress tensor over the deformed area the total applied force. Depending on that value 
one modifies the displacement until the 9200 N load is reached. One can then determine 
the normal load Pn on the surface, given by :

Pn=(a·n)·n 

where a is the stress tensor and n the normal to the surface.
The results for the pressure (normal load) are presented in Fig. 8(a) and (b) while the 

equivalent stress on Von Mises is shown in Fig. 8(c). For comparison the pressure given by 
the Hertz theory is also plotted�the long axis of the contact ellipse is taken along the 
groove. 

Even though a more refined mesh�only 2500 nodes are used in the present study� 
would have reduced the approximations made in the integration calculation of the global 
applied force, some useful comments may be drawn from Fig. 8 : 

�the most striking feature is that the maximum in normal pressure is not located at 
the center of the groove, as predicted by the Hertz theory, but few millimeters 
outside; 

�a decrease of 14% in the central pressure is also recorded; 
�the ratio of the maximum pressure to the shear strength is equal to 5 so that the 

stabilized state will be a plastic shakedown (Johnson, 1985), as confirmed by our 
calculations of Section 4.2; 

�one can further notice that the dimensions of the contact ellipse given by the Hertz 
theory fit within 13% to those obtained by computation; 
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Fig. 8. Pressure distributions along the groove (a) and the transverse circle (b). Contours of the 
Von Mises stress (Pa) at the contact zone (c). 
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-as expected ( cf Fig. 6) the contact area tends to be wider at the extremity of the long 
axis. This phenomenon would be more accentuated for larger applied loads since 
the conformity plays then a more pronounced role; 

-of interest are also the variations of the Von Mises stress shown in Fig. 8c. Its 
maximum is located at the surface of the specimen away from the center of the 
groove. Could this maximum be one reason for the formation of the step observed 
in Fig. 2, a correct answer to this question still necessitates some more investigation. 
In the (x, y) plane a local maximum in the equivalent stress occurs beneath the 
surface as it usually is in non-conforming Hertzian contact. 

In the analysis presented above the influence of the elastic compliance is not taken into 
account and it would certainly be a non negligible factor. The elastic constants of the hard 
steel roller are indeed: E = 210 GPa and v = 0.3. The Hertz predictions give for the
elastic/elastic contact a maximum pressure which is 24% lower than the one evaluated in 
the rigid/elastic case and contact ellipse dimensions 14% larger. It was deliberately chosen 
not to use the contact modulus Ec in the precedent calculations since its definition
Ec = ( v1/ E1 + v2/ E2) -t is not guaranteed in the case of conforming contacts.

4.2. Residual stresses 
The residual stresses were measured experimentally by X-ray diffraction in the two 

phases of the metal matrix composite, i.e. the aluminium matrix and the silicon carbide 
particles. Measurements were performed along 21 directions and compared to a stress-free 
reference powder in order to establish the complete residual stress tensor. As shown in 
Noyan and Cohen (1987) and Hanus and Ericsson (1995b) it is possible to separate the total 
stress tensor 'a in a macrostress Ma and a pseudomacrostress 11a component according to: 
'a= Ma+11a. By definition the macrostress is the average of the measured stress over 
the diffracting volume and thus is the same for the two phases of the material. The 
pseudomacrostress are then the deviation of the measured total stress from the macrostress. 
In the present study only the results related to the macrostress are presented since in the 
calculations the material is considered as homogeneous and isotropic and therefore the 
residual stresses obtained with the direct stationary method are macrostresses. A full 
description of the experimental details and results is given in (Hanus and Ericsson, 1995b). 

Concerning the numerical simulations the two-dimensional mesh composed of 265 
nodes, shown in Fig. 9, was chosen to describe the groove. The boundary conditions are 
the following: symmetry across the line z = 0 (uz = 0), axisymmetry along the axis r = 0 
(ue = 0) and prescribed displacements at the nodes pointed by the arrows (u, = 0). As
mentioned earlier, the sample is maintained by two secondary rollers, placed just outside 
the groove, to sustain the load transferred by the main roller. The latter boundary condition 
is in the present axisymmetrical configuration a good compromise to account for these 

'L e . 

t t 
Fig. 9. Two-dimensional mesh of the groove. The arrows indicate where the radial displacement 

was blocked. 
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rollers which allow a limited bending of the groove. This particular boundary condition is 
however not a sensitive factor: calculations performed with a fixed axis (u, = 0 on r = 0)
have given very similar results. 

For the Fourier decomposition of the pressure distribution in the hoop direction 51 
modes were employed and 600 angular sections were used to perform the axisymmetrical 
calculations. With such a number of harmonical modes an error of less than 1% is achieved 
on the central pressure value. 

By applying the stationary method described in the previous section one gets the 
mechanical fields at the stabilized state, i.e. during the last pass of the roller at the maximum 
applied load. The situation is at that point a little different from the one sketched in Fig. 4, 
where the geometry was planar and thus the mechanical fields far away from the load 
coincided with the residual mechanical fields. With the present axisymmetrical geometry 
the points located far away from the load are the ones situated on the opposite section to 
the load and thus are submitted to a local three point bending generated by the main and 
the two secondary rollers. To entirely model the pressure rolling treatment it is therefore 
necessary to consider the unloading from the maximum applied pressure. To estimate the 
residual stresses and deformations it was chosen to perform the following calculations: 

-extract the plastic deformations obtained on the opposite section by the stationary 
method, 

-inject these deformations on all the sections, and 
-perform a calculation with initial plastic deformations by using a classical algorithm 

of plasticity. 

It was found that plasticity occurred during the unloading for all configurations of 
pressure distribution and friction coefficient. 

The computation time on HP 700 work stations is typically about 5 hours. Note that 
the time would have been much smaller if the contact area was not that elongated, requiring 
a fine discretization in the orthoradial direction (600 sections). 

In order to separate the influence of the different parameters, pressure distribution and 
friction, several combinations were investigated and are illustrated in Fig. 10. It is chosen 
to plot the results along the r-axis at z = 0 since diffraction measurements were performed 
only at the center of the groove for different depths. Two distributions of contact pressure 
were employed: the one obtained with the finite element method described above (FEM) 
and the hertzian profile corresponding to a rigid roller (HER). The friction was examined 
through the following configurations: free rolling (F = 0) and frictional slip via a Carter
profile combined with three slip zones matching the wear lines (HEA). The parameter y 
defined in Fig. 5 was given the value 0.25. 

A common feature to all numerical results is the penetration depth achieved by pressure 
rolling which is about 1 mm. This calculated depth agrees very well with the one measured 
optically (Fig. 3) or by X-ray diffraction (curve 5). 

By comparison of curves 1 and 2 one can evaluate the influence of contact conformity. 
Variations of 20% in residual stress value are recorded at the subsurface. It is believed that 
this phenomenon would be more accentuated when analysing the case of two elastic bodies, 
which could not be treated in the present work. 

The introduction of friction, illustrated with curve 3, clearly shifts the orthoradial 
surface residual stress towards a lower compressive value. For memory the friction 
coefficient for curves 3 and 4 was taken equal to 0.1. 

To enable a comparison of the numerical results with experimental data (EXP), plotted 
on curve 5, one needs to take into account the layer removal procedure required for the X­
ray diffraction measurements of residual stresses in depth. It is indeed obvious that stress 
relaxation occurs when electropolishing the sample surface. However, the usually adopted 
correction proposed by Moore and Evans (1958) is not valid in the present study due to 
the surface stress gradients generated by pressure rolling. Ballard and Constantinescu 
(1994) recently developed a mathematical formalism allowing the reconstruction of any 
residual stress field from data measured after layer removal, which led to an explicit 
inversion formula for the half-space geometry. Unfortunately this explicit method cannot 
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Fig. 10. Residual stress profiles in depth below the center of the groove: (a) along the z-axis, (b) in 
the hoop direction. 

be applied due first to the different geometry (the groove cannot be assimilated to an half 
space) and second to the lack of measurements around the center of the groove. It was 
therefore chosen to simulate numerically the layer removal (LR) procedure by shifting 
towards the surface the plastic deformation field and performing at each step an elastic 
calculation with this initial plastic deformation distribution. This particular modelling 
leaving the geometry untouched is valid as long as the removed layer is small compared to 
the thickness of the sample. The changes in stiffness should otherwise be considered. The 
results after matter removal are shown in curve 4. The residual stresses in the axial direction 
(z-axis) are clearly more compressive but no difference is observed in the hoop direction. 
The fact that no correction is to be done in the orthoradial direction can probably be 
correlated to the absence of stress gradients in that direction. 
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Fig. 1 1. Plot of the initial (plain line) and deformed (dotted line) geometries. 

When confronting the results of curve 4 and the data of curve 5, one finds that the 
surface residual stresses are well reproduced by the model and that the shape of the stress 
profile along the z-axis fits very well to the experimental one. Slightly larger compressive 
stress values are found but they could either be attributed to the elastic compliance of the 
contact which is not taken into account or to an initial residual stress field induced by 
quenching. Considering both the roller and the sample elastic would indeed reduce the 
maximum applied pressure. In the hoop direction a discrepancy between the residual stress 
profile found with the model and the experience arises in the subsurface. The reason for 
this misfit may lie in the assumption of isotropy of the material. The samples used in the 
present study are indeed machined from extruded bars and when examining the micro­
structure it is observed (Hanus and Ericsson, l 995b) that the ceramic particles of the 
composite are substantially aligned along the extrusion direction, i.e. the z-axis in Fig. 1. 
This preferred orientation of the particles leads to anisotropy which was not taken into 
account since the identification of the mechanical parameters was carried out with unidi­
mensional tests performed along the z-axis. 

Concerning the little step evidenced in Fig. 3, a plot of the residual displacements 
generated by pressure rolling gives an alternative explanation to its presence. As shown in 
Fig. l l  a local variation in normal displacement occurs at the edge of the contact zone. 
This peak, intrinsic to the present mechanical surface treatment, is about l ,urn and therefore 
too small to fully account for the observed surface mismatch. In consequence it is believed 
that the step originates from both the pressure rolling and the deformation of the ridges 
generated during machining (turning). 

5. CONCLUSIONS 

Pressure rolling an aluminium matrix reinforced by ceramic particles with a hard steel 
roller revealed two important experimental facts: 

-the presence of two wear lines separating the contact zone into three regions of 
opposite microslip. Their origin lies in the difference in peripheral velocity of the 
two bodies in contact which in tum results from the coupling effect of a large 
conformity and of the disproportion in size of the roller compared to the sample; 

-the generation of a step at the edge of the rolled zone which can only partially be 
explained by the residual displacements generated by pressure rolling. 

A finite element program has been used to model the conforming contact between a 
rigid roller and an elastic sample. It was found that the static pressure distribution is no 
longer elliptical as would be the case with an Hertzian contact. Significative variations from 
the Hertz theory were observed for the contact dimensions and the central pressure. 
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The pressure rolling treatment has been modelled by the means of a direct stationary 
method giving in fine the mechanical fields at the stabilized state. In order to reduce the 
complexity of dealing with a three-dimensional elastoplastic problem, a Fourier decompo­
sition of the pressure distribution in the hoop direction was performed reducing thus the 
mechanical problem to a succession of two-dimensional analyses. 

The outputs of the model, namely the residual stresses, have been compared to exper­
imental data issued from residual stress measurements by X-ray diffraction. A good agree­
ment was found for the penetration depth, the surface residual stresses and their profiles in 
depth. 
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