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Abstract 

Many minimum distance estimators have the potential to provide parameter 

estimates which are both robust and efficient and yet, despite these highly 

desirable theoretical properties, they are rarely used in practice. This is 

because the performance of these estimators is rarely guaranteed per se 

but obtained by placing a suitable value on some tuning parameter. Hence 

there is a risk involved in implementing these methods because if the value 

chosen for the tuning parameter is inappropriate for the data to which the 

method is applied, the resulting estimators may not have the desired theo- 

retical properties and could even perform less well than one of the simpler, 

more widely used alternatives. There are currently no data-based methods 

available for deciding what value one should place on these tuning parame- 

ters hence the primary aim of this research is to  develop an objective way of 

selecting values for the tuning parameters in minimum distance estimators 

so that the full potential of these estimators might be realised. 

This new method was initially developed to optimise the performance of the 

density power divergence estimator, which was proposed by Basu, Harris, 

Hjort and Jones [3]. The results were very promising so the method was 

then applied to two other minimum distance estimators and the results 

compared. 
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Chapter 1 

Introduction 

The purpose of many statistical analyses is to learn more about a particular 

population. This generally involves taking a sample from the population of 

interest and extrapolating findings based on this sample to the whole pop- 

ulation. Thus the classical parametric estimation problem arises from the 

need to develop statistical models for populations from sampled data. The 

distribution of the population is generally referred to as the true distribution 

and any distribution derived from sample data as the model even though, 

in reality, both are models because the true distribution is simply the sta- 

tistical representation of some physical or biological phenomenon. In order 

for a model developed from sampled data to be a useful tool for extrapola- 

tion the family of distributions for the model must be chosen appropriately 

and the values placed on the parameters within that model must be close 
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t o  those of this true distribution. Since the parameter estimates and, to a 

lesser extent, the choice of model family are based on the sample data it is 

imperative that this sample is representative of the population from which 

it was taken. 

Maximum likelihood is often used to estimate the unknown parameters in 

models because it provides asymptotically unbiased estimators which have 

the lowest possible asymptotic variance (equal to the Cram&-Rao lower 

bound) when the model is true (i.e. whilst there is no contamination in 

the data and the model family is chosen correctly). This optimality does 

not necessarily hold under departures from the model, however, and the 

danger in using maximum likelihood estimators in such situations is easily 

demonstrated in Figure 1.1 (page 4) .  Here the true density of the data, 

denoted g, is the N(0 , l )  distribution and shown in black. This density 

is often referred to as the target distribution because in most practical 

situations it is the parameters of the true density which we wish to estimate. 

The distribution of sampled data is not usually of direct interest and can be 

viewed as an estimate of the distribution of g. Several studies have found 

that up to 10% of the values in a typical data set might be incorrect [l] 

as a result of recording errors, measurement errors and rounding. Errors 

can arise in a variety of ways but are often difficult to identify or quantify 

in practice because the underlying true density is not generally known. 
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Therefore it is important to investigate how such errors affect the parameter 

estimates and models obtained. First a random sample of size 100 was taken 

from this distribution and the location parameter in the N(0, l )  family of 

models was estimated using maximum likelihood. The resulting model (the 

red curve in Figure 1.1, p.4) is very close to the target distribution which 

confirms that for clean data such as this maximum likelihood estimation 

leads to very satisfactory results. By adding a number of contamination 

points with the value 10 to the N(0,l) samples (to represent errors in the 

data) revised estimates of the location parameter can be obtained, again 

using maximum likelihood estimation. These models are also shown in 

Figure 1.1 and demonstrate that as the percentage of contamination points 

increases the model obtained using maximum likelihood estimation shifts 

further away from the true density g. This highlights the fact that the 

maximum likelihood estimator is very sensitive to  errors in the data so that 

models fitted in this way, and the predictions or opinions based upon them, 

could be misleading. 

A robust estimation method is therefore one which leads to  models which 

are close to the true density even though the distribution of the data might 

not all be. It is an unfortunate feature of many robust estimation meth- 

ods that they do not perform as well as maximum likelihood when there 

is no contamination in the data. In practice, since the true density is un- 





5 

known, deciding between a robust method and maximum likelihood is a 

balancing act and the cost of making the wrong choice can be very high. 

Minimum distance estimators [3],[27],[38] are of interest because they are a 

class of methods which have the desirable properties of being both robust 

and efficient. Nonetheless, these methods are not widely used because these 

theoretical benefits ace often difficult to attain in practice. The aim of this 

research has therefore been to study three examples from this class of robust 

estimators with a view to developing a general method for optimising their 

practical performance. 

A summary of the most widely used measures of robustness and efficiency is 

given in Chapter 2, along with a general introduction to minimum distance 

estimators and a review of the work which has already been carried out 

to optimise the performance of this class of estimator. Each of the three 

minimum distance estimators considered here is introduced in Chapter 3 

and a new approach to optimising their performance will be applied to each 

in Chapters 4 to 6. The results are summarised in Chapter 7 so that the 

effectiveness of this new approach can be fully assessed and conclusions 

drawn in Chapter 8. To make the thesis easier to read theoretical details, 

such as the derivation of the asymptotic properties of each estimator, are 

outlined in Appendices A to D and referenced where appropriate. 



Chapter 2 

Robustness, efficiency and 

minimum distance estimators 

Robustness theory has developed from the pioneering work by Huber and 

Hampel in the late 1960’s and early 1970’s. Huber’s many papers on the 

minimax approach are summarised in his book on robust statistics [16] and 

Hampel’s infinitesimal approach (based on influence functions) in another 

[ll]. This chapter brings together the key ideas from both these schools, 

alongside more recent developments, needed to explain and justify the new 

methods suggested later in this thesis. 
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2.1 Functional representation of estimators 

When studying the theoretical properties of estimators it is often advan- 

tageous to  regard them as functionals. The mathematical justification for 

t,his representation is given in Section 2.la of Hampel et al 1111 and a more 

intuitive explanation in Staudte and Sheather [35] on page 12. In simple 

terms the feature which is to be estimated, location for example, is repre- 

sented by the functional T ( F )  where T is a general term for the estimand 

and F is the distribution to which T is applied. Thus, using F, to denote 

the empirical distribution function and G to denote the true distribution 

function, the population mean z g (z) dx can be denoted as T(G)  and the 

sample mean as T(F , ) .  This separation of the estimand from the data 

greatly simplifies the task of investigating the effect of small changes in the 

data on parameter estimates and allows theory which is common to many 

different estimators to be expressed in general terms. This means that it 

does not need to be re-derived for each specific method. 

This notation also gives a neat representation of the variance of an estimator 

as follows 

v w  ( f i ( T ( F n )  - T ( G ) ) )  V ( T , G )  
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which leads to 

1 
ViQT ( T ( E ) )  = -V n (T,  G) 

2.2 Modelling contaminated data 

The theoretical behaviour of an estimator under departures from the model 

can be explored by using a mixture model to represent real data. This 

mixture density (also known as the gross-error model) was introduced by 

Huber [15] and is 

where 0 5 E 5 1 so that l O O ( 1  - E)% of the observations are from the 

true distribution g and the remaining loo&% are from some other density 

distribution h. The choice of density for h determines the type of contam- 

ination which will be obtained. Setting h (z) = 6~ (z) where 6 is the Dirac 

delta function enables contamination points with a particular value [ to be 

generated as can symmetric heavy tailed data by setting h (z) = tk (z) , the 

Student’s t density, with degrees of freedom k = 2 , 3  or 4. The Student’s t 

distribution with k = 5 is not appropriate for this purpose it is very similar 

to the standard normal and the random samples obtained would not have 

the desired outliers in the tails. The converse is true when k = 2 in which 

case the resulting random samples would be highly skewed and therefore 
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also unsuitable. The percentage of contamination points can be varied by 

changing the value of E and so gives a very flexible model which can be 

adjusted to  mimic many of the different types of data observed in practice. 

2.3 Investigating the effect of contamination 

on estimators 

The functional representation of estimators and use of mixture models for 

contamination are extremely valuable tools for investigating the robustness 

of estimators. As described in Section 2.1 (p.7), an estimator can be written 

in general terms as T ( F ) ,  where F is a probability density or distribution 

function. The true value of a location parameter, for example, is then 

written as T(g)  = 8 where g is the true density function. Setting F = gE 

gives T(g,)  = 8, which is the estimator when the method is applied to 

contaminated data. Thus the effect of contamination on an estimator can 

be denoted simply as T ( g E )  - T (9 )  which is the bias in using 8, to estimate 

the true location parameter 8, (the location parameter associated with 9 ) .  

This functional expression for bias has many uses in robustness theory as 

will be seen in later sections. 
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2.4 Measuring efficiency 

Maximum likelihood is often used in parametric estimation problems be- 

cause it provides asymptotically unbiased estimators which have the lowest 

possible asymptotic variance (equal to the Cramer-Rao lower bound) when 

there is no contamination in the data and the model family is chosen cor- 

rectly. Thus maximum likelihood is the optimal choice of estimation method 

when the model is true and there is no data contamination and it therefore 

provides a benchmark for judging the efficacy of other estimation methods. 

Using F to represent any probability distribution function the efficacy of an 

estimator T (F,) is known as the relative efficiency and is defined as follows 

where V ( M L ,  G)  is the variance of the maximum likelihood estimator and 

V (T,  G) is proportional to the variance of T (F,,). 

Since it is rarely possible to  express the variance of an estimator explicitly 

the asymptotic variance, which is a large sample approximation to the true 

variance, may be used instead. In this case the efficacy of an estimator 

T (F,) is measured by the asymptotic relative efficiency which is defined as 
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follows 

where u ( M L ,  G) is the asymptotic variance of the maximum likelihood es- 

timator and U (T,  G) is proportional to the asymptotic variance of T (Fn) .  

Maximum likelihood estimators are optimal and therefore fully (or 100%) 

efficient using either measure of efficiency. The asymptotic relative efficiency 

of some other estimators may also be 100% despite their performance being 

sub-optimal in the finite case. 

For many parametric estimators the ARE does not depend on 6' and is 

therefore a measure of the relative sample size required by M L  in order to 

estimate 6' with the same accuracy as T .  Thus if T is 85% efficient one 

would need to increase the sample size by 18% for T to perform as well as 

maximum likelihood. 

2.5 Measuring Robust ness 

2.5.1 Breakdown point 

As demonstrated in Section 2.2 (p.8) the density gE is used to investigate 

the effect of contaminated data on estimators. As the proportion of con- 
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taminants in the data increases one would expect the parameter estimates 

to become less reliable so one way of assessing robustness is to consider how 

large E can get before the validity of the parameter estimates is undermined. 

This value of E is known as the breakdown point and can be interpreted as 

the degree of contamination which the estimator can tolerate. A highly ro- 

bust estimation method might therefore have a breakdown point of around 

40% whereas the maximum likelihood estimator, which cannot tolerate con- 

taminated data, has a breakdown point of 0%. Details of the breakdown 

points of the three minimum distance estimators considered here are given 

in Sections 3.1, 3.2 and 3.3 of Chapter 3 on pages 34, 47 and 64 respectively. 

2.5.2 Influence function and related measures 

Another aspect of robustness is to consider how the magnitude of the con- 

tamination point might affect the estimator. Once again a mixture model 

is used for contamination, gE (z) = (1 - E )  g (z) + (z) and the effect 

of contamination on the estimator T is given by T ( g E )  - T (9). The rel- 

ative influence of each of E% contamination points is therefore 

and the infinitesimal behaviour of an estimator is found by taking the limit 

of this expression as E + 0. This function, known as the influence func- 

tion or influence curve, describes the relative influence of a contamination 

point at on the estimator and thus represents an estimator’s sensitivity 
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to small changes in the data. The influence function is therefore denoted 

I F ( ( )  = lim,,o (T) . This approach, first suggested by Hampel [lo], 

is an extremely useful tool because it gives a simple graphical representa- 

tion of robustness which can be easily interpreted. The influence functions 

for the mean and Cram&-von Mises estimator [13] (the $0 = f0 case of 

the weighted Crambr-von Mises estimator which is described in Subsection 

2.9.3, p.23) are shown in Figure 2.1 (p.14) to illustrate some of the fea- 

tures of interest. The mean is an example of an estimator which has an 

unbounded influence function. This means that as the distance between 

the true mean (zero in this case) and the contamination point increases so 

does the effect on the estimator, without limit. In contrast, the influence 

function for the Cram&-von Mises estimator is bounded above and below at 

approximately 1 2  which means that large contamination points have much 

less influence on this estimator than on the mean. Thus if the influence 

function for an estimator is bounded it is generally thought to be robust 

and vice versa. 

There are other aspects of influence functions which also need to be con- 

sidered when assessing the robustness of an estimator. The position of the 

bounding affects robustness because it represents the maximum influence 

that a contamination point could ever exert on an estimator. This value is 
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known as the gross error sensitivity and defined as 

Y* = SUP IIF (0 I e 
where the supremum is taken over all E where I F ( 5 )  exists. If y* is finite 

then T is said to be B-robust or bias robust [28] 

The general shape of the influence function may also be of interest because 

this aspect may also affect robustness. Several estimators have influence 

functions which redescend to zero which means that large contamination 

points have very little influence and as a consequence these estimators are 

highly robust. When g is symmetric the rejection point for a redescending 

estimator can therefore be defined as follows 

p' = inf { r  > 0; I F  (0 = 0 when > r }  

If no such T exists then o* = 03. 

The effect of changes in E on the asymptotic variance of an estimator can 

be studied via the change-of-variance function [ll], [29] which is defined as 

where w (T ( F ) )  = In [U (T,  F ) ] ,  the logarithm of the asymptotic variance of 

T ( F ) .  

A positive value for the C V F  means increased variability of the estimator 

whilst negative values imply increased accuracy. Therefore, for maximum 
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variance robustness, the CVF function should be bounded above but need 

not be bounded from below. The change-of-variance sensitivity is the supre- 

mum of the standardised CVF as follows 

K* = sup {CVF (t) /U (T ,  G)}  

Note that if a delta function with a positive factor occurs in the CVF then 

E* is defined as +CO. An estimator with finite K* is known as variance or 

V-robust. 

F 

2.6 Relationship between robustness and ef- 

ficiency 

The relationship between efficiency, robustness and influence functions, de- 

tailed in Lindsay [19], can be derived from the Taylor series approximation 

to the estimator under contamination which is 

The influence function can therefore be viewed as a first order approximation 

to  the asymptotic bias because 

= C I F  ( E ) .  
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The influence function is also related to efficiency via von Mises expansion 

[20] so for any probability distribution function F ,  subject to  certain reg- 

ularity conditions being fulfilled, the asymptotic variance of an estimator 

can be obtained as 

I F Z  (z) dF (z) . (2.1) 

where I F 2  (z) is the squared influence function of the estimator T ( F ) .  

A simple example of how the influence function can be used to obtain an 

estimate of the standard error of T(F,) is given in Staudte and Sheather 

[35] (Chapter 3, p.80). For the N ( B , 0 2 )  model the maximum likelihood 

estimator of location is the sample arithmetic mean, denoted T(Fn)  = xn, 
which has the influence function I F  ( E )  = [ - x,. Since var(T(F,)) = 

-v(T, n G),  an estimate of var(T(F,)) can be obtained as follows 1 

. *  
1 

var(T(Fn))  = - 1 I F Z  (x) dG (z) n 
n 1 

- E I F 2 ( X i )  

N - E ( x i  -qZ 
nz 

1 "  
nz 

2=1 

2= 1 

where n is the sample size and Fn is the empirical distribution function. 

Thus although robustness and efficiency might appear to be entirely differ- 

ent properties they are not unrelated. The precise nature of their interac- 
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tion is difficult t o  identify, particularly because there is no single measure 

of robustness, but it exists nonetheless and it seems foolish to assess the 

performance of an estimator in terms of one of these aspects without due 

consideration of the other. 

2.7 Joint measures of robustness and effi- 

ciency 

Since the performance of an estimator is usually assessed in terms of both 

its robustness and efficiency, it is surprising that no joint measure of these 

features has been suggested in the literature. One possibility, however, 

is to use the mean squared error ( M S E )  of the estimator T(F,) since 

E(T(F,) - T(G))’ = ( E  (T(F,)) - T(G))* + V(T(F,)). The first of these 

two components is the bias which is a measure of robustness and the second 

would give efficiency if there were no contamination in the data. Since the 

mean and variance of few minimum distance estimators can be expressed ex- 

plicitly it is generally more appropriate to use the asymptotic mean squared 

error ( A M S E )  instead. Thus robustness is measured by the asymptotic bias 

and efficiency by the asymptotic variance (when fo = 9). The A M S E  there- 

fore summarises the key properties of an estimator and might be extremely 

useful in assessing their overall performance. Surprisingly, whilst this mea- 
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sure is often seen in the simulation sections of papers where it is used to 

assess the performance of robust estimators on simulated data its' use as a 

theoretical joint measure of robustness and efficiency is often overlooked. 

2.8 Minimum distance estimators 

Minimum distance estimators are obtained by minimising the difference 

between the true density g and the model fo according to some distance 

measure. The distances have the general form 

where d is some distance function. The majority of these distance func- 

tions are based on probability density or distribution functions but there 

are other possibilities such as distances between characteristic functions 

[7] or quantile functions [HI. Some examples of density based measures 

are the L2 distance s (fo (x) - g ( z ) ) ~  dx [30] and the Hellinger distance 

s (m - m)' dx [6] while the Cram4r-von Mises distance 

(Fo (x) - G ( z ) ) ' dx  [13] is a well known distribution based measure. The 

minimum distance estimator, 0, is the value of 6' which minimises D (jo,  F )  

where = gn or a kernel density estimate of g and, since few minimuni 

,. 
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distance estimators can be expressed explicitly, it is generally located using 

numerical integration and optimisation procedures. 

The minimum distance approach to parametric estimation was developed 

by Wolfowitz [38] in a series of papers during the early 1950’s but very little 

research followed on from this until the late 1970’s. Given the amount of 

computation needed to solve the estimating equations it seems quite likely 

that the lack of interest during this period was due to these practical prob- 

lems rather than any doubts concerning the theoretical benefits of these 

estimators. Computational difficulties may also account for the fact that 

many of the early minimum distance estimators were based on the distri- 

bution function because this meant that the empirical distribution function 

could be used to estimate the true distribution of the data and sums of 

order statistics could replace the integrals. A review of this early literature 

was carried out by Parr [25] in 1981 and shows how interest arose in several 

minimum distance estimators, in particular in variants of t,he Cramkr-von 

Mises, Kolmogorov-Smirnoff and Neyman’s chi-squared estimators. The in- 

troduction of the Hellinger distance estimator by Beran [6] in 1977 sparked 

further interest because this paper demonstrated that robustness and full 

asymptotic efficiency could be achieved in the same estimator. This fea- 

ture of simultaneous robustness and efficiency is the key attraction of this 

class of estimators and much recent research has concentrated on finding 



21 

new minimum distance estimators with these properties. There are also 

a significant number of theoretical papers which determine the regularity 

conditions necessary to ensure the existence, consistency and convergence 

of the estimators. These methods are rarely used in practice, however, per- 

haps because the gulf between their theory and application has not, yet been 

bridged. The following section examines some of the work which has been 

done in this area and highlights why this has not established how best to 

apply these methods in practice. 

2.9 Some methods suggested for optimising 

the performance of minimum distance 

estimators 

2.9.1 Optimally bounding the influence function 

A new class of estimator, called M-estimators, was identified by Huber 

[15] in 1964. Since many minimum distance estimators, the Cramkr-von 

Mises estimators for example, fall within this class, methods which have 

been suggested for optimising the performance of M-estimators may also 

be suitable for minimum distance estimat,ors. M-estimators are generalised 

maximum likelihood estimators and defined as solutions to 
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The niaximum likelihood estimator, for example, can be obtained by choos- 

ing li, = z - 6' when f = N(6',1) and there are many other estimators which 

share this general form and therefore also share the same general expression 

for their influence function and asymptotic variance. The influence function 

and asymptotic variance of an M-estimator are as follows: 

and 

In order to construct M-estimators which are both robust and efficient Ham- 

pel et al [ll] suggested placing an upper bound on their gross error seusi- 

tivity to make them robust and then maximising their efficiency subject to 

that constraint to optimise their performance. Constructing an estimator 

in this way is known as optimally bounding the gross error sensitivity but, 

because this approach modifies the estimator to make it into a Huber type 

function, the term "optimal Huberising" may also be used. A Huber type 
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function, hk (x) , is defined as follows 

where h(x) is any function of x and k is a constant [16] 

Unfortunat,ely there is no objective method, as yet, for deciding what the 

bound on the gross error sensitivity should be and so this method is of 

limited practical use. 

2.9.2 Optimally bounding the change-of-variance func- 

tion 

A similar approach was used by Rousseeuw [28] who placed an upper bound 

on the change of variance sensitivity K' and then found the T which min- 

imises w(T, F )  subject to this constraint. This method suffers from the same 

practical difficulties as optimally bounding the influence function because, 

once again, it is not known what the value of the bound should be. 

2.9.3 Weighted Cram&-von Mises estimators 

Parr and De Wet [26] proposed weighting a Cram&-von Mises estimator by 

some function $0 (x) and derived a general formula for the influence function 
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of these estimators. The weighted Cramkr-von Mises distance is therefore 

/ (Fa (z) - G (z))’& (x) dz 

with 

.I’ (at (z) - Fa (XI) $a fa %dx 
I F  ( E )  = 

.f (%)* $8 (z) f8 (x) dx 

This influence function is bounded so long as the weight function $8 is 

bounded but since there are an infinite number of such weight functions it 

is necessary to impose another constraint in order to find the best choice 

for $0. By utilising the relationship between the influence function and the 

asymptotic variance (2.1) it is possible to deduce which $0 will lead to the 

greatest efficiency and thereby optimise the performance of this family of es- 

timators. The authors present the optimal choice of weight function for data 

from several distributions where the location parameter is unknown. For 

N ( 0 , l )  data, for example, efficiency is maximised by choosing $18 = f;’ and 

for t data with k degrees of freedom $0 = ( k  - (z - 8) ’ )  (k + (x - 8) ) 

A major weakness in this approach is that it relies on such a crude mea- 

sure of robustness. As illustrated in Section 2.5.2 many other features of 

2 k - 1  

the influence function, such as the gross-error sensitivity, may be used to  

quantify robustness but these aspects are not taken into account. Thus, this 

approach would prefer a weight function which leads to 95% efficiency with 

a gross error sensitivity of 4 over another which gives 94% efficiency with a 
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gross error sensitivity of 2 despite the fact that, on balance, the latter might 

be the most pragmatic choice. 

This approach was also used by 6ztiirk and Hettmansperger t o  derive the 

optimal weight functions for generalised weighted Cramkr-von Mises dis- 

tances [22]. The weights considered were all functions of FBp and affect 

robustness by either increasing or decreasing the influence of observations 

in the tails of the model. Several new distribution based distance measures 

of this type have been developed [14],[21],[23],[24] in which the robustness 

and efficiency of the estimators is controlled, to some extent, by this addi- 

tional parameter p .  The criterion function proposed in [24], for example, 

is CF (e ;  p )  = [ G p  (x) - FBp (.)I2 dx and the optimal value of p for a par- 

ticular type of data was found via simulation. Unfortunately, since the 

distribution of the data is rarely known, deciding what value to place on 

p can be problematic and as a consequence these methods are difficult to 

apply in practice. 

2.9.4 Residual Adjustment Function estimators 

In 1994 Lindsay [19] proposed an alternative to the influence function for 

describing the robustness of the Hellinger distance estimator. This led to 

the identification of a new family of estimators whose estimating equations 
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are of the form 

where d (z) = [g (z) - fo (z)] / fo (x) and A (a) is an increasing twice differ- 

entiable function on [-1,co) with A (0) = 0 and A’(O) = 1. 

These estimators are all first-order efficient and have the same influence 

function as the maximum likelihood estimator. They have different robust- 

ness and second-order efficiency properties however, as determined by A (a) 
which is known as the residual adjustment function (RAF). By setting 

(1 + a)”1 - 1 
A ( d )  = 

X + 1  

one can obtain a variety of distance measures including maximum likelihood 

( A  = 0), Hellinger distance (A  = -;) and Neyman’s chi-squared ( A  = -2). 

The RAF’s for these three estimators, shown in Figure 2.2, illustrate how 

the shape of these functions determines the robustness and efficiency of the 

resulting estimators. Large positive values of d represent outliers in the 

data so the behaviour of the RAF’s as a increases indicates the robustness 

of these estimators to large outliers and furthermore the shape of the RAF 

when a is close or equal to 0 explains whether these estimators will be 

efficient. Clearly Neyman’s chi-squared is the most robust of these methods 

because A (a) is least affected by large 13 but it is also the least like maximum 
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little guidance available for deciding what value to place on the bandwidth 

in practice. Several different methods of bandwidth selection have been 

utilised in the literature, for example, when studying the Hellinger distance 

estimator in 1986 Tamura and Boos [36] chose h to be the minimiser of the 

asymptotic integrated mean squared error of the estimator g under normal- 

ity [32] whereas in 1989 Simpson [34] used h = (35e) i  (:)& on-i which 

had been proposed by Devroye and Gyorfi [9]. More recently, second gener- 

ation bandwidth selection methods (such as that suggested by Sheather and 

Jones [31]) have become popular and might therefore be more appropriate 

choices but, as with their predecessors, these methods were developed for 

use in density estimation and their effect on the performance of parametric 

estimators has not been fully assessed. Basu and Lindsay [5] suggested ap- 

plying the same smoothing to the model and data so that the consistency 

and asymptotic normality of the estimators are independent of h but again 

this approach does not suggest specific values for the bandwidth. One way 

of avoiding these problems is to restrict the use of these methods to dis- 

crete models so that the empirical density function could estimate g thus 

making the kernel density estimate redundant but this matter does need to 

be addressed in the continuous case if the full potential of these extremely 

promising estimators is to be exploited. 

Furthermore, Lindsay also discovered that by modifying the weights in both 
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the Chi-squared and Hellinger distances he was able to  generate two new 

families of distance measure with a much wider range of robustness and 

efficiency properties. This means that, in theory at least, these distances 

could be tailored to meet one’s needs exactly but the problem of bandwidth 

selection remains and is now further complicated by the introduction of the 

additional weighting parameters. 

Consequently, although the study of RAF estimators has undoubtedly led to 

the development of several new estimators which have extremely desirable 

theoretical properties, because of the problems regarding the bandwidth 

these methods are not yet practical alternatives to the distribution based 

methods, such as the Cram&-von-Mises estimator, which are currently in 

use. (Distribution based estimation methods are generally easier to imple- 

ment than density based methods because the empirical distribution func- 

tion which is used to estimate G does not require smoothing.) 

2.9.5 Density power divergences 

Another class of minimum distance estimator is obtained by minimising a 

densit,y power divergence in which the power parameter directly controls 

the robustness and efficiency of the resulting estimators. An example is the 

Cressie-Read family of divergences I’ (fo, g) = & fo (z) ((#)’ - 1) dx 
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which was introduced in 1984 [8]. This family includes several RAF estima- 

tors such as Pearson’s Chi-squared (A  = l), Neyman’s Chi-squared (A  = -2) 

and the Hellinger distance (A = i) so by choosing suitable values for X es- 

timators with a wide range of asymptotic properties can be obtained. Al- 

though this flexibility is useful in theory it does make the method tricky to 

implement in practice because the choice of X is so vital to its performance. 

If the A chosen is inappropriate for the data the resulting estimators may 

not have the desired asymptotic properties but the distribution of the data 

is usually unknown so it is not clear how the decision regarding the choice 

of X should be made. Furthermore, in practice many of these estimators re- 

quire a smooth density estimate and so the problem of bandwidth selection 

occurs yet again. 

In 1998 Basu, Harris, Hjort and Jones [4] proposed a density power diver- 

gence (described in detail in Section 3.1, p.34) which doesn’t need smoothing 

because the form of the estimating equation is such that the empirical den- 

sity function fn can be used to estimate the true density g. However, as with 

the Cressie-Read estimators, the performance of this estimator depends on 

a power parameter which is unknown and yet must be appropriate for the 

data to  which the method is applied. 
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2.10 Barriers to the wider use of minimum 

distance estimators 

Several new families of minimum distance estimator have been introduced as 

a result of attempts to optirnise robustness and efficiency but unfortunately 

it is a common feature of many that their highly desirable theoretical prop- 

erties are difficult to attain in practice. Their performance often depends on 

unknown parameters which may be thought of as tuning parameters because 

they, either directly or indirectly, determine the robustness and efficiency of 

the resulting estimators. The RAF estimators, for example, are dependent 

on the choice of bandwidth for the kernel density estimate and the density 

power divergences on the choice of power. In the literature little attention 

has been paid to these matters with most papers suggesting suitable val- 

ues for data from a particular distribution without acknowledging that in 

practice this distribution is rarely known nor considering the sensitivity of 

estimators to this uncertainty. 

2.11 Aim and rationale for this research 

The main goal of this research is therefore to  develop a method for select- 

ing appropriate values for tuning parameters so that the full potential of 
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this class of methods can he realised. In order to do this one must decide 

on some basis for determining the optimum value for a parameter and it 

seems reasonable to suggest that this should he the one which optimises the 

performance of the estimator. As indicated in Section 2.7, the asymptotic 

mean squared error ( A M S E )  is an appropriate joint measure of robustness 

and efficiency so by minimising an expression for the A M S E  of the esti- 

mator, which is a function of the tuning parameter, it is hoped that the 

optimal value for the tuning parameter might he obtained. The feasibility 

and effectiveness of this new approach will he investigated by applying the 

method to simulated data using a variety of different distance functions. 

Three minimum distance estimators in particular will he considered here, 

each one chosen because of its robustness and efficiency from a different 

class, with just one tuning parameter to estimate, so that the general ap- 

plicability of the method might be established. First the density power 

divergence which was introduced by Basu, Harris, Hjort and Jones 141 will 

be studied as an example of a minimum distance estimator with an un- 

known power parameter, then the Hellinger distance [6] because it requires 

smoothing and finally Oztiirk and Hettmansperger’s criterion function [23] 

which is interesting because it is distribution function based and has an un- 

known power parameter. These basic methods will he described in Chapter 

3 before considering their A M S E  functions in order to  optimise the choice 
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of tuning parameter in Chapters 4 to  6 
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Chapter 3 

Introduction to the three 

minimum distance estimators 

3.1 Minimum density power divergence 

The family of density power divergences was introduced by Basu, Harris, 

Hjort and Jones [4] and is defined as 

The above expression is undefined for LY = 0 and is therefore redefined, in 
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this special case, as 

doh, fs) = lim d a b ,  fe). 
a40 

*-1 Applying L’H6pital’s rule and utilising the fact that lim 
h i 0  

to 

= log t leads 

which is the Kullback-Leibler divergence. 

This distance measure, which for convenience will be referred to as BHHJ, 

was developed from the Lz distance estimator which is the minimiser of 

1 (f~(x) - g (x))~ dx. The Lz distance is commonly used in smoothing ap- 

plications [33] and its properties as a method for parametric estimation 

were reported recently by Scott [30] who found the L2 estimators to be 

highly robust but very inefficient. The power parameter was introduced by 

Basu, Harris, Hjort and Jones in (3.1) to remedy this deficiency by control- 

ling the robustness and efficiency of the resulting estimators. For example, 

when cy = 0 the distance reduces to the Kullback-Leibler divergence which 

is equivalent to using maximum likelihood estimation and therefore fully 

efficient. When (Y = 1 the estimating equation reduces to that for the L2 

distance and the estimators produced will be highly robust. By choosing cy 

somewhere between 0 and 1 it is hoped that a trade-off between these two 
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extremes might be attained and provide robust estimators with an accept- 

able degree of efficiency. Choosing CY > 1 does little to improve robustness 

and leads to greatly reduced efficiency so it is the range 0 5 a 5 1 which is 

of interest. 

If g were known, the BHHJ estimator would be the value of 8 which min- 

imises the distance function (3.1) for a given value of LY and is therefore 

denoted 8,. It is obtained by differentiating d,(g, f )  by 0 and setting equal 

to zero to give 

where ug = is the score function. 

Note that when a = 0 the estimating equation is 0 = 

the method is therefore equivalent to maximum likelihood. 

g(z)uo(z)dz and 

The integral over g is the expected value of fg(x)ug (x) and can therefore be 

estimated by taking the average of the function over the data. This means 

that g does not need to be estimated directly and so the issue of smoothing 

does not arise. Hence the data-based estimating equation does not involve 

g and is as follows 
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where 6, is the BHHJ estimate of 8 obtained from data. 

3.1.1 Asymptotic properties 

The asymptotic properties of BHHJ estimators were derived by Basu, Har- 

ris, Hjort and Jones and presented in outline only [4]. Full details of the 

derivation, which uses the Taylor series approximation to  the estimating 

equation (3.2), are therefore given in Appendix A . l  on page 209. The 

asymptotic distribution of fi (6, - 8,) is shown to be Normal with mean 

0 and variance J-'KJ-' where 

and 8, and are the true and data-based BHHJ estimates of 8, us is the 

score function and i s  = -3 { u g }  /a8 is the observed Fisher information of 

the model. 
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3.1.2 Robustness 

The robustness properties of d,(g, f )  can be investigated by considering the 

influence function 

where uo is the score function, g is a probability density function and J is as 

defined in the previous section. The derivation of this function is detailed 

in B a n ,  Harris, Hjort and Jones [4] and outlined in Appendix B. l  on page 

237. 

When fo = g = N(B,  1) this reduces to 

I F ( ( )  = (I - 8)4;(()(2n)f(l + a ) $  ( 3 . 3 )  

which is plotted for several values of 01 in Figure 3.1 (p.39). The key feature 

is that the influence function is bounded for all a > 0 and should therefore 

be robust for all 01 > 0. Furthermore, for any 01 > 0 the influence curve 

redescends towards zero with the speed of descent varying according to the 

value of cy. For example when a = 1 and fo = g = N(0, l )  data points which 

are outside the range 1 3  have virtually no effect on the parameter estimates 

whereas when N = 0.5 points need to be greater than 4 to be downweighted 

to the same degree. Thus the robustness properties of this method depend 

on cy. 
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where 

+ / ((1 + a)  U& (z) u g  (z) -Z&)) f;+'(z)dz. 

When fie = N ( & ,  1) this simplifies to  

The theoretical and data-based influence functions (equations 3.3 and 3.6) 

when (Y = 0.1 are plotted for a data set drawn from N ( 0 , l )  with 10% 

contamination at  10 in Figure 3.2  (p.41). The two curves differ slightly, 

as one would expect, hut they have the same general shape and clearly 

show that robustness to outliers is a feature offered by both &(g, f e )  and 

d^,(fn,  f e ) .  

The key to further understanding t,he robustness of BHHJ is to  consider how 

&( f n ,  fe )  is affected by the value given to a and the degree of contamination 

in the data. The effect of the value of a on the distance function d^,(f,, fo)  

is illustrated in Figure 3.3 (p.42) which shows how, for a sample of N(0 , l )  

data with 10% contamination at 10, the position of the global minimum 

remains close to 6' = 0 for any a > 0. This suggests that for t,his particular 

data set a = 0.1 would be sufficient t o  provide robust estimators. 
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3.1.3 Locating the estimates of ea 
6 

The minimiser of d,(fo,  g) was found using a quasi-newton optimisation 

procedure. In the one-parameter problem this function has two possible 

minima. When the percentage of contamination is small (generally E < 

0.2) the global minimum is close to the target value but, as the degree of 

contamination increases to around 20% or 30%, the global minimum may 

shift to the contamination point. As mentioned in the previous section, the 

exact point at which this breakdown occurs depends on both the value of 

cy and the distribution of the data fn.  The two-parameter case is slightly 

more complicated in that the global minimum can now shift for either or 

both parameters, independently of each other. In order to be certain that 

it was the global minimum that was found in each simulation the search 

area was split into several regions, each one containing only one possible 

minimum. The search procedure was then applied to  each region in turn 

and the global minimum found by comparing the results. 

3.1.4 Simulations 

The method was applied to several simulated data sets to confirm that this 

estimation method is indeed robust and also to illustrate that this robustness 

can be controlled by cy. The results of these simulations for several values of 
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cy are shown in Table 3.1 (p.47). These data sets were generated by taking 

100 random samples of size 100 from each distribution (with the random 

seed reset for each sample). The BHHJ method was then applied to each 

sample with cy set as 0, 0.01, 0.1 and 1 in turn so for each distribution 

and value of cy 100 parameter estimates were obtained. The average of 

the parameter estimates for each distribution and cy is given in column 3 

of Table 3.1 and their mean squared error in column 4. Putting cy = 1 

produces highly robust results for the contaminated data but performs less 

well for N(0,l)  or tz data. When cy = 0 the large mean squared errors 

for estimates from the Contaminated data illustrate clearly the maximum 

likelihood estimator’s lack robustness. The mean squared errors summarise 

both robustness and efficiency and therefore follow a different pattern to 

the average Fa’s but again clearly suggest that the degree of robustness and 

efficiency achieved depends on both the choice of cy and the distribution of 

the data. 

In conclusion, for 0 < cy < 1 the BHHJ estimators are less efficient than 

those of maximum likelihood and less robust than Lz so if either of these 

properties alone is desired there is nothing to be gained by using this 

method. The main attraction of these estimators is that they offer a coni- 

promise between these two properties and might be both robust and effi- 

cient. In practice the performance of this method will depend on whether a 
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Distribution 
$(XI 

0.9 $(z) + 0.1 A ~ o ( z )  

* -  
(Y Average 8, Mean Squared Error (0,) 
0 -0.014 0.011 
0.01 -0.007 0.011 
0.1 -0.007 0.011 
1 -0.010 0.016 
0 1.030 1.200 
0.01 0.664 0.491 
0.1 0.015 0.011 
1 -0.001 0.019 

0.8 $(z) + 0.2 A,O(X) 0 
0.01 
0.1 
1 

t z  0 
0.01 
0.1 
1 

suitable value for (Y can be found and this will not be easy given that the dis- 

tribution from which the data is sampled and the degree of contamination 

is rarely known. It is vital therefore that some reliable way of choosing cy 

from data  is devised so that the theoretical benefits of using this estimation 

method may be realised. 

2.040 4.300 
1.514 2.447 
0.017 0.015 
-0.012 0.023 
0.060 0.280 
-0.008 0.037 
0.009 0.024 
0.019 0.031 

3.2 Hellinger distance 

The Hellinger distance (HD) was first used for continuous models by Beran 

[6] and is defined as 
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2 
H D ( 8 )  = 1 ( f j ( x )  -sa(,)) dx (3.7) 

where f~ is the model density and g is the true density. 

If g were known, the HD estimate of 8 would be the value of 8 which 

minimises this distance and is obtained by differentiating equation (3.7) 

with respect to 0 and setting it equal t o  0. This leads to  the estimating 

equation 

where u(~g is the score function. 

Since the true density of the data, g, is not known it must he estimated from 

the data. Using a kernel density estimate of g, denoted by &, to replace g in 

equation (3.8) and subscripting the parameter estimates by h to show their 

dependence on the bandwidth used, gives a revised estimating equation as 

follows 

(3.9) 

The kernel density estimation procedure will be described in detail later in  

Section 5.1.1, p.117. 
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3.2.1 Asymptotic properties 

The asymptotic properties of HD estimators are derived using a Taylor 

series approximation to the estimating equation (3.9). Full details of this 

are given in Appendix A.2 which shows that (in common with the BHHJ 

estimator in Section 3.1, p.34) the asymptotic distribution of A(&, - 6') is 

Normal with mean 0 and variance J - 'KJ - ' .  However, in this case, J and 

K are re-defined as follows, 

T 

J = / [.i (z) [%I [Z] -2j;; (z) "1 dB2 g i  ( z ) d z  

and 

T 
K = / [Z] [g] f;' (x) dz-+1LT 

1 

and '$ = s [%] fi5 (z) gk (x) dx. Here, $& is the matrix of second deriva- 

tives of fe with respect to 6'. 

An important feature of HD estimators is that they are asymptotically 

equivalent t o  maximum likelihood estimators at the model and therefore 

fully efficient. They also share the same influence function and yet, in 

contrast to the maximum likelihood estimator, they are robust. 

When fe  = g the asymptotic variance of the HD estimator reduces to 

?' f;' (z) dz] -' which is the same as the variance of the maxi- 
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mum likelihood estimator and thus confirms that HD estimators are asymp- 

totically fully efficient. 

3.2.2 Robust ness 

The influence function for the Hellinger Distance, I F ( ( )  = 2 = (< - e) ,  is 

the same as that for the maximum likelihood estimator and is unbounded. 

Details of this derivation were given by Beran [6] and are outlined in Ap- 

pendix B.2 on page 239. An unbounded influence function generally indi- 

cates that an estimator will not be robust and yet simulation studies by 

Simpson [34], Tamura and Boos [36] and Basu and Lindsay [5] indicate that 

the HD estimator is very robust indeed. This unexpected robustness is ex- 

plained by Lindsay [19] who showed that the influence function for the HD 

estimator is a first-order approximation to bias whereas for maximum like- 

lihood the influence function is exact. In this paper Lindsay demonstrated 

that the next term in this approximation is of a similar size to  the first, but 

opposite in sign. Therefore, taking a second-order approximation to bias, 

the second term balances the first and thus the effect of any outlying data 

point on the bias is far less than that suggested by the influence function. 

A better way of assessing the robustness of the HD estimator is therefore 

to examine the estimating equation and consider how it might be affected 
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by changes to  the distribution of the data or the bandwidth used to obtain 

the kernel density estimate. The fi term in the estimating equation plays 

a key role in ensuring robustness because it has the effect of downweighting 

extreme values. Figure 3.6 (p.52) illustrates how the objective function 

(using the fo = N(0,l)  model for data from the N(0,l)  distribution with 

10% contamination at various points) changes as the contamination point 

gets larger. Although the shape of the distance function is determined by 

the position of the contamination point the global minimum moves very 

little irrespective. In common with other density based robust estimation 

methods, this method is more sensitive to contamination occurring at points 

which are likely under the model and therefore, as confirmed by Figure 3.6 

(p.52), the method is less able to cope with contamination at  3 than at 5. 

The fi term is greater at  3 than at  5 and so downweights this point to a 

lesser extent. The value of the integrand in the estimating equation (3.8) 

becomes extremely small (5  0.0001) for x greater than 7 and thus large 

outliers have very little influence on the estimating procedure. 

Having considered how the position of the contamination point affects the 

e s t i m a h g  procedure the next step is to examine what happens as the per- 

centage of contamination increases. The Hellinger Distance functions for 

N(0 , l )  data with various percentages of contamination at 10 are shown in 

Figure 3.7 (p.53). The global minimum jumps from the neighbourhood of 
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which might be thought to affect robustness. As can be seen in Figure 3.9 

(p.56), which shows how the kernel density estimate for a particular data set 

changes with the bandwidth, when h is small the kernel density estimate of g 

puts a very narrow spike of probability around the contamination point. As 

h increases the data density estimate becomes smoother and flatter making 

this spike less pronounced as a wider range of points are given a non-zero 

probability. The general shape of the density is, however, unchanged making 

it difficult to predict how the robustness of the HD estimators might be 

affected. 

Figures 3.10 and 3.11 illustrate that the choice of bandwidth does not neces- 

sarily affect robustness greatly. When the contamination is at  10, as can be 

seen in Figure 3.10 (p.57), adjusting the bandwidth has little effect on the 

robustness of the method. When the contamination percentage is less than 

50% the Hellinger distance estimate & will be close to the target value (zero 

in t,his case) irrespective of the value chosen for h thus making fgh (10) 

also close to zero irrespective. However, when the contamination is at 3 for 

example, the robustness of the method is more readily affected by the choice 

of h. Figure 3.11 (p.58) shows how, when the degree of contamination at  3 

is 20%, the minimum of the Hellinger Distance function shifts slowly away 

from the target value as the bandwidth increases. This suggests that in sit- 

uations where the contamination is not fully downweighted by the model it 

d-- 
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when the percentage of contamination points in the data is small (10%) or 

heavy tailed (from the tz distribution). It is possible to solve this equation 

using numerical methods so long as the search area is restricted to ensure 

that it is the root relating to the global minimum which is found and not 

that for a local minimum. In the simulation setting, however, it is generally 

easier and safer to use a numerical optimisation procedure on the distance 

measure (Equation 3.7) instead. As with root finding it is necessary to direct 

the search into an appropriate region, but as demonstrated in Figure 3.13, 

the problem is simplified because for these types of data there are at  most 

two possible minima, one close to zero and the other at the contamination 

point. 

3.2.4 Carrying out the integration numerically 

The integral in the estimating equation can not be derived explicitly so nu- 

merical methods are required but care needs to be taken because the func- 

tion to be integrated is not standard. The kernel density estimate & (z) is 

not defined for all values of x (typically existing only within the range of 

the data or the range of the data f3o) and although it is continuous within 

that range its smoothness depends on the bandwidth. This may lead to 

problems in applying numerical methods because the integrand changes di- 

rection rapidly and many numerical methods for integration are unable to 
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3.2.5 Simulations 

This method was applied to several simulated data sets to investigate what 

effect the choice of bandwidth might have on the resulting estimators. The 

results of these simulations, summarised in Table 3.2 (p.63), confirm that 

HD estimators are robust to both symmetric and asymmetric contamination 

whilst being highly efficient at the model. The choice of bandwidth does 

appear to affect the performance of these estimators but not greatly so. 

The potential for improving performance by choice of bandwidth is greatest 

when the contaminat,ion is at 3 where taking the bandwidth equal to 0.05 

rather. than 0.5 results in the M S E  being halved. As a general rule it seems 

that choosing any small bandwidth will ensure good results but it not clear 

how, in practice, one would decide how small it should be. The role of the 

bandwidth h in HD estimation differs from that of the tuning parameter p in 

BHHJ (Section 3.1, p.34) because it does not fully control either robustness 

or efficiency. It is not clear, therefore, that the performance of the HD esti- 

mator could be optimised in the same way as BHHJ but such optimisation 

may not be needed since the method performs quite well for any value of h. 

The aim of any proposed bandwidth selection procedure should therefore 

be to provide sensible suggestions for bandwidth rather than optimal ones. 
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h 
0.05 
0.1 

0.25 
0.5 
0.75 

0.05 
0.1 

0.25 
0.5 
0.75 

- 

- 

Table 3.2: Simulation results for the HD estimator when fo = N ( 8 , l )  

Average Oh Mean Squared Error (Oh) 
0.0025 0.0094 
0.0017 0.0090 
0.0014 0.0086 
0.0016 0.0087 
0.0020 0.0090 
0.0007 0.0084 
0.0083 0.0101 
0.0092 0.0097 
0.0081 0.0102 
0.0067 0.0108 
0.0058 0.0113 
0.9661 1.0123 

Distribution 
~. 

0.75 0.0052 0.0147 
Maximum Likelihood - 1.9798 4.0941 
0 . 9 4 ( ~ )  + O.l&(x) 0.05 0.0603 0.0158 

0.1 0.0862 0.0201 
0.25 0.1255 0.0286 
0.5 0.1464 0.0345 

0.75 0.1514 0.0362 
Maximum Likelihood - 0.2868 0.0967 

- 

Maximum Likelihood 
O . ~ $ ( X )  + O.lA,,(x) 

Maximum Likelihood 
0.8$(x) + O . 2 A l l J ( X )  
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3.3 Oztiirk and Hettmansperger's criterion 

function 

This distribution based distance measure was proposed by Oztiirk and 

Hettmansperger [23] and is defined as 

where FO (z) is the model distribution function, G (z) is the true distribution 

function and p > 0. As in the section before last, the authors' initials will 

serve as an identifier so that from now on the method will be referred to 

simply as OH. 

Estimating the true distribution function, G, by the empirical distribution 

function of the data, F, (z) , gives the distance function 

The OH estimate of 8, denoted &, is the minimiser of d, ( 8 ; p )  which is 
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obtained by differentiating (3.11) with respect to 8 and setting equal to zero 

as follows 

When f~ = N ( 0 ,  U ’ ) ,  by rewriting F, (x) as C I (Xi 5 x) , revised es- 

timating equations in which the integrals are replaced by sums of order 

statistics can be obtained and are as follows 

i = l  
n .. 

+ E c : K * ( X ( i , , p - l )  - K * ( m , 2 p - l )  
i= l  

where ci = (i/n)’ - ( ( 2  - 1) / n )p> c; = ( ( n  + 1 - i )  /n)’ - ( ( n  - i) /n)” 

K*( t ,  rn) = J!, [l - @U (x - B)]’-’& (x - 0) (y) dx, 

t 
K ( t ,  rn) = s_, 
tic. 

(x - 0) & (x - 0) (q) dx and X( i )  is the ith order statis- 

Thus for the Normal family of models, integrals involving F, can be avoided 

and the amount of computation required significantly reduced. Unfortu- 
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nately this simplification does not hold for every choice of model because 

the integration by parts required is not always possible. (See Appendix C 

on page 246 for further details.) 

The first term in the distance function (3.10) serves to reduce the effect of 

extreme positive values when p < 1 and extreme negative values when p > 1. 

For a very large positive observation the empirical distribution function will 

equal 1 and the model distribution function will be very close to, but slightly 

less than, 1. This makes the integrand approximately [l - FBp (.)I2 which is 

very small for p < 1. Similarly, for large negative observations the empirical 

distribution function will be very close to zero so this integrand will be 

approximately F,” (z) and the observation downweighted for p > 1. The 

second term has the opposite effect, downweighting extreme negative values 

when p < 1 and extreme positive values when p > 1. The combination of 

these two terms ensures that, in addition to being robust, the OH estimators 

are highly efficient at the model. 

3.3.1 Asymptotic properties 

The asymptotic properties of OH estimators are obtained by using a Taylor 

series approximation to the estimating equation. Full details are given in 

Appendix A.3 on page 227 which shows that (in common with the BHHJ 
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estimator in Section 3.1, p.34 and HD estimator in Section 3.2, p.47) the 

asymptotic distribution of ,/E (& - OP) is Normal with mean 0 and vari- 

ance J - 'KJ - l  but in this case J and K are as follows 

K = 2p2 I/ (T (s) + U  (s)) ( T  ( t )  + U ( t ) ) T G  (s) (1 - G ( t ) )  ds d t  
s < t  

where T (z) = Gp-' (z) V F , P - '  (z) and U (z) = (1 - G (z)) P-1 d F e ( z )  dB (1 - F~ 

3.3.2 Robustness 

The influence functions for the OH estimators of location and scale were 

derived by Ozturk and Hettmansperger in [23]. An outline of this derivation, 

for the location parameter only, is given in Appendix B.3 on page 241 and 
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function. The absolute values of these bounds contiriue to decrease until p 

is a little larger than 1 and then slowly rises thereafter. Considering the 

influence function for p between 0.8 and 1.5 in steps of 0.1 indicates that 

maximum robustness is attained when p = 1.2. It is interesting to note 

that, in contrast to the minimum density power divergence, the optimal 

value of p for robustness does not appear to  depend on the magnitude of 

the contamination point. The influence function for the criterion function 

does not redescend which means that an extremely large data point will 

have more influence on this estimation procedure than on either of the two 

density based methods. Although this suggests that this method may well 

be the least robust of the three methods considered in Chapter 3 its other 

redeeming features, such as single roots, make further study worthwhile 

nonetheless. 

In Figure 3.15 (p.70) the data-based estimate of the criterion function, 

dF,  (6',p), is plotted for several values of p using a sample of N(0 , l )  data 

with 10% contamination at  10. In each case the distance measure has a 

global minimum which is close to the target value 0 and furthermore, there 

are no local minima to confuse the numerical optimisation procedure which 

is needed to  locate the minimiser. Although the shape of the distance mea- 

sure differs for various values of p the location of the minimum does not 









73 

3.3.4 Simulations 

To further illustrate the behaviour of this estimation procedure, several 

simulated data sets were generated and used to obtain estimates of location. 

Each data set comprised 100 random samples of size 100 taken from one 

of the five distributions studied. Assuming that the dispersion parameter 

is known, the method was then applied to all the samples in each data set 

using a particular value of p to obtain 100 parameter estimates of location 

for the underlying distribution. The results obtained are summarised in 

Table 3.3 (p.75) which gives the average of the parameter estimates and 

their mean squared error for each distribution and a range of values of 

p .  When there is no contamination in the data the performance of this 

method is very close to that of maximum likelihood for all values of p with 

the smallest mean squared error occurring when p = 0.5. For all the other 

distributions the mean squared error is minimised at p = 1 as previously 

suggested by inspection of the influence function. This demonstrates that 

the criterion function can be used to provide estimators which are highly 

efficient when the data is not contaminated and robust when it is. By 

choosing p = 0.5 maximum efficiency will be attained but at the expense of 

robustness. Choosing p > 0.5 does the reverse by offering robust estimators 

with sub-optimal efficiency at the model. Without some reliable way of 

choosing p for a particular data set, however, these desirable theoretical 
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properties may not be attainable in practice. 
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Distribution 

4 ( x )  

Maximum Likelihood 
0 . 9 4 ( ~ )  + O.lAio(~)  

Maximum Likelihood 
0 . 8 4 ( ~ )  + O.ZA~O(X) 

Maximum Likelihood 
0 .94 (~ )  + O . ~ A ~ ( X )  

Maximum Likelihood 
t z  

Table 3.3: Simulation results for the OH estimator when f~ = N ( 8 , l )  - - -  
p Average 0, Mean Squared Error (0,) 

0.25 -0.0027 0.0149 
0.50 0.0003 0.0083 
1.00 0.0019 0.0092 
2.00 0.0019 0.0089 
3.00 0.0019 0.0086 

- 0.0007 0.0084 
0.25 0.9343 0.9078 
0.50 0.3294 0.1254 
1.00 0.1953 0.0529 
2.00 0.2126 0.0600 
3.00 0.2577 0.0822 
- 0.9661 1.0123 
0.25 1.5003 2.3239 
0.50 0.6764 0.4968 
1.00 0.4480 0.2307 
2.00 0.4483 0.2648 
3.00 0.5799 0.3737 

- 1.9798 4.0941 
0.25 0.3541 0.1390 
0.50 0.2709 0.0871 
1.00 0.1871 0.0481 
2.00 0.2035 0.0549 
3.00 0.2459 0.0757 

- 0.2868 0.0967 
0.25 -0.0181 0.0625 
0.50 0.0001 0.0287 
1.00 0.0053 0.0246 

Maximum Likelihood 

2.00 0.0049 0.0251 
3.00 0.0035 0.0272 

- -0.0237 0.0930 
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Chapter 4 

A method for choosing a in the 

BHHJ estimator 

4.1 Background 

The family of density power divergences was introduced by Basu, Harris, 

Hjort and Jones [4] and is defined as 

where fo is the model density, g is the true density. 

The minimum density power divergence estimators, denoted B,, are the 

solutions to the following estimating equation 
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The second term in the above is the expected value of the function U@, (z) fs“, (z) 

and so can he replaced by the average of the function over the data to give 

a revised estimating equation as follows 

where Xi  is the ith data point and e ,̂ is the minimum density power diver- 

gence (BHHJ) estimate. (See Section 3.1, p.34, for further details.) 

The tuning parameter, a,  controls the robustness and efficiency proper- 

ties of the resulting estimators. When a = 0, d , ( g , f )  reduces to the 

Kullhack-Leihler divergence (which is equivalent to maximum likelihood) 

so the method produces estimators which are highly efficient but lack ro- 

bustness. In contrast, when LY = 1, the d,(g, f )  gives the L2 distance and 

the method therefore offers robustness at the expense of efficiency. Given 

that cy equal t o  0 or 1 leads to these two extremes, it seems plausible that 

by selecting cy between 0 and 1 a trade-off between robustness and effi- 

ciency might he attained. Furthermore, given some appropriate measure of 

performance it may he possible to select a to optimise this trade-off for a 

particular set of data. 
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4.2 Estimation of the asymptotic mean squared 

error 

As explained in Section 2.7 (p.18) the asymptotic mean squared error ( A M S E )  

measures both robustness and efficiency and so by minimising an expression 

for the A M S E  of the BHHJ estimator, which is a function of a,  it is hoped 

that the optimal value for a might be obtained. The A M S E  function of 

the BHHJ estimator is 

where 8, is the solution to equation (4.3),  8, the solution to equation (4.2) 

and 8, is the true parameter. This function is obtained by substituting 

8, for 8 and 0, for 8 in the expression for the multi-parameter A M S E  

(equation D . l )  of Appendix D (p.253). 

The asymptotic variance of fi (& - Oa) is J-'KJ-' where 
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J = us, (z) (.) f;*++'(z)dz 1 
+ / (isa (.I - cy% (.I 4 (4) (dz) - fs, fs",(z)dz (4.5) 

where ug is the score function and is(.) = the information func- 

tion of the model fs(z). (See Appendix A. l ,  p.209, for details of how this 

asymptotic variance is obtained.) 

The A M S E  function of the BHHJ estimator is therefore 

1 
n AMSE(cy) = (8, - 8,)(8, - + -J- 'KJ-'  (4.6) 

where J and K are as defined in equations (4.4) and (4.5) respectively, 8, 

is the solution to equation (4.2) and 8, is the true parameter. 

As explained in Appendix D (p.253), in the multi-parameter case the A M S E  

is a matrix so the trace is used to provide a global measure of the A M S E  

for minimisation. Thus when there are two unknown parameters to be 

estimated (0 and o for example) the expression to he minimised is 

,. 
A M S E ( 8 )  E As.var(8) + As:uar(C) + (8 - + (o - cr.) (4.7) 

The optimal choice of value for cy is the minimiser of this function which is 

found using numerical methods. 
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It was my original intention to find a quadratic approximation to the AMSE 

by expanding f t (z )  about cy = 0 using Taylor series. Then finding the 

optimal cy would have been a matter of simple arithmetic. Unfortunately 

this approach was not possible because the terms of this Taylor series contain 

powers of log f,g(z) so the series does not converge to ft(x) across the whole 

of the region of interest (0 5 cy 5 1). 

Instead, by replacing g by the distribution of the data j i ,  0,with ê , and 0, 

with $* in equation 4.6, a data-based estimate of the AMSE as a function 

of cy can be obtained, 

where 

Since g is replaced by ?, the integrals over g in K and J become summations 

over the data set in I? and ?respectively and the & are obtained by solving 

the estimating equation (4.3) with g = j i  for a given a. 
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In the case where fe is the N(8,l) distribution the k and Yreduce to 

n m 1  
J = ( a  + 1)-:(27r)-T + - f f J X i )  - ( a  + 1)-4(27r)-5 

i = l  
n 

3 + a(a + 1)-3(2.)-2 - 2 C(X2 - &)zf;(Xt) 
n 

1=1 

(4.10) 

The problem of how to estimate 8, in the bias part of the formula (Equation 

4.8) is less easily solved because 8, is the target parameter, the location of 

the true density g which is unknown. Furthermore, if a simple, reliable 

estimate of'this target parameter was available there would be no need to 

utilise this alternative estimation method anyway. The argument therefore 

becomes circular; in order t o  obtain a good estimate of 8, we must find the 

value of a which minimises the A M S E  but the A M S E  is itself a function 

of 8,. Since 8, can be viewed as a nuisance parameter in the a selection 

procedure, it could be replaced by any easily obtainable robust estimate. 

Therefore, putting 8, = median seems to be an obvious first choice although 

several other robust estimates, such as the Lz distance and go,' (which is the 
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0.0 0.2 0.4 0.6 0.8 1 .o 
a 

Figure 4.1: Data based estimate of the AMSE of the BHHJ estimator using 
fe = N(B,1) for N(0,l) data with 10% contamination at 10. 

BHHJ estimate of 0 when a=0.2), could also be considered. An example 

of this estimated AMSE function is plotted for N(0,l) data with 10% 

contamination at 10 in Figure 4.1 (p.82). The curve falls very rapidly as 

a moves away from zero which suggests that the selection procedure will 

choose a > 0 and gives hope that robustness will be attained. 
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4.3 Assessing the performance of this new 

method 

For the new method to be considered a practical alternative to maximum 

likelihood estimation, in addition to offering robustness under departures 

from the model, the resulting estimators must also be highly efficient. These 

properties can be assessed by applying the method to simulated data for 

a particular family of models. Simulated data which contains some degree 

of contamination can be obtained by taking random samples from mixture 

densities, as described in Section 2.2 (p.8). Thus data which is predom- 

inantly N(0,l)  distributed but contains outliers is obtained by sampling 

g E ( x )  = (1 - E ) ~ ( z )  + EA((”)  where there is E% contamination at [ and 

data which is very similar to N(0,l)  data but with heavy-tails is created 

by sampling the t distribution with k degrees of freedom where k= 2, 3 or 

4. In both these cases the target density is the N(0,l)  distribution so when 

using the model f e  = N (8, 1) one would hope that the resulting estimates 

of the location parameter will be close to the target value 0. Similarly, if 

dispersion is also unknown, using the model f o  = N (8,  n2) should lead to 

estimates of 8 and U which are close to their targets of 0 and 1 respec- 

tively. The efficiency of the new method can also be assessed in this way 

by applying the method to random samples from the N(0,l)  distribution 



84 

and comparing its performance to maximum likelihood estimation, which is 

known to  be optimal when fe = g. 

Of course, these simulations are a rather simplistic representation of the 

estimation problem because in practice the distribution of the data is not 

the only unknown. One must also decide which family of models to use 

and, if this choice is inappropriate, the resulting estimators may be neither 

robust nor efficient. However, the problem of model suitability arises in 

many branches of statistics and has been widely studied elsewhere. There- 

fore, whilst acknowledging that in practice uncertainty regarding the model 

choice may well undermine confidence in the estimates obtained, I have not 

considered such possibilities here. 

These simulations therefore focus on using the Normal family of models for 

imperfect, but predominantly N(0 , l )  data, of the type commonly encoun- 

tered in practice. To provide reassurance that the new method is suitable 

for use with other families of models, a reduced set of simulations were 

carried out using the Gamma (4,O) family for uncontaminated and contam- 

inated samples from the Gamma distribution. Further details of how these 

samples were obtained are given in Section 4.5.1 (p.92). 
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4.4 Theoretical asymptotic mean squared er- 

ror 

An alternative to applying this method to simulated data as a means of 

testing its performance, is to obtain theoretical results by substituting the 

probability density function from which the data was generated, gE,  for g 

in equation 4.2. Solving this estimating equation for 8 gives the theoretical 

0,, denoted O:, which are the values of 8, which one would expect to get 

by applying the BHHJ method to  a sample of data from gE.  The variance 

part of the theoretical asymptotic mean squared error can be obtained by 

applying the same substitution to equations 4.4 and 4.5 and putting 8, = 0;. 

The bias term is calculated as the difference between the theoretical 8, and 

the true parameter value 8.. 

The theoretical AMSE function is therefore B,BT + J;'K. J;' where 

B, = 0: - O,, 
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.J* = ?LO (x) UT (x) ff+'(X)dX 
+ 1 ( i d 4  - 

s 
(X) 4 (4) (s&) - fob)) . f s " ( X ) d X  

and B = e:, f g  is the model, ug is the score function and gc is the distribution 

of the data. 

By making appropriate substitutions for f g  and gE in B,, K ,  and J* the 

optimal value of cy for the simulated data sets can be obtained. These 

theoretical results can then be compared to the data-based ones and allow 

another aspect of the effectiveness of the new method to be assessed. 

For contaminated standard normal data with fg  = N(B, 1), the bias term 

has B. = 0 and the expressions for J* and K* are 

where E is the degree of contamination and E is the contamination point. 
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When f,g = N(0,I) with gE = t k  where k is the degrees of freedom, the bias 

term is as above but J ,  and K,  are as follows 

Similarly, using the model jo = Gamma(4,fI) for data from any gE J’ and 

K* as 

where ug (z) = $ - 4 and i o  (z) = $ - 8;. For contaminated Gamma(4 , l )  

data, the true parameter value in the bias term is 8, = 1. 

The theoretical A M S E  functions (in the one and two parameter cases) for 

N(0,I)  data with 10% contamination at 10 are plotted in Figure 4.2 (p.88). 
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the A M S E  function over a grid of 100 evenly spaced values for cy between 

0 and 1. It it perhaps a little surprising that the theoretical optimum 

cy for data with contamination at  5 should be greater than that for data 

contaminated at 10 but this can be explained by considering the influence 

function, Figure 3.1 (Chapter 3, p.39). For all a > 0, the influence function 

redescends towards zero but the rate of that descent is determined by the 

value of a. The closer cy is to 1 the more rapid the descent and the smaller 

a contamination point need be to be downweighted by the model. Thus 

for the procedure to be robust to contamination at 5 a needs to be larger 

than it does to ensure robustness to contamination at 10. Of course, when 

cy = 0.5, for example, the procedure is robust to contamination at  both 5 

and 10, but if the contamination in the sample is at 10 only, making cy larger 

than it need be will lead to unnecessary losses in efficiency. 

The theoretical optimal values of cy for the same data when both location 

and dispersion are unknown are given in Table 4.2 (p.91). As one might 

expect, the optimal values of cy are higher than in the one parameter case 

but generally follow the same pattern. However the optimal values of cy 

for data from the t distribution increase quite significantly from around 0.3 

to 1 which reflects the increased difficulty involved in obtaining a robust 

estimate of dispersion from data which has heavy-tails. Similarly, the miu- 
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Table 4.1: Theoretical optimal values of CY for the BHHJ estimator when 
j e  = N ( @ ,  1). 

Distribution I Theoretical I Theoretical Minimum I 

imum AMSE’s attainable are generally much larger and, in the case of 

20% contamination at 3, increase considerably from 0.023 when dispersion 

is known to 0.416 when it is estimated from the data. This suggests that, 

even when the optimal value of cy is used, the BHHJ method will not cope 

too well with this type of contamination. 

Similar theoretically optimal results were obtained for jo = Gamma (4,O) 

with clean and heavy-tailed Gamma data and are shown in Table 4.3 (p.91). 

As with the previous examples, the magnitude of the optimal value for cy 

is determined by the magnitude of the contamination in relation to the 

model. Thus contamination from the Gamma(8,l) distribution requires cy 
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Distribution 
of data 

Theoretical Theoretical Minimum 
Optimal CY AMSE 

to be larger than when contamination is from Gamma(lG, 1). 

of data 
Gamma(4,l) 

O.SGamma(4,l)  + O.lGamma(8,l) 
O.SGamma(4,l) + O.lGamrna(lG, 1 )  

Table 4.3: Theoretical optimal values of a when fo = Gamma(4,O).  

Distribution I Theoretical I Theoretical Minimum 1 
Optimal a AMSE 

0 0.002 
0.76 0.009 
0.68 0.005 

Comparison between the theoretical optimal CY’S and those obtained from 

simulated data will be discussed in Section 4.6.3 (p.105). 
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4.5 Simulations 

As discussed in Section 4.3 (p.83) the performance of this new method 

was investigated by its application to several sets of simulated data. The 

data sets chosen are intended to represent a variety of practical situations 

in which robust methods are often recommended, namely where the data 

is heavy tailed or contains outliers. In addition to this, several simpler 

robust methods were also applied to the simulated data to assess whether 

any improvements in performance offered by this method are sufficient to 

justify the additional computation involved. 

4.5.1 Generation of the simulated data sets 

Each data set consists of 100 random samples of size 100 from the distribu- 

tion gE. Where gE is a mixture density this selection process is carried out in 

two stages. First a random sample of size n is taken from the Binomial(1, E )  

distribution to give n indicator variables with approximately loo&% equal 

to 0 and l O O ( 1  - E ) %  equal to 1. The value 0 indicates a contamination 

point and 1 indicates a point from the true density. Thus the second stage 

involves randomly selecting a point from the true density for each indicator 

variable equal to 1. In considering E% to be a random variable in this way 

the number of contamination points will vary from sample to sample. If 
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gE is a single density, t 2  for example, then the first part of this selection 

procedure is not necessary and random samples are obtained in one stage 

from the true density. 

4.5.2 Estimation of 8, 

The BHHJ estimates, ê , were used to estimate 8, and were obtained using 

the numerical optimisation procedure described in detail in Section 3.1.3 

(P.45). 

4.5.3 Estimation of 8, 

Several potential estimators for 8, were tested in these simulations. These 

were the sample estimates of the median, 80.2,  80.3 and 81 which is the Lz  

estimate. In the two parameter case, the median absolute deviation ( m a d ) ,  

C 0 . 2 ,  Co.3 and were used to  estimate scale. The scale parameter in the 

model f~ = Gamrna(4,O) is estimated by mad, 50.2, C0.3 and Cl.  

- -  

4.5.4 Minimising the AMSE function 

The a which minimises this cannot be found analytically therefore numerical 

methods must be used. However, care is needed in applying such methods 
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because the AMSE function may change rapidly around the global min- 

imum and there is the risk that the optimisation procedure will miss the 

region in which the global minimum lies altogether and find some local min- 

imum instead. Therefore to avoid this problem, the AMSE was evaluated 

across a grid of 100 points between 0 and 1 to find the minimiser directly. 

This is computationally intensive but ensures that the global minimum is 

found each time. 

4.5.5 Other Robust Methods 

The simplest robust alternative to this new method is to use the sample me- 

dian and mean absolute deviation for location and dispersion respectively. 

The notion of using a fixed value of cy for all data sets, rather t,han this data 

dependent approach, was also investigated with 01 = 0.2, cy = 0.3 and a = 1 

(which is the Lz distance estimator) being tried on the data sets. 

4.6 Results and Discussion 

To allow the performance of the various methods to be compared easily the 

mean squared errors ( M S E )  of the estimates obtained are summarised in 

Tables 4.4 to 4.8 on pages 96 to 100. Table 4.4 gives the MSE’s when 

fe = N(0, l )  for contaminated and uncontaminated N(0,l)  data and Ta- 
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bles 4.5 and 4.6 give the results for the location and dispersion parameters 

respectively when both are estimated (but a single value of a,  optimised 

for joint performance, is used). Table 4.7 gives the overall MSE's  for 

the two parameter case and are simply the sum of the individual M S E ' s  

from the previous two tables. The results obtained when the method, with 

f~ = Gamma(4, O ) ,  was applied to contaminated Gamma data are given in 

Table 4.8. 



Table 4.4: Simulation results: Mean squared errors of the BHHJ estimates 
of 0 when fs = N ( 0 , l ) .  

I Other Estimators 
I mean I median I &,z 1 80,s 1 Lz 

11 Minimising AMSE 
11 0. = &.2 1 8. = 

- I 8. = Lz 1 8, =median Distribution 



W 
-4 



Table 4.6: Simulation results: Mean squared errors of the BHHJ estimates 
of CT when fa = N ( 0 .  02\. 





Table 4.8: Simulation results: Mean squared errors of the BHHJ estimates 

- _. - 
Distribution mle mad e,, eo, L~ 
Gamm(4, l )  0.003 0.018 0.054 0.051 0.034 
O.QGarnma(4,l) f O.lGamma(8,l) 0.016 0.023 0.013 0.012 0.011 
O.QGamma(4,I) + O.lGamma(l6,l) 0.099 0.024 0.018 0.010 0.006 

m 

e. = eo.z e, = eo.3 I e. = L~ e, = mad 
0.003 0.003 0.003 0.003 
0.014 0.014 0.013 0.014 
0.006 1 0.006 0.006 0.007 
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4.6.1 One parameter case 

The lack of robustness of the maximum likelihood estimator is clearly demon- 

strated in column 2 of Table 4.4 (p.96). Whilst it produces estimators with 

the lowest M S E  for N(0,l)  data, its performance is less good for data with 

symmetric contamination and very poor for data with asymmetric contam- 

ination. The median offers much smaller M S E s  for both symmetric and 

asymmetric Contamination but, although it is generally much more robust 

than the maximum likelihood estimator, its performance deteriorates quite 

rapidly as the percentage of contamination increases. There is little to 

choose between the other three estimators (80.2,  and L2). The perfor- 

mance of the L2 estimator when g = fo = N(0,l)  seems surprisingly good 

given that it is known to be very inefficient at the model. However, despite 

the mean squared errors being small in magnitude in this case, the ratio of 

the variance of the mle t o  that of the Lz estimator is 0.6, confirming that 

the Lz estimator does indeed perform badly when considered in terms of 

efficiency alone. 

The results from the methods which minimise the AMSE are generally 

better than those from the other robust methods. None of the methods 

proposed initially for estimating 0, outperforms the others for every data 

set but on balance it seems that the Lz distance might be preferred. This 

view is supported by Andrews et al [l] who suggest that when estimating a 

A h  
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nuisance parameter the goal of robustness is to be preferred over efficiency. 

It therefore seems reasonable that the Lz should be used to  initially estimate 

0.. 

The results for contamination at 3 and 4 demonstrate that the BHHJ 

method, used either directly or t,o estimate 8, in the AMSE,  copes less 

well with contamination at points which are likely under the model than 

with outliers. The MSE when $0.2 is used for data with 10% contamination 

at 10 is 0.012 whereas for 10% contamination at 3 it is 0.045. This counter- 

intuitive behaviour occurs because the BHHJ method weights data points 

by their probability under the model and thus contamination at 3 is more 

influential than contamination at  10. Nevertheless, in terms of MSE’s,  

the performance of the BHHJ for such data is always at least as good as 

maximum likelihood and sometimes very much better. 

The results obtained when applying the method to Gamma data are given 

in Table 4.8 (p.100). For Gamma(4,l) data the methods which minimise 

the AMSE perform much better than any of the simpler robust alternatives 

and equal that of maximum likelihood. It does not appear to matter how 

the true parameter 0, is estimated because the MSE’s are the same in each 

case. For the same data with 10% contamination from the Gamma(8,l) 

distribution the results obtained by minimising the AMSE are better than 
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those for maximum likelihood but the simpler BHHJ methods with a: set 

equal t o  a predetermined value do offer the best performance for data of this 

type. When the contamination is from the Gumma( l6 , l )  instead all the 

BHHJ based methods again perform better than either maximum likelihood 

or mud but in this case the methods which minimise the data-based estimate 

of the A M S E  lead to generally smaller MSE’s than straightforward BHHJ. 

Since contamination from the Gammu(8 , l )  distribution is closer to the 

bulk of the uncontaminated data than Gammu( l6 , l )  contamination it is a 

greater challenge to the BHHJ method and one would expect the MSE’s for 

data of this type to be greater than in the latter case. The gains in efficiency 

offered by the .4MSE based methods greatly outweigh their shortcomings 

with respect t o  contamination which is not very unlikely under the model 

and offer the best overall performance. There is little to choose between 

the four A M S E  based methods but on balance it seems that the 8, = Lz 

method should be preferred. 

4.6.2 Two parameter case 

The results for the location parameter, when estimating location and disper- 

sion simultaneously, follow a similar pattern to those for the one parameter 

case. As one would expect, the MSE’s are larger for the dispersion param- 

eter than for location but the combined MSE’s for all the robust methods 
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are considerably smaller than those for the d e ’ s  except, as one would ex- 

pect, when the data is neither contaminated or heavy tailed. Once again 

the BHHJ method which minimises the AMSE using the Lz distance as 

an estimator for 0, and 0; performs well in mast circumstances, as does 

the straightforward LZ distance. There is little to choose between these two 

methods with the straightforward Lz distance being less intense computa- 

tionally but offering slightly less efficiency at the model than its AMSE 

counterpart. 

I I I I I I I I I I I 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

a 

Figure 4.3: Kernel density estimate of the distribution of & when fe = 
N(t9,l) for N(0,l) data with 10% contamination at 10. 
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4.6.3 Comparison to theoretical results 

Tables 4.9 to  4.11 (p.113 - 115) give details of the data-based (with ;* = L2)  

and theoretical optimal values of a and their associated MSE’s. In the one 

parameter case, with f~ = N ( 0 ,  l),  the data-based estimate of N is very close 

to  the theoretical optimal value so the method appears to work very well 

indeed. The data-based MSE’s are just a little larger than the theoretical 

ones but they follow the same general pattern which clearly demonstrates 

the effectiveness of this new method. A kernel density estimate of the 

distribution of the data-based optimal a’s in one particular case is plotted 

in Figure 4.3 (p.104) and shows how the data-based estimates of 01 cluster 

around 0.13 which is the theoretical optimal a for data of this type. 

The method appears t o  work equally well for Gamma data with fe = 

Garnma(4,O) as indicated in Table 4.10. The MSE’s obtained from the 

data-based approach are very close to the theoretical optimal values and 

the estimates of a are generally quite good, except when there is contami- 

nation from the Gamma(8 , l ) .  

In the two parameter case (Table 4.11, p.115) the data-based estimates of a 

do not closely follow the theoretical optimal values and in many cases greatly 

over-estimate them. This is most apparent for the uncontaminated N(0,l)  

data where the data-based estimate is 0.69 as compared to the theoretical 
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

a 

Figure 4.4: Kernel density estimate of the distribution of & when fa = 
N(O,ca)  for N(0,l) data with 10% contamination at 10. 

optimal of 0, but despite this, the data-based MSE is very small (0.018) and 

only a little larger than the theoretical optimum (0.015). For contamination 

at 3 or 4 the new method performs wry well indeed suggesting that a should 

be 1 (i.e. the La estimator) which agrees with the theoretid optimum for 

3 of the 4 such data sets. The method copes less well with heavy-tailed 

data, however, with the data-based estimates of a differing considerably 

from the optimal values but the resulting MSE’s are small nonetheless. 

The kernel density estimate of the distribution of the data-based optimal 
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a’s for N(0,l) data with 10 % contamination at 10, plotted in Figure 4.4 

(p.106), suggests that the estimates of a might in fact be even worse than 

the figures in Table 4.11 (p.115) imply. The average estimate of a is 0.62 but 

the majority of estimates are higher than this (clustered around cy = 0.95) 

and so considerably larger than the theoretical optimum, which is a = 0.17. 

The fact that the data-based MSE’s are generally close to the optimal val- 

ues even though the estimates of the optimal value of a are in some case 

very poor can be explained by considering the theoretical A M S E  functions 

(Figure 4.2, p.88). Both curves fall very rapidly as a moves away from 0 

and rise relatively little after reaching their minima at  cy Y 0.1 and cy N 0.2 

respectively. This makes estimating the optimal value of cy very difficult 

because a slight change in the slope of the estimated curve may lead to 

relatively large shifts in the global minimum. However, this flatness also 

ensures that the data-based MSE’s will be numerically close to the the- 

oretical optima so long as the data-based estimate of a,  however poor, is 

not too close to 0. It is not surprising, therefore, that in the two-parameter 

case the optimal BHHJ method does not perform consistently better than 

the straightforward Lz distance. The potential for reducing the A M S E  by 

optimising the choice of cy is quite small for data from many distributions 

and may well turn out to be far less than the error in estimating the A M S E  

curve itself. 
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

a 

Figure 4.5 Sequence of BHHJ estimates for N(0,l)  data with f~ = N(0,l). 

4.6.4 Potential for the development of diagnostic tools 

An extremely useful aspect of the B H H J  estimator is that by setting a = 0, 

0.01, 0.02, ..., 1 in turn and repeatedly solving the estimating equation a se- 

quence of estimates with increasing robustness can be obtained. Further 

research in this area is needed before the value of such plots can be fully 

assessed but it appears that, in some cases at least, the plot of this se- 

quence of estimates against 0: may provide valuable information about the 

distribution of the data and might therefore increase one's confidence in the 
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estimates obtained. An example of the type of sequence of estimates one 

might obtain from a sample of N ( 0 , l )  data is shown in Figure 4.5 (p.108). 

Scanning through similar plots, obtained from different realisations of data, 

indicates that this rough linearity (with the estimate of 0 increasing with 

cy) is typical of random samples from the N(0, l )  distribution and leads one 

to wonder whether these plots might have some diagnostic use. Another 

example which is typical of that obtained from samples which contain large 

outliers (i.e. contamination at  10 or tz  data) is shown in Figure 4.6 (p.110). 

As cy increases the estimates move rapidly away from the maximum like- 

lihood estimator and converge towards a point elsewhere. This illustrates 

the effect of downweightling the contamination points and shows that once 

cy is beyond 0.5 further increase in its magnitude has little effect. 

The sequences of estimates can also be used to identify situations in which 

the method has broken down, as in Figure 4.7 (p.111) which shows the 

sequence obtained from a sample of N(0,l)  data with 45% contamination 

at  10. Initially, as cy increases the estimates fall rapidly, as in the previous 

example, but when cy N 0.7 breakdown occurs and the sequence of estimates 

jumps from around 0 to the contamination point. 
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Figure 4.6: Sequence of BHHJ estimates for N(0,l) data with 10% contam- 
ination at 10 and fe = N ( 6 , 1 ) .  
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Figure 4.7: Sequence of BHHJ estimates for N(0,l) data with 45% contam- 
ination at 10 and f. = N(6,l). 
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Distribution 

Table 4.9: Theoretical and data-based mean squared errors of the BHHJ 
estimator when f n  = N f O .  1). 

Average Optimal a 1 Mean Squared Error 
Theoretical I Data-Based I Theoretical 1 Data-based 



Table 4.10: Theoretical and data-based mean squared errors of the BHHJ 
estimator when f o  = Gamma(4.0). 
Distribution 

Gamma(4,l) 
O.SGamma(4,l) + O.lGarnmu(8,l) 
O.SGamma(4,l) + O.lCamma(l6,l) 

Average Optimal a Mean Squared Error 
Theoretical Data-Based Theoretical Data-based 

Results Results R e S d t S  Results 
0 0.07 0.002 0.003 

0.76 0.11 0.009 0.013 
0.68 0.63 0.005 0.006 
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Distribution Average Optimal a Mean Squared Error 
Theoretical Data-based Theoretical Data-based 

Results Results Results Results 



116 

Chapter 5 

A method for choosing the 

bandwidth in Hellinger 

distance estimators 

5.1 Background 

The Hellinger distance (HD) is defined as follows 

where fo is the model density and g is the true density. 
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The HD estimate of 0, denoted $, is the value of 0 which minimises this 

distance and is obtained by differentiating equation (5.1) with respect to 0 

and setting it equal to 0. This leads to the estimating equation 

The true density distribution of the data, g, is not known therefore it must 

be estimated from the data. Kernel density estimation is the most widely 

used method for such problems and shall be used here. 

5.1.1 Kernel density estimation 

The kernel density estimate of the true density g is obtained via the following 

formula. 

where n is the sample size, Xi is the ith data point, h is the bandwidth and 

N ( 0 ,  U ' )  denotes the normal density. Thus a series of n normal curves are 

placed around the data points, each centred at that point with the location 

parameter 0 = Xi and variance u2 = h2. The kernel density estimate at ic is 
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taken to be the average value of the curves at that point. Thus the choice of 

bandwidth controls the extent to which these curves overlap and therefore, 

in a limited way, robustness. There is no necessity to use a normal kernel 

for this density estimation however and there are many alternatives, such as 

the rectangular and Epanechnikov kernels. In practice the choice of kernel 

has little impact on the estimation procedure and it is the bandwidth which 

should cause most concern [32],[33],[37]. 

Estimating the true density g with a kernel density estimate, denoted by 

&, therefore introduces a new problem; that of bandwidth selection. The 

HD estimates depend on the bandwidth so the HD estimator is denoted & 

and the estimating equation becomes 

5.2 Estimation of the asymptotic mean squared 

error 

Since O h  is generally a biased estimator of the target parameter 0, the asymp- 

totic mean squared error ( A M S E )  again seems to be an appropriate choice 

for assessing the performance of this method. The aim is therefore to obtain 
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an expression for the AMSE in terms of h which can then be optimised. 

The AMSE function for the HD estimator is obtained by substituting 81, 

for 8 in equation (D.l)  of Appendix D (p.253) and is 

As.E [ (& - 6,) (& - @.)'I = (0 - 6.) (0 - + As.var Oh ) 
where 8, is the solution to equation (5.4), f3 the solution to equation (5.2) 

and 0, is the true parameter. 

The leading term in the asymptotic variance of fi Oh - 0 

where 

is J-'KJ-'  (- 1 

where $J = J (w) fi; (z) g;(")dz. Details of how this expression is de- 

rived are given in Appendix A.2 (p.213). 

The first-order AMSE function for the HD estimator is therefore 

1 
n 

AMSE = (6'-6',)(6'- ~ 9 , ) ~ +  -J-'KJ-' (5.7) 

where J and K are as defined above, f3 is the solution to equation (5.2) and 

0, is the true parameter. 
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Since this expression does not depend on h it is, as it stands, of no use with 

regard to finding the optimal bandwidth. To resolve this problem a higher 

order approximation to  the asymptotic variance was obtained instead by 

including further terms from the Taylor series expansion of the estimating 

equation (5.4), as detailed in Appendix A.2 (p.213). Using the same nota- 

tion as above but taking the next term in the approximation leads to the 

following revised formula for K ( J  stays the same) as follows 

There were two problems with this formula which led to this approach be- 

ing abandoned. The first arises because for the normal model J s s T  - 

J s T g J s  = cc which would make this estimate of the variance w and 

the second because the presence of h in the denominator of the multi- 

plier * K’ makes it unclear which of these terms will dominate. Further- 

more, it could be that the multiplier arises in the higher order terms 

which have not been considered here, in which case, this expression for 

K would be unlikely to be useful. The results of simulation studies (my 
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own and others) do not support the assertion that the HD estimates are 

infinitely variable so, assuming that the above formula is algebraically cor- 

rect, the problem must lie in its convergence. The convergence of the first 

order approximation to the asymptotic variance (i.e. iJ- 'KJ-'  where 

K = s s (z) sT (z) g (x) dx - s s (z) sT (y) g (z) g (y) dy dz) was rigorously 

proven by Beran [6] so it is certainly not the case that the expansion does 

not converge at all. It seems likely therefore that this approximation simply 

does not converge rapidly enough. A similar problem is encountered when 

using a Taylor series approximation to obtain the influence function for 

HD estimators. The Hellinger distance method shares the same influence 

function as maximum likelihood (i.e. unbounded) and yet is highly robust. 

Lindsay [19] explained this seemingly impossible behaviour by demonstrat- 

ing that the influence function, which is a first order and very satisfactory 

approximation to bias for many estimators, is very poor indeed in the case 

of the Hellinger distance. He concluded that because the Hellinger distance 

method is first order equivalent to maximum likelihood, it is the second (and 

possibly later) terms in the approximation to bias which explain its robust- 

ness. Therefore a possible solution to the first problem (that of 1 s2 = CO) 

might be to consider further terms in the approximation in the hope that 

one of them might cancel with the s sz but the differentiation required is 

unwieldy to say the least and since the inverse h term might remain further 
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work in this direction was not attempted. 

Another possible solution is to put boundaries on the range of integration 

so that s2 < M but the estimate i f  the asymptotic variance turns out to 

be negative because this term still swamps the others. 

Therefore, since only the first term in the expansion for the asymptotic 

variance appeared to be reliable there was no alternative but to use the first 

order approximation to the A M S E  (equation 5.7) as the basis for optimising 

performance. Recall that this expression is not a function of h and so, as 

it stands, cannot be used to  determine the optimal bandwidth. However, it 

is important t o  note that this independence is asymptotic and that in the 

finite case the performance of this method most certainly does depend on 

the bandwidth. Consider a random sample from the N(0,l) distribution 

with 10% contamination at 10. Using a small bandwidth (say h = 0.1) 

will lead to a kernel density estimate which is bimodal with one peak at 

approximately 0 and another at 10. The peak at 10 is downweighted by the 

model and so robust parameter estimates will be obtained. By comparison 

using h = 4 will give a unimodal density estimate with a very heavy right 

tail. This right tail will also be downweighted by the model but to a much 

lesser degree and so the method will be less robust than in the previous 

case. Although much of the robustness and efficiency of HD estimators 
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is inherent in the method these properties are affected by the choice of 

bandwidth h so this general approach to  optimising the performance of this 

method is reasonable, the challenge is therefore to  modify the expression 

for the AMSE to more closely reflect the xethod’s behaviour in the finite 

case. 

Replacing the unknown parameters in the AMSE function by suitable es- 

timates from data has the desired effect because the most obvious esti- 

mator for 8 is &. The data-based estimate of the AMSE is now a func- 

tion of h which can be minimised to find the optimal bandwidth. This is 

much less ad hoc than it seems because (5.2) is replaced by Hh (8 )  = 0 = 

- E (& (z)); f i 4 ( z ) w d z  which is solved by 8 h  (contrasted with 8) .  

We are therefore justified in thinking of the HD estimator as 8h which is 

estimated by &. The formula for the AMSE also contains e., the unknown 

true location, which must also be estimated from the data. The fact that 

it’s difficult to obtain a reliable estimate of 8, from data is the very reason 

that robust methods were developed and so the method stalls because in 

order to get a robust estimate of 8, you need to know what value to place 

on h and you can’t decide what h to use unless you know 8,. Progress in 

solving this circular problem can again be made by treating 8, as a nuisance 

parameter in the AMSE function and replacing it with the most robust es- 

timate which can be obtained simply. In this case, the median of the data 
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seems an appropriate choice for location and the median absolute deviation 

(MAD) for dispersion but there are many alternatives and so 8, will be used 

to denote any such estimate of 8,. The data-based estimate of the AMSE 

is thus 

1 -  -,-. 
AMSE ( h )  = (& - ") (& - ,>, + -JilKhJL1 n (5.8) 

where 

and 

(5.10) 

A graph of the data-based estimate of the AMSE for N ( 0 , l )  data with 

10% contamination at 10 is given in Figure 5.1 (p.125). As the bandwidth 

decreases from 1.2 towards 0.1 the AMSE curve falls slowly towards its 

minimum at h = 0.1. The curve rises very sharply as the bandwidth gets 

very small ( h  < 0.01) and the variance term tends to  infinity. 

Once again, the trace of the AMSE matrix will be used to provide a global 

measure for minimisation. Thus when there are two unknown parameters 
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Figure 5.1: Data-based estimate of the A M S E  of the HD estimator using 
fs = N(6,l) for N(0,l) data with 10% contamination at 10. 
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(0 and U for example) the expression to be minimised is 

As in the previous chapter, the minimiser of this function is found using 

numerical methods. 

5.3 Assessing the performance of the new 

method 

The performance of the HD estimate in a variety of situations can be inves- 

tigated by applying the method to simulated data. The data sets used are 

described in detail in Section 4.3 (p.83) of the previous chapter and consist 

of 100 random samples of size 100 from a perturbation of the true density 

g. Thus the simulated data has a variety of attributes, such as heavy-tails 

or outliers, and the performance of the method is fully assessed. As in 

the previous chapter, the correct family of models is used in each case; the 

Normal family for the predominantly N(0,l)  data and the Gamma family 

for contaminated and uncontaminated Gamma data. 
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5.4 Theoretical Asymptotic Mean squared Er- 

ror 

The theoretical asymptotic mean squared error ( T A M S E )  for data of a 

particular type can be calculated by replacing g with gE in equations 5.2, 

5 .5  and 5.6.  The theoretical HD estimate is thus the solution to this revised 

estimating equation and 8, is the true parameter. Since the bandwidth only 

comes in at the estimation stage, the T A M S E  does not depend on h and 

is simply a point estimate. Obviously, this gives no information regard- 

ing the optimal value for h but is nevertheless a useful guide for assessing 

the performance of the method. Table 5.1 (p.128) gives the TAMSE' s  for 

data from a variety of distributions when either location only or both loca- 

tion and dispersion are unknown. These figures confirm that this method 

will be generally robust and efficient in the one parameter case with the 

AMSE's  being very small for all types of data. In the two parameter case 

the AMSE's  are, as one would expect, larger than in the one parameter 

case and the method performs very well except when there is contamination 

at a point which is plausible under the model (at 3 or 4 for example) or 

when the data is heavy tailed. 

The minimum T A M S E ' s  for the Gamma model are given in Table 5.2 

(p.128) and show that the HD method should cope extremely well with all 
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Distribution 
of data 

Theoretical Theoretical 
AMSE AMSE 

normal 

Distribution 
of data 

three data sets. Comparison between the theoretical minimum AMSE's 

attainable and those obtained by applying the method to simulated data 

will be discussed in Section 5.6.3 (p.138). 

Theoretical 
AMSE 

1 fs = Gamma(4,B) I 
I Gammaf4.1) I 0.006 I 
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5.5 Simulations 

As previously explained, the performance of this method was assessed by 

its application to several sets of simulated data. The data sets chosen were 

intended to represent practical situations in which robust methods are often 

recommended, namely when the data contains outliers or is heavy tailed. 

Simple random samples were also taken from the N(0,l)  distribution to 

enable the efficiency of the method to be evaluated. For a robust method 

to be worthy of further consideration it should not only perform better 

than maximum likelihood but better than its simpler robust rivals as well. 

Therefore the location and dispersion parameters were also estimated using 

the median and median absolute dispersion respectively so tnat com2arisons 

could be made. Several bandwidth selection procedures (Sheather-Jones 

[31], Silverman [32], for example) are already available and widely used in 

other contexts so, in addition to the new method of minimising the A M S E  

function, Hellinger distance estimates were also obtained using the Sheather- 

Jones bandwidth. 

5.5.1 Generation of the simulated data sets 

The new method was applied to the same simulated data as the BHHJ 

method in the previous chapter. Full details of how this data was generated 
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is therefore given in Chapter 4, Section 4.5.1 (p.92). 

5.5.2 Estimation of eh  

The HD estimates, &, for a range of bandwidths were obtained by minimis- 

ing a data-based estimate of the distance measure H D  = 2-2 

using a quasi-newton procedure. Whilst it is intuitive that large bandwidths 

might reduce the robustness of this method it is less easy to imagine the 

effect of very small bandwidths. This function contains an integral of a 

kernel density estimate and so one might expect the optimal bandwidth to 

be quite small [17] and so twenty nine different bandwidths were considered 

ranging from h = 0.00001 to h = 1.25 in unequal steps. It is unlikely that 

the four very small bandwidths (0.00001, 0.0001, 0.001 and 0.01) chosen will 

be the optimal choice because one would expect the variance of the estima- 

tors to increase for h in this region. Their purpose is really to make certain 

that the optimal values suggested for h do not lie on the boundary of the 

search area. In the one parameter case H D  has two minima when based 

1 L 

fo' (x) Gz (x) dx, 

on asymmetrically contaminated data; one close to zero and the other at 

the contamination point. The method is extremely robust however and the 

global minimum remains close to zero for all the types of data considered 

therefore the issue of breakdown could be largely ignored. By restricting 

the search area for the minimisation procedure it was possible to ensure 



131 

that it was the global minimiser which was found each time 

5.5.3 Estimation of 6, 

The true density parameter 0, was estimated in two ways. Firstly using the 

median of the data as an estimate of location and, in the two parameter 

case, t,he median absolute deviation to estimate dispersion. The alternative 

method was to use the Sheather-Jones bandwidth in the Hellinger distance 

estimating equation to obtain simpler, robust HD estimates, denoted gSj 

and Csj.  

5.5.4 Minimising the AMSE function 

For each data set the data-based estimate of the A M S E  was calculated 

using each of the 29 bandwidths under consideration. The optimal value 

for the bandwidth was then chosen as the value of h which minimised this 

function. 

5.6 Results and discussion 

To allow the performance of these methods to  be compared easily the mean 

squared errors ( M S E )  of the estimates obtained are summarised in Tables 
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5.3 to 5.7 on pages 132 to 136. Table 5.3 gives the MSE's  assuming that 

the variance of the data is known and Tables 5.4 and 5.5 give the results 

when both location and dispersion are unknown. Table 5.6 gives the overall 

MSE's  which are simply the sum of the individual MSE's  for each pa- 

rameter. The results for the scale parameter in the Gamma(4,O) model are 

given in Table 5.7 

Table 5.3: Simulation results: Mean squared errors of the HD estimates of 
6' when fo = N(8,l). 

I Other estimators 
I mean 1 median I HD(sj) I 8, =median I 8, =Os, 

I Minimising AMSE - 
Distribution 

5.6.1 One parameter case 

When fo = N (8, l), as one would expect, maximum likelihood estimation 

leads to the smallest MSE's  when the data is not contaminated (Table 
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Table 5.4: Simulation results: Mean squared errors of the HD estimates of 
8 when f a  = Nf8.a2\. 

\ Other estimators 
I mean I median I HD(sj) I 8, = m e d i a n  I 8. = BSj 

I Minimising AMSE - 
Distribution 

5 .3 ,  p.132). When there is either symmetric or asymmetric contamination 

its lack of robustness means that maximum likelihood generally offers the 

largest MSE's  of any of the methods considered. The median offers much 

smaller M S E ' s  than maximum likelihood when there is asymmetric con- 

tamination in the data but performs less well for uncontaminated N ( 0 , l )  

data or data which has slightly heavy tails (i.e. t3 or t4 data). Using the 

Sheather-Jones bandwidth to  obtain Hellinger distance estimates leads to 

further improvements in performance for all except the N ( 0 , l )  data. Of the 

two methods which minimise the A M S E  function to determine the optimal 

value for h it seems that estimating the true location 8, with gSj gives the 

best results on balance. The MSE's  for this method (column 6) are very 
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Distribution S I mad I HD(sj) I U* = m a d  I U* = Saj 

similar to those obtained when putting the Sheather-Jones bandwidth di- 

rectly into the Hellinger distance estimating equation (column 4 )  and thus 

appears to be a slight refinement which has the advantage of coping better 

with contamination at 3 and 4. 

The MSE's  when using maximum likelihood to estimate 6' in the G a m m a ( 4 , O )  

modcl (Table 5.7, p.136) increase considerably with the magnitude of the 

contamination. Using m a d  offers much smaller MSE's  than maximum 

likelihood when the contamination is from G a m m a ( 4 , 1 6 )  but for all other 

data performs less well than maximum likelihood. The HD method with 

Sheather-Jones bandwidth matches maximum likelihood for efficiency at 
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Distribution 

4 (XI 

0.9 x ~5 (z) + 0.1 x Ai" 121 
0.95 x 4 (z) + 0.05 X A,, (z) 

Table 5.6: Simulation results: Combined mean squared errors of the HD 

- - 
mean median HD(sj) 8. =median 8, =e,, 

0.013 0.028 0.017 0.021 0.016 
2.409 0.054 0.024 0.035 0.022 
5.439 0.077 0.018 0.040 0.017 

?. 

S mad HD(sj) U% = mad U* = U's3 

estimates of 8 and U when fo = N(8,o'). 
I I Other estimators 1 Minimising AMSE 1 

, \ I  ." \ I 

0.8 x 4 (z) + 0.2 x A,, (z) 
0.95 x 4 (z) + 0.05 x A5 (z) 
0.9 x 4 (z) + 0.1 x A5 (z) 
0.8 x d [Z) + 0.2 x A.5 (z) 

13.635 0.322 0.026 0.029 0.024 
0.308 0.039 0.032 0.025 0.024 
0.921 0.105 0.053 0.059 0.041 
2.368 0.275 0.294 0.099 0.293 

I 0.194 [ 0.049 I 0.125 1 0.041 1 0.113 

the model and leads to greatly reduced MSE's  for contamination from 

Gamma(4,16) but surprisingly performs slightly less well than maximum 

likelihood for contamination from Gamma(4,8). Minimising a data-based 

estimate of the AMSE function with 0. = mud leads to the smallest MSE's  

for contamination from Gumma(4,8) but performs no better than the al- 

ternative 8, = 8,j for data from the other two distributions. 

5.6.2 Two parameter case 

When both 8 and U are unknown in the model fo = N (8, U') the results for 

location are similar to those obtained when U is known (Table 5.4, p.133). 
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Other estimators 
Distribution mle mad 0,j ' 
Gamma(4 , l )  0.003 0.018 0.003 
O.SGamma(4,l) + 0.9Gamma(4,8) 0.016 0.023 0.017 
0.9Gummu(4,1) + O,SGamrna(4,16) 0.099 0.024 0.017 

- Minimising AMSE 
0, = mad 8, = %,, 

0.004 0.004 
0.015 0.016 
0.014 0.014 

- 

The HD based methods are considerably more efficient at the model than 

the median and cope very well with contamination at 10 but, as in the one 

parameter case, they are generally less able to handle contamination at 3 or 

4. Although the MSE's  for this data are considerably smaller than those for 

maximum likelihood they can be twice the size of those obtained by just us- 

ing the median and mud for 0 and U respectively. Another surprising result 

is that for all three of the HD based methods the MSE's  for N ( 0 , l )  data 

with contamination at 10 are smaller when both parameters are estimated 

than in the one parameter case when U is known. This counter-intuitive ef- 

fect is repeated when the contamination is at -10 or from the t2 distribution 

and leads to the uneasy recommendation that for data with large outliers 

estimating both parameters is to be preferred irrespective of whether U is 

known. For all other types of data the results are, as one would expect, 

either the same as in the one parameter case or worse. 

The results for the dispersion parameter (Table 5.5, p.134) again demon- 

strate that the HD based methods are much more efficient than mad but 
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less robust to contamination at  3, 4 and 5. The Hellinger distance method 

performs fairly well using the Sheather-Jones bandwidth but the results are 

improved when the choice of bandwidth is the minimiser of the A M S E  

function. Neither of the two ways of estimating the true parameters 0, and 

CJ* does consistently better than the other although on balance it seems that 

the median/mad should be the preferred choice. 

The combined simulation results (Table 5.6, p.135) confirm that there is 

much to recommend the use of Hellinger distance estimators for many types 

of data. The robust methods perform better than maximum likelihood for 

all but the N(0, l )  data but none is clearly better than its rivals. The main 

disadvantage of using the median for location and mad for dispersion is 

that these estimators are very inefficient at the model and become rapidly 

less robust as the percentage of contaminants increases to 20%. The HD 

based methods do not cope well with contamination at 3 or 4 ,  particularly 

when the conta,mination percentage is 20%. The performance of the two 

optimal HD methods can be very sensitive to the choice of estimator for the 

true location and dispersion but neither method consistently does better 

than the other. Using the median and mad respectively appears to be the 

best option for data with contamination at 3, 4 or 5 or where the data is 

heavy tailed, however, gssj and Z3sj lead to smaller MSE's  when there is 

contamination at 10 and greater efficiency at the model. 



138 

Perhaps the most surprising result is that in these simulations none of the 

HD based methods were fully efficient despite being asymptotically equiva- 

lent t o  maximum likelihood for N(0, l )  data. Asymptotic equivalence does 

not imply equality in the finite case so one should not expect the perfor- 

mance of the HD estimators to rival that of maximum likelihood for every 

realisation of data, however, in a simulation setting where the method is be- 

ing repeatedly applied to random samples one might reasonably expect the 

performance of these two methods to be more closely allied. The asymptotic 

behaviour of these estimators depends on the distance measure itself, the 

choice of bandwidth, the sample size and number of samples taken, therefore 

it would be interesting to repeat these simulations on larger samples of data 

and/or a larger number of samples to establish whether these results have 

simply occurred by chance or represent a real difference in performance. 

5.6.3 Comparison to theoretical results 

Since the first order T A M S E  function for HD estimators does not in- 

volve h it could not be used to determine the theoretical optimal band- 

width for any particular data set. Instead an estimate of the optimal 

bandwidth was obtained by inspection using a range of bandwidths ( h  = 

0.05,0.1,0.2,0.3,0.35,0.4) on the simulated data. The bandwidth which led 

to the smallest M S E  for each dataset was used to estimate the theoreti- 
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cal optimal bandwidth and is shown in the column headed "By inspection" 

alongside the theoretical minimum A M S E  attainable and data-based re- 

sults (with 8, = m e d i a n  and U* = m a d )  in Tables 5.8 to 5.10. 

For the model f~ = N (8,l)  (Table 5.8, p.145) the estimates for the optimal 

value of h obtained by inspection appear to be a little inconsistent. The 

optimal bandwidth obtained in this way for N ( 0 , l )  data with contamination 

at either 5 or 10 is generally 0.3 but, strangely, came out at 0.1 when the 

percentage of contamination is 10%. For these two data sets the difference 

between the magnitude of the A M S E  when h = 0.1 and h = 0.3 is just 

0.0003 and so the fact that these values jump around a little should not cause 

undue concern. However, with contamination at 3 or 4 the optimal value of 

h is also very small, at 0.05 or 0.1, but in this case the reduction in the M S E  

is much larger and suggests that these values are the true minimisers. The 

estimates of the optimal value of h obtained by minimising a data-based 

estimate of the A M S E  (column 4) are generally much smaller than those 

obtained by inspection (column 3) .  The M S E  function is very flat over this 

range of bandwidths and so, despite being poor at estimating the optimal 

h, the new method performs very well with MSE's  being generally very 

close to the minimum values obtained by inspection. The exception to this 

occurs when the contamination is at 3, in which case the MSE's  obtained by 

minimising the A M S E  function are much larger (in percentage terms) than 
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those obtained by inspection being 0.095 and 0.033 respectively when the 

contamination percentage is 20%. Overall, the MSE’s for the new method 

compare reasonably favourably with the theoretical minimum values and 

confirm that choosing the value of h in this way ensures that the desirable 

theoretical properties of HD estimators are attained in practice. 

The average optimal h obtained by applying the new method to Gamma 

data, shown in Table 5.9 (p.146), are close to the theoretical values obtained 

by inspection only when there is no contamination in the data. For contam- 

inated Gamma data the optimal value for h found by inspection (column 

3) was much smaller than the values found by minimising the A M S E  func- 

tion (column 4). The corresponding optimal MSE’s  (column 5) were also 

considerably smaller than those obtained by minimising the data-based es- 

timate of the A M S E  (column6) which leads one to suspect that, for this 

data, the first order approximation to the A M S E  used here is not sufficient. 

Furthermore, the smallest MSE’s were obtained by using very small band- 

widths ( h  = 0.05 or h = 0.1) which confirm the notion, discussed in Section 

5.2 (p.118), that for contaminated data small bandwidths lead to increased 

robustness. Thus it seems that for this data the new method is not able 

to select the optimal value for the bandwidth. These results contrast quite 

strongly those for the one parameter Normal model but it should be noted 

that in this case it is the scale parameter which is being estimated and not 
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location, 

For the model j s  = N (0,o') (Table 5.10, p.147) the optimal values of 

h obtained using the new method are generally much larger than those 

obtained by inspection. For data which is heavy-tailed or has contamination 

at  3 or 4, the values for h suggested by the new method can be more than 

twice the size of those found by inspection. Thus the pattern seen for the 

scale parameter in the Gamma model is repeated for the Normal family 

of models when both location and dispersion are unknown. That is to 

say, that when dispersion is being estimated from data with contamination 

which is plausible under the model the robustness of the HD method can 

be greatly improved by making the bandwidth very small. Furthermore, 

the new method does not appear to recognise this feature and consequently 

performs less well than one would hope. There are two possible explanations 

for the new method's inability to find the optimal bandwidth for such data. 

Firstly, it could be that the first-order approximation to the A M S E  does 

accurately reflect the role of the bandwidth on the performance of the HD 

method and that it is the data-based estimate of this function which is 

the root of the problem. Alternatively, it could be that further terms in 

the approximation to the AMSE are needed to fully explain the role of the 

bandwidth. Furthermore, the minimum MSE's obtained by inspection are, 

in many cases, much lower than the theoretical minimum AMSE's  which 
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leads to further suspicion that this first-order approximation is not good 

enough. 

As previously explained in Sections 5.1.1 and 5.2 it is not surprising that 

the optimal bandwidth for contaminated data should be very small. It is 

interesting, however, that this optimality should be more apparent for the 

scale parameter than location, occur only for data from particular distribu- 

tions and that the magnitude of the potential improvement in performance 

is quite considerable. These issues can be explained by considering the 

interaction between the distance measure and kernel density estimate in 

more detail as follows. Contamination which is unlikely under the model, 

at 10 in N(0, l )  data for example, is fully downweighted by the factor 

fi'((., - in the integrand of the estimating equation. Thus there is 

little t o  be gained by making the bandwidth very small. However when the 

contamination is not dealt with adequately by the HD method, at  3 or 4 for 

fo = N(B, 1) for example, making the bandwidth very small can increase 

O=eh 

robustness because the normal curves which are placed around each data 

point are then very narrow. The effect of any one data point on the overall 

kernel density estimate is therefore very much reduced because the contri- 

bution each point makes will be effectively zero everywhere except within 

the narrow range of f 3 h  around itself. Furthermore, small bandwidths 

mean that the tails of the kernel density estimate fall very rapidly to zero 



143 

outside the range of the data which means that the resulting HD estimates 

for dispersion are not unduly inflated. 

5.7 Conclusions 

The simulation results when dispersion is known confirm that the Hellinger 

distance method performs well for many bandwidths. It is only bandwidths 

which are either very small or very large in relation to the spread of the 

data (in this case h < 0.01 and h > 0.5) that should be avoided. The 

situation when the dispersion of the data is unknown is less clear and there 

is evidence to suggest that cr is far more sensitive to the choice of h than 9. 

Furthermore, it seems that by choosing a small bandwidth the robustness 

of the HD estimation procedure can be increased beyond that which one 

should expect from its asymptotic properties. Unfortunately, when the dis- 

persion parameter is estimated the new method never suggests very small 

values for h and its performance, compared to the optimal values found by 

inspection, is disappointing. It may be that this could be improved by carry- 

ing out further work to obtain a more rapidly converging approximation to 

the asymptotic variance. However, it should be emphasised that although 

the new method is working less well than one would like, it nevertheless 

leads to considerably smaller MSE’s than either maximum likelihood or 
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the medianlmad combination when there is contamination in the data and 

is highly efficient at the model. 



Table 5.8: Theoretical and data-based mean squared errors of the HD esti- 

Theoretical 
Minimum AMSE 

Optimal h Mean Squared Error 
Inspection I Minimising AMSE I Inspection I Minimising A M S E  j 



Table 5.9: Theoretical and data-based mean squared errors of the HD esti- 
mator when fe = Gamma(4, e). 

Optimal h 

Distribution 
G a m m ( 4 , l )  

0.9Gamma(4,1) + 0.1Gamma(4,8) 
O.SGamma(4.11 + O.lGamma/4.16) 

Mean Squared Error Theoretical 
Minimum 

AMSE 
0.006 
0.009 
0.007 

0.75 
0.05 
0.10 

Data-based Results 

8, = mad 6, = mad 
0.76 0.003 0.004 
0.64 0.003 0.015 i 

0.61 0.004 0.014 



Distribution 

c-’ 
4 
-4 

Data-based Results 
Theoretical optimal h Mean Squared Error 
Minimum Inspection I Minimising AMSE 1 Inspection I Minimisinn AMSE 
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Chapter 6 

A method for choosing the 

value of p in the OH estimator 

6.1 Background 

The family of criterion functions was introduced by Oztiirk and Hettmansperger 

in 1996 [23] and is defined as 

d F ( 8 ; p )  = [GP(z) -FFBP(z) ]~~~+ [ ( l -G(x) ) ’ -  ( l - F e ( ~ ) ) ~ ] ~ d x  

(6.1) 

J J 

where Fe (x) is the model distribution function, G (x) is the true distribution 

function and p > 0. 
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This distance measure is minimised by S,, the solution to the following 

equation, which is obtained by differentiating d F  (6’; p )  with respect to 0 

and setting equal to zero. 

dFo 
d6’ 

0 = 1 (GP (z) - FBp (z)) FBp-l (z) -dx 

dFo 
d6’ 

- 1 [(1 - G (z))” - (1 - Fe (z))”] [l - FB (x)]”-’ -dx. 

The true distribution function G(z) is rarely known and is therefore es- 

timated by the empirical distribution function F, (z) . The Oztiirk and 

Hettmansperger (OH) estimator of 8, denoted $,, is therefore the minimiser 

of dFn (6’;p) and solution to the estimating equation 

When jo = N (8,l)  the two integrals not involving F, can be integrated 

by parts and shown to sum to zero. In this case, therefore, the estimating 

equation simplifies to 
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(6.4) 

The robustness and efficiency properties of these estimators are determined 

by the choice of p .  The method is robust when p > 0.5 and highly efficient 

at  estimating location for all values of p .  It is less efficient at  estimating 

dispersion, however, with efficiency in excess of 80% only when p < 1. When 

simultaneously estimating location and dispersion it is clear, therefore, that 

choosing p > 1 for data which is not contaminated would lead to inefficiency. 

Similarly, when the data is contaminated choosing p < 1 will result in sub- 

optimal robustness. Although this method has the potential to provide 

estimators which are both robust and efficient these desirable properties 

will not be attained in practice unless the value of p chosen is appropriate 

for the data to which it is applied. 

6.2 Estimation of the asymptotic mean squared 

error 

As in the previous two chapters, the asymptotic mean squared error ( A M S E )  

will be used to  jointly measure robustness and efficiency. It is hoped that 

by minimising an expression for this function, which is a function of p ,  the 
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optimal value for p can be determined. The AMSE function for the OH 

estimator is 

where 6, is the solution to equation (6.3), 0, the solution to equation (6.2) 

and 0, is the true parameter. This function is obtained by substituting 0, for 

6' and 4, for 8 in the expression for the multi-parameter AMSE (equation 

D.l) of Appendix D (p.253) 

The asymptotic variance of fi 8, - 0, is J-'KJ-' where (- ) 
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K = 2p2 // (T (s) + U (s)) (T ( t )  + U ( t ) ) T G  (s) (1 - G ( t ) )  ds dt  (6.6) 
S < t  

and T (z) = Gp-' (z) % (z) FBp-' (z), U (z) = (1 - G (.))"-I % (z) (1 - F g  (.))"I 

and 8 = 8,. 

The derivation of the asymptotic properties of OH estimators is shown in 

detail in Appendix A.3 (p.227). 

When fs = N (8, 02) the expression for J (equation 6.5) simplifies to give 

The A M S E  function for the OH estimator is therefore 

1 
n 

A M S E  ( p )  = (e, - e,) (e, - e$ + -J-'KJ-' 

where J and K are as defined in equations (6.5) and (6.6) respectively, 8, 

is the solution to equation (6.2) and 0, is the true parameter. 

Once again, the trace of the AMSE matrix will be used to provide a global 

measure for minimisation. Thus when there are two unknown parameters 

(8 and o for example) the expression to be minimised is 

AMSE(8,; 2,) N As.var($,) + As.var(2,) + (8, - + (U, - U*)' (6.8) 
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As in the previous chapters, the minimiser of this function is found using 

numerical methods. 

Given the good results obtained with a data-based approximation to the 

AMSE for the minimum density power divergence estimator (Chapter 4, 

p.76) and the problems encountered in trying to obtain a quadratic approx- 

imation to the AMSE for both the density based estimators, the quadratic 

approximation was not attempted for this method. Instead, the unknown 

parameters in the AMSE function were replaced by suitable estimates from 

data and this estimated function then minimised to find the optimal p .  

Therefore, with gp and replacing 0, and 0, respectively, the data-based 

estimate of the AMSE is then 

where 

K= 2 p 2 J /  ( ? ( ~ ) + u ^ ( ~ ) ) ( F ( t ) + i l ( ( t ) ) ~ F ~ ( ~ ) ( 1  -F,(t))dsdt (6.10) 
S < t  
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Notice, however, that the expression for ?contains Fe and F, to the power 

p - 2 so there will be singularities when p < 2. 

When f a  = N(0,a‘) ?is 

,. 
which is evaluated at 0 = OP. In this case, the distribution functions are to 

the power p - 1 and so the estimation of the variance should be straightfor- 

ward for p > 1. 
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I 
I I I I I 

1 2 3 4 5 

P 

Figure 6.1: Data-based estimate of the A M S E  function of the OH estimator 
using fs = N(0,I) for N ( 0 , I )  data with 10% contamination at 10. 

The problem remains, however, of how to estimate 0. in the bias term of the 

AMSE function. Recall that this is the true parameter which is unknown 

and the fact that it is difficult to estimate from data is the very reason that 

robust methods were developed. Progress in solving this circular problem 

can be made by treating 8. as a nuisance parameter in the A M S E  function 

and replacing it with the most robust estimate which can be obtained simply. 

In this case, the median of the data seems an appropriate choice for location 

and the median absolute deviation (mad) for dispersion but there are many 
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others which could be considered, 

The data-based estimate of the A M S E  function for N ( 0 , l )  data with 

10% cont,amination at  10 (using the model f~ = N(B, 1)) is shown in 

Figure 6.1 (p.155). This function has a definite minimum which is close 

to p = 1.2 which suggests that the problems experienced with the BHHJ 

method (where the estimates of the optimal cy varied considerably because 

the A M S E  function was very flat) are unlikely to recur here. 

6.3 Assessing the performance of this new 

method 

Continuing the approach to testing taken in the previous two chapters, the 

performance of this method was assessed by its application to simulated 

data. The same data sets were used here as with the BHHJ and HD methods 

so that the performance of these three methods could be compared easily. 

Full details of these data sets, along with the reasons for their choice, are 

given in Section 4.3 (p.83). They briefly comprise 100 random samples of 

size 100 from a perturbation of the true density g and thus provide simulated 

data with a variety of attributes such as heavy-tails or outliers. 

As before, the correct family of models is used in each case; the Normal 
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family for the predominantly N(0,l) data and the Gamma family for con- 

taminated and uncontaminated Gamma data. 

6.4 Theoretical asymptotic mean squared er- 

ror 

The behaviour of OH estimators can be explored by applying the method to 

simulated data drawn from the probability density function gE (2) , a pertur- 

bation of the true density g ( z ) .  Then, taking a data-based approach, simu- 

lated data sets can be generated by taking random samples from gE (2) and 

applying the method to each data set in turn. Alternatively, the theoretical 

asymptotic mean squared error (TAMSE) can be obtained by substituting 

gE (2) for g (2) and G, ( z )  for G ( z )  in equations (6.5) to (6.6). Applying the 

same substitution to the estimating equation (6.2) and solving equal to zero 

provides the theoretical BP's, denoted .9;, which replace the &,k in the for- 

mulae for the AMSE (6.9-6.11). The location parameter of the underlying 

distribution is now known and so 6, replaces 6, to give 

(6.12) 
1 
n 

T A M S E  ( p )  = (6; - 6,) (8; - 6*)T + -J- 'KJ-'  
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where 

When fo = N (0, a’) 

J = p [[l - G, (z)]”-’ [l - Fo (z)]”-’ - G:-’ (z) Ff-’ (z)] fo (z) gE (z) dx. 

(6.15) 

The p which minimises the T A M S E  can be found numerically to provide a 

theoretical optimal p which then provides a benchmark for the data-based 

results. 

s 

Because the formulae involve distribution functions, rather than density 

functions, to the power p the T A M S E  only simplifies in the case fs = g. In 
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this case there is no bias and the variance term iJ- 'KJ- 'can be obtained 

as follows 

X = 2p2 // ( T  (s) + U (s)) (T ( t )  + U (t))T G, (s) (1 - G, ( t ) )  ds d t  
S < t  

with T (x) = % (x) FP-' (x) and U (x) = % (x) (1 - Fg)2p-2 (x) and 

T dFe dFe 
J = p [[l - Fe (z) ]~ ' -~ + FP-' (x)] [z] [z] dx. s 

Note that in this case, the variance has singularities only when p < $. 

When g # fo the T A M S E  can be obtained by making appropriate substitu- 

tions for fe, gc and G, into equations (6.12) to (6.14). For contaminated nor- 

mal data with €% contamination at [, gE (2) = (1 - E )  $ (.) +&be (.), where 

6~ ( z )  = 03 if E = z and 0 otherwise and G, ( z )  = (1 - E )  @ ( z )  + &Ac ( z )  , 

where At ( z )  = 1 if E > z and 0 otherwise. So, for example, using the model 

f~ = N (8,l)  for these data leads to 

K = 2p2 (T (s) + U (s)) (T ( t )  + U (t))T G, ( s )  [l - G, ( t ) ]  dsdt 
S < t  

where T (x) = [(l - E )  CJ (x) +&At (x)]"-' 4,, (x - 6') (x - 6') and 

U (x) = [l - (1 - E )  P, (z) -&At (z)]"' (x - 0) (1 - @,, (X - 

and 

J = p [ l - G , (  x)]"-' [I - a,, (x - O)lP-' $,, (Z - 6') gE (x) dx s 
s - p  G!-' (x) a.",-' (x - 6') +,, (x - 6') gE (x) dx. 
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T 
Similarly, the bias is obtained as before as (8; - 8,) (f$ - 8.) . The target 

parameter, 8,, is known and therefore replaced by its true value and 6’; is 

the solution to the following estimating equation 

Using the same model for data from a t distribution with k degrees of 

freedom, gE = tk and G, = Tk and so K and J can be calculated as follows 

with r (z) = 2‘L-I (z) qh, (z - 8 )  @E--’ (z - 8 )  and 

As in the previous example, the target parameter in the bias is known and 

0; is obtained by solving 

The theoretical optimal values for p and their respective asymptotic mean 

squared errors for data from various distributions using fo = N ( 8 , l )  are 
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P 

Figure 6.2: Theoretical A M S E  function for the OH estimator with fs = 
N ( 6 , l )  for N(0,l) data. 
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Table 6.1: Theoretical optimal values of p for the OH estimator when fo = 

given in Table 6.1 (p.162). For N(0,l)  data the minimum attainable A M S E  

is 0.01 which is the same as that which could be achieved by using the 

optimal choice of LY for these data with the BHHJ method (i.e. LY = 0). 

This means that when there is no contamination in the data, providing the 

optimal value for p can be identified, the performance of this method should 

rival that of BHHJ with optimally chosen a and also, therefore, maximum 

likelihood. For all the other types of data considered the optimal theoretical 

value for p is 1.2 with the theoretical minimum A M S E  attainable varying 

according to the degree and magnitude of the contamination. 

The theoretical A M S E  function for N (0 , l )  data is plotted against p in 
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P 

Figure 6.4: Theoretical A M S E  fundion for the OH estimator with js = 
N (e ,  U') for N(0,l) data. 
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suggested when the dispersion is known with the optimal value of p turning 

out to be 1.2 in most cases. The only situation in which the optimal value 

for p is not 1.2 (or close to it) is when there is no contamination in the data 

in which case the theoretical optimal p is 0.5. The graph of the theoretical 

A M S E  function for these data is shown in Figure 6.4 (page 164) and, like 

the one parameter case, has a global minimum at p = 0.5 and a local 

one at p = 1.2. As one would expect, the theoretical minimum A M S E ' s  

attainable are larger than in the one parameter case, particularly when 

the degree of contamination is 20%. With p chosen optimally the method 

should be highly efficient at the model (the theoretical minimum A M S E  

for N ( 0 , l )  data is just 0.004) and perform reasonably well when there is 

up to  10% contamination in the data. However, these results suggest that 

despite choosing p optimally the method will perform badly for data which 

has a high degree of contamination at one point. 

The theoretical optimal value of p and corresponding T A M S E  for the 

Gamma(4,B) model were obtained for the fo = g situation only and are 

0.5 and 0.003 respectively. When f~ # g singularities occur in J when 

p < 2 and in K when p < 1, so as an alternative, the influence function 

for this model was calculated and the optimal value for p determined by in- 

spection. This graph, shown in Figure 6.5 (p.166), suggests that maximum 

robustness will be achieved when p is around 1.2 or 1.3. The curves for 
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Distribution 
of data 

Theoretical I Theoretical Minimum 
Optimalp 1 AMSE 

p = 1.2 and p = 1.3 are indistinguishable by eye hut further investigation 

reveals p = 1.2 to he the optimum value. Unfortunateiy, it is not possible to 

estimate what the T A M S E  for the OH estimate of 0 will be at that point. 

Comparison between the theoretical optimal p's and those obtained by ap- 

plying the method to  simulated data will be discussed in Section 6.6.3 

(P.176) 
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6.5 Simulations 

As previously explained, the performance of this method can be assessed 

by applying the method to simulated data. Robust methods are often rec- 

ommended in situations where the data is thought to be heavy-tailed or to 

contain outliers so data sets with these undesirable properties were created 

by taking random samples from several symmetric and asymmetric distribu- 

tions. To enable the efficiency of the method to be assessed, uncontaminated 

random samples were also taken. 

Since the new method of finding the optimal value of p could not be applied 

with the Gamma(4,O) model parameter estimates were obtained using the 

OH method with p fixed at 1, 1.2 and 1.3 in turn. The value ofp which leads 

to  the smallest MSE's  could then be identified and (hopefully) confirm that 

the optimal value of p for robustness with this model is also 1.2. 

6.5.1 Generation of the simulated data sets 

Details of how the simulated data was generated is given in the BHHJ 

chapter, Section 4.5.1 (p.92). 



169 

6.5.2 Estimation of 0, 

The OH estimates, &,, were obtained by solving the estimating equation 

(6.3) numerically. This estimating equation has only one root so the root- 

finding procedure can be applied less cautiously than with the density based 

methods because the global minimiser will be found irrespective of the choice 

of initial values and/or width of the search area. Further details given in 

Section 3.3.3 (p.72). 

6.5.3 Estimation of 8, 

The sample median was used to estimate the unknown true location of the 

data, 0,. 

6.5.4 Minimising the A M S E  function 

The asymptotic mean squared error function for criterion function estima- 

tors is not necessarily unimodal, as illustrated by Figure 6.2 (page 161), and 

cannot be minimised analytically. This means that numerical optimisation 

procedures must be used carefully to ensure that the global minimum is 

found rather than a local one. To avoid this problem the function was eval- 

uated over a grid of 46 points between p = 0.5 and p = 5 in steps of 0.1. 

This, in effect, restricts the minimiser to one of 46 values when it should 
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really be continuous but has the benefit of greatly reducing the amount 

of computation involved whilst enabling the minimum to be found with 

sufficient accuracy. 

6.5.5 Other robust methods 

Once again several simpler methods were also applied to the simulated data. 

The media lmad combination was used to estimate location and dispersion 

respectively, the Cramkr-von Mises method (which is OH with p = 1) and 

the OH method with p = 1.2. 

6.6 Results and Discussion 

To allow comparisons to be made easily between the performance of the 

various methods applied to the simulated data, the mean squared errors 

( M S E )  of the estimates obtained for the contaminated and uncontaminated 

N(0 , l )  data are summarised in Tables 6.3-6.6 on pages 171-173. Table 6.3 

gives the MSE’s for the location parameter assuming that the variance of 

the data is known and Tables 6.4 and 6.5 give the results for the location 

and dispersion respectively when both parameters are unknown. Table 6.6 

gives the overall MSE’s for this latter case and are simply the sum of the 

individual MSE’s for each parameter. 
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0.9 x $!I (z) + 0.1 x A4 (x) 0.201 0.052 
0.8 x $!I (z) + 0.2 x A4 (x) 0.672 0.123 
t 2  (XI 0.093 0.027 
t 3  (XI 0.023 0.021 
t 4  (XI  0.016 0.018 

Table 6.3:  Simulation results: Mean squared errors of the OH estimates of 
B when f n  = NfB.  1). 

0.068 0.066 0.069 
0.231 0.222 0.223 
0.025 0.025 0.025 
0.014 0.014 0.014 
0.012 0.012 0.012 

The results obtained for the Gamma data with f~ = Gamma(4,O) are given 

in Table 6.7 (p.173). 

6.6.1 One parameter case 

The second column of Table 6.3 contains the M S E ' s  in using maximum 

likelihood to estimate location from samples of contaminated and uncon- 

taminated N(0,l) data. The new method (column 6) is slightly less efficient 

than maximum likelihood, the known optimal method for the f,j = g case, 

but highly efficient nonetheless. For all the other types of data the new 

method produces estimates with much smaller M S E ' s  than maximum like- 
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Distribution 

Table 6.4: Simulation results: Mean squared errors of the OH estimates of 
6' when fg = N ( 0 ,  c2). 

1 Other estimators Minimising AMSE 
I mean I median 1 CVM 1 p = 1.2 T 6'. = median Distribution 

S I mad I CVM I p = 1.2 I U* = mud 
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Table 6.6: Simulation results: Combined mean squared errors of the OH 
estimates of 0 and ~7 when fs = N ( 0 , d ) ) .  

Table 6.7: Simulation results: Mean squared errors of the OH estimates of 
0 when fo = Gamma(4, 0). 
I I 
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lihood, thus confirming its robustness. Comparison to the results obtained 

when using other robust estimation methods leads to the conclusion that 

this new method is not offering much improvement over its less compu- 

tationally intense rivals. The new method is more efficient at  the model 

than the median and offers slightly smaller MSE's  when the contamina- 

tion is symmetric but these small benefits are outweighed by the methods' 

poor performance for asymmetrically contaminated data. The results for 

Cramer-von-Mises estimation (the p = 1 case of OH) and p = 1.2 are very 

similar to those obtained by the new method but there are consistent differ- 

ences in performance which are worthy of mention. Setting p = 1.2, which 

is the theoretical optimal value for most of the contaminated data, leads to  

the smallest MSE's  for all the data sets despite the fact that when there is 

no contamination the optimal value of p is 0.57. The MSE's obtained by 

minimising a data-based estimate of the AMSE function are generally just 

a little larger than, and in some cases equal to, those obtained when p = 1.2  

which demonstrates that the new method either finds, or comes very close 

to finding, the optimum value of p in the majority of cases. 

The results for the Gamma data and model (Table 6.7) also show that there 

is little to choose between the three OH based methods. As one might expect 

from the influence function (Figure 6.5, p.166) neither p = 1.2 nor p = 1.3 

consistently leads to the smallest MSE's  but both offer improvements over 
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d e ,  mad and CVM. 

robustness has little impact on efficiency. 

Surprisingly, choosing the optimal value of p for 

6.6.2 Two parameter case 

The simulation results for location and dispersion for the model fs = 

N (8,o’) are shown separately in Tables 6.4 and 6.5 respectively. In both 

cases the new method leads to much smaller mean squared errors than 

maximum likelihood for contaminated data and slightly less efficiency at  

the model. Using the median and median absolute deviation (mad) as esti- 

mators generally offers the most robustness but this is paid for in terms of 

lost efficiency at the model. When estimating the location parameter, there 

is little to choose between the three OH based methods in terms of either 

robustness or efficiency. However, setting p = 1.2 for all data does lead to  

consistently smaller MSE’s than the new method or C V M .  The results for 

the dispersion parameter are very similar to those for location. Minimising 

the A M S E  often leads to smaller MSE’s than those obtained using CVM 

and is equally efficient. Once again, for contaminated data setting p = 1.2 

leads to smaller MSE’s than either of the OH based rivals. The combined 

mean squared errors for both parameters, obtained by adding the figures in 

Tables 6.4 and 6.5, are given in Table 6.6. These confirm that the generally 

good performance of the median and mad for contaminated data is over- 
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Figure 6.6: Kernel density estimate of the distribution of p when fe = 
N (6 , l )  for N(0, l )  data with no contamination. 

shadowed by its huge losses in efficiency at the model. The optimal value 

for p is clearly 1.2 and it is very encouraging that the new method is able 

to locate this optimum is the majority of cases. 

6.6.3 Comparison to theoretical results 

Table 6.8 (p.182) gives details of the data-based and theoretical optimal 

values of p for the model fe = N(0,l). For contaminated data the optimal 
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p’s suggested by the data compare very well to those predicted in theory, 

but unfortunately the data-based method was not able to identify the global 

minimum for uncontaminated data at p = 0.57 nor the local minimum at 

p = 2.7. The kernel density estimate of the distribution of p^ (Figure 6.6, 

p.176) shows that the estimated values of p are clustered around p = 1.1 

and range over the entire range of possible values. One explanation for the 

data-based method’s failure to find the minima in this case can be found by 

considering the theoretical AMSE curve for N ( 0 , l )  data (Figure 6.2). The 

magnitude of the theoretical AMSE at its minimum is just 0.0005 less than 

its value at its highest point and so it is not surprising that this data-based 

estimate is not able to accurately reflect such fine detail. 

In the two parameter case (Table 6.9, p.183) the data-based results are again 

close to the theoretical ones with the optimal value of p suggested by the 

data being 1.2 for most types of data. The theoretical AMSE function, once 

again, has both local and global minima (Figure 6.4) for uncontaminated 

N(0,l)  data which are at p = 1.2 and p = 0.5 respectively. The data-based 

method does manage to locate the local minimum ( p  = 1.2) in many cases, 

as indicated by the kernel density estimate off? which is shown in Figure 

6.7 (p.178), with the average p̂  being recommended being 1.47. As in the 

one parameter case however, the theoretical AMSE function is fairly flat 

with the global minimum being 0.004 at  p = 0.5 and the local minimum 



178 

0 1 2 3 4 5 

P 

Figure 6.7: Kernel density estimate of the distribution of fl when f o  = 
N (6, U') for N (0,l)  data with no contamination. 
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0.008 at 1.2 and the range of values suggested is fairly wide. Clearly, if the 

data-based method could be modified to enable the global minimum to be 

located, rather than the local one, efficiency could be greatly improved. 

The fact that it has been possible to locate one of the minima but not the 

other may be due to the value of p at the respective minima and the effect 

that this has on our ability to estimate the AMSE.  Notice, from equations 

(6.5) to (6.6), that the variance includes GP-' terms so that when p < 1 we 

have G to  a negative power. The true distribution function G is estimated by 

the empirical distribution function F, which is generally a very satisfactory 

estimator of G, as is Fi-' of Gp-' for p > 1. When p < 1, however, the 

problem of how to estimate GP-' is far less straightforward. Firstly, the 

empirical distribution function equals 0 at all points less than or equal t o  

the minimum of the data set, which means that for p < 1 the left tail of Fi-' 

is infinity leading to computational difficulties. This problem can be solved, 

in part, by smoothing the function slightly so that it goes close to, but never 

equals, 0. This is done by taking the value of F,, to be the mid-point of the 

height of the step so that for a sample of size 100 it would have 0.005 as 

its lowest possible value and 0.995 as its largest. This modified empirical 

distribution function now behaves more like the true density distribution 

which also tends towards 0 and 1 but never equals them. Problems remain 

however, because these functions tend towards 0 and 1 at different rates and 



180 

the small numerical differences between them are magnified by the inverse 

powers. For example, taking p = 0.5, G = @ and calculating F,, from a 

random sample of N ( 0 , l )  data leads to the data-based estimate of GP-' 

being 14.142 as compared to its true value of 1867.77. Similar problems are 

encountered when estimating (1 - G)P-' with (1 - F,)P-l. 

The problems encountered in estimating the variance when p < 1 may be 

solved by further modifications to F, or by taking a different approach en- 

tirely, such as bootstrap estimation. It might then be possible to improve 

efficiency by obtaining better suggestions for the optimal value of p given 

data which is not contaminated. There is little t o  be gained by such mod- 

ifications when the data is contaminated, however, because the theoretical 

optimal value of p is greater than 1. 

6.7 Conclusions 

Although the parameter estimates obtained using the new method are in- 

deed robust, and compare very favourably to those obtained via maximum 

likelihood, their performance is slightly disappointing nevertheless. The 

theoretical asymptotic mean squared error attainable for data with 10% 

contamination is typically about 0.13 and quickly rises thereafter. When 

the variance is known and there is 20% contamination at 10 in N(O,l) 
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data the minimum A M S E  obtainable in theory is 0.222 which compares 

very badly with the corresponding figure for the optimal B H H J  method of 

0.013. Furthermore, the OH estimate at p = 1 is the same as the Cramh- 

von Mises estimator which for the same data has a slightly larger theoretical 

A M S E  of 0.230. Even with p set at  the optimum value of p = 1.2 the OH 

estimate is still only a little more robust than Crambr-von Mises and much 

less so than B H H J .  It should be emphasised, however, that this lack of 

robustness is inherent in the OH estimator and not the result of the new 

method selecting sub-optimal values for p .  

The main goal of this research was, however, t o  determine how to choose 

a value for p when the true distribution of the data is unknown and in 

this respect the new method has been very successful. Using the A M S E  

function as a joint measure of robustness and efficiency led to the surprising 

discovery that, for the data sets considered here at least, the optimal value 

for p is 1.2. As one would expect, the data-based selection procedure leads 

to  slightly larger MSE’s  than one would obtain by simply setting p = 

1.2 but it performs very well nonetheless and is a reliable alternative for 

optimising the performance of the OH estimator. The problems experienced 

in estimating the variance when p < 1 may have led tc losses in efficiency 

but improving the new method’s performance in this respect would not be 

enough to compensate for its lack of robustness. It therefore seems sensible 
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Distribution Average Optimal p 
Theoretical I Data-based I Theoretical I Data-based 

1 Mean Squared Error 

~ ~~~ 

t o  constrain p to be no less than 1 and accept that for uncontaminated 

N ( 0 , l )  data it may not be possible to locate the either minima. Although 

the resulting loss in efficiency is high in percentage terms the mean squared 

error of the estimates would still be very small. 
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0.9 x 4(2) + 0.1 x AlO(Z) 
0.8 x 4 ( ~ )  + 0.2 x A ~ o ( z )  
0.9 x 4 ( ~ )  + 0.1 x A,(z) 
0.8 x $(z) + 0.2 x A,(x) 
0.9 x 4(~) + 0.1 x A,(x) 
0.8 x +(x) + 0.2 x A,(x) 

t z  
t 3  

t 4  

Table 6.9: Theoretical and data-based mean squared errors of the OH esti- 
mator when f n  = N ( 0 ,  u2).  

1.2 
1.2 
1.2 
1.2 
1.2 
1.3 
1.2 
1.2 
1.1 

0.5 

)ptimal p I Mean Squared Error 
Data-based I Theoretical I Data-based 
Results 

1.47 
1.23 
1.25 
1.22 
1.27 
1.39 
1.44 
1.19 
1.18 
1.23 

I Results 

0.136 
2.398 
0.136 
1.466 
0.114 
0.608 
0.173 
0.079 
0.052 

I Results 

0.170 
2.866 
0.206 
1.478 
0.147 
0.609 
0.216 
0.085 
0.060 
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Chapter 7 

Comparison of the BHHJ, OH 

and Hellinger distance 

estimators 

The results presented in the previous three chapters clearly demonstrate 

that all of these methods can produce estimates which are both robust and 

efficient. However, the methods were neither equally robust nor equally effi- 

cient so the purpose of this chapter is bring the results together and enable 

comparisons to be made. There arc two key aspects to consider; firstly the 

features of the distance measures themselves and secondly the effectiveness 

of the new method in suggesting suitable values for a, p or h. For this 

reason two sets of results for each distance measure are presented in Tables 
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7.1 to 7.3 on pages 189 to 191. Table 7.1 shows the results obtained when 

estimating location with the model fo = N ( 0 , l ) .  The results obtained with 

the Gamma(4,O) model are summarised in Table 7.2 and those relating to 

the model fo = N (8, U ' )  in Table 7.3. The first set of results for each shows 

the mean squared error ( M S E )  obtained by minimising a data-based esti- 

mate of the asymptotic mean squared error function ( A M S E )  as described 

in detail in Chapters 4 to 6. The merits of using this new method are not 

clear because choosing values for cy, p and h in some simpler way often 

leads to  significant improvements in performance over maximum likelihood. 

The second set of results for each method therefore relate to the best sim- 

ple alternative to  minimising the A M S E  which, for the minimum density 

power divergence (BHHJ), Oztiirk and Hettmansperger's criterion function 

(OH) and Hellinger distance (HD), turned out to be (Y = 1, p = 1.2 and 

h =Sheather-Jones bandwidth respectively. The results using maximum 

likelihood and the medianlmad approach are also shown. 

7.1 Simulation results - estimating location 

only 

With the model fo = N ( 0 , l )  (Table 7.1, p.189), using OH or HD in either 

form leads to 89% efficiency. The performance of BHHJ with a = 1 (i.e. 
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using the Lz-distance) is very poor (just 57% efficient) but choosing a value 

for Q from the data via the A M S E  function does increase this to the more 

acceptable level of 89%. Comparing the robustness of the simplest versions 

of the methods first (i.e. cy = 1, p = 1.2 and h =Sheather-Jones bandwidth) 

identifies OH as being the least effective method, often leading to larger 

MSE's  than the median. The HD method is very robust t o  contamination 

at 10 but copes much less well than BHHJ when there is contamination at 3 

or 4. Thus the M S E  for the HD method when there is 20% contamination 

in the data at 3 is 0.113 as compared to 0.028 for BHHJ. Minimising the 

A M S E  function to suggest values for Q, p and h has a mixed effect on 

the performance of these methods. For the OH method choosing p in this 

way has no effect on efficiency but leads to decreased robustness. In the 

case of the HD method for many types of data there is little justification 

for the additional computation involved in minimising the A M S E  function 

because using the Sheather-Jones bandwidth selection procedure to choose 

h appears to be equally effective. However, the new method does lead to 

smaller MSE's  when there is contamination at  3 or 4 and so should not be 

dismissed out of hand. Applying the new data-based selection procedure 

to the BHHJ method led to significant improvements in its performance 

with small increases in robustness being supplemented by greatly increased 

efficiency. 
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7.2 Simulation results - estimating disper- 

sion only 

When estimating dispersion only with the Gamma(4,O) model (Table 7.2, 

p.190), both OH and BHHJ could be fully efficient. The HD method per- 

formed much less well than expected with just 33% efficiency. The simpler 

alternatives t o  the new method generally led t o  increased robustness over 

the maximum likelihood estimator and mad. The BHHJ method with (Y = 1 

is very inefficient however but minimising the AMSE to obtain an estimate 

of (Y greatly improves this. Unfortunately, this new method could not be 

applied for OH with the Gamma(4,B) model and did not make the HD 

estimator perform any better than it does when simply using the Sheather- 

Jones bandwidth. 

7.3 Simulation results - estimating location 

and dispersion 

The results when both parameters are to be estimated (Table 7.3, p.191) 

echo those seen in the one parameter case. (Note that some entries relat- 

ing to the OH method are blank because the full set of simulations were 

not carried out. It was the least promising and most computionally in- 

t 
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tense of the three methods considered and so was not studied in as much 

detail as the others.) OH is the most efficient (81%) of the three sim- 

pler methods but is less robust than using the m e d i a n l m a d  combination. 

BHHJ (a  = 1) is highly inefficient (54%) but performs generally better than 

m e d i a n / m a d  except when there is contamination at 3. The HD method 

( h  =Sheather-Jones) performs extremely well with contamination at 10 but 

quite badly when the data is contaminated at 3 or 4 or heavy tailed. The 

results obtained by minimising the AMSE function show once again that 

OH performs worse when p is chosen from the data rather than fixed at  

1.2. Selecting the bandwidth h for HD using this met,hod generally leads to 

smaller MSE's  than using the Sheather-Jones bandwidth but the method 

is still unable to cope with the smallest degree of contamination at 3 or 

4, 20% contamination at 5 or heavy tailed data and is just 76% efficient. 

Overall, BHHJ offers the lowest MSE's  for symmetrically or asymmetri- 

cally contaminated data but has the disadvantage of being fairly inefficient 

at the model (72%). 



Table 7.1: Mean squared errors of the BHHJ, OH and HD eatimates of 6 
when .fo = N(B. 1). 

+ 
m 
W 



BHHJ OH HD 
Minimising Minimising h =S-J ’ 

- Distribution mle mad AMSE a = l  p = 1 . 2  AMSE bandwidth 
Gamma(4,l) 0.003 0.018 0.003 0.034 0.003 0.009 0.009 
O.9Gamma (4, I) + O.lGamma(8,l) 0.016 0.023 0.013 0.011 0.016 0.012 0.012 
0.9Gamnza(4,1) + O.lGamma(l6,l) 0.099 0.024 0.006 0.006 0.027 0.010 0.010 



Table 7.3: Combined mean squared errors of BHHJ, OH and HD estimates 
of 9 and U when fe = N ( Q , a 2 ) .  
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7.4 Key points 

The key points arising from the above comparison are as follows and will 

be discussed in detail in the next few paragraphs. The main features of the 

OH method are that it’s highly efficient but much less robust than using the 

m e d i a n  and m a d  t o  estimate location and dispersion respectively, partic- 

ularly so when the percentage of contaminants is 20%. Furthermore, min- 

imising a data based estimate of the AMSE function leads to poorer per- 

formance than routinely setting p = 1.2. The HD method is highly efficient 

and very robust t o  large outliers but copes poorly with heavy tailed data 

and N(0,l)  data with asymmetric contamination at points which are not 

unlikely under the model (such as at 3 or 4).  In these cases the HD method 

performs better than maximum likelihood estimation but worse than using 

the m e d i a n / m a d  combination. Once again, minimising the AMSE func- 

tion as a means of choosing what bandwidth to use does not appear to 

improve the performance of this method. The BHHJ method has the po- 

tential to provide estimators which are both robust and efficient providing 

a is chosen appropriately for the data. The optimal value of cy does vary 

considerably for different types of data, however, so routinely using a spe- 

cific value of a (such as 0.1 or 0.2) is not sufficient to guarantee the optimal 

performance of this method. Therefore the new approach of minimising the 

AMSE function to find an appropriate value for a is very valuable indeed. 
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7.5 Robustness 

The behaviour of these three methods, in terms of their robustness, can be 

explained by considering how their estimators are affected by contamination 

in the data. The influence function is a useful first order approximation to 

asymptotic bias for OH and BHHJ and so, to facilitate easy comparisons, 

the influence functions for both these methods are shown together in Figure 

7.1. The theoretical influence function for the Hellinger distance method is 

known to  be a poor approximation to bias and is therefore not presented. 

Instead a data-based estimate of bias was obtained applying the Hellinger 

distance method to contaminated data. A random sample of 99 data points 

was taken from the N(0,l) distribution and a single contamination point 

added over a range of 500 equally spaced values between + and - 15. Using 

a bandwidth of h = 0.5 the estimating equation was repeatedly solved to 

show how the HD estimate changes with the magnitude of the contamination 

point. This estimate of the bias function (shown in Figure 7.2) will vary with 

different realisations of data and may not have the same inverse symmetry 

that the theoretical version has when both g and fs are symmetric because 

it is based on the distribution of the sample, gn, and not g. Nevertheless, 

each curve has the same general shape and suggests that a higher order 

approximation to asymptotic bias for Hellinger distance estimators, if one 

were to be obtained, would be similar to the influence function for BHHJ. 
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The influence function for OH tends to a specific, non-zero limit (approx- 

imately 1.6) as the magnitude of the contaminant increases. Thus a con- 

tamination point at 100 has no more influence than a contamination point 

at 10 which means the influence function is bounded and the method may 

be classed as robust. However, the magnitude of that influence is around 

1.6 so increasing the percentage of contaminants at 10 from 5% to 10% and 

setting p = 1.2 leads to a similar doubling of the M S E  from 0.025 to 0.051. 

It is clear therefore that this method will not perform well using a normal 

model for N(0,l)  data with large outliers. 

The influence function for BHHJ (with p = 1) redescends to zero for all 

contamination points greater than 3.5 and thus copes better with contami- 

nation at 4 than at 3.  The position of the peak indicates that this method 

would be least robust to contamination with an absolute value close to 1. 

The estimated bias curve for the HD method also redescends but falls much 

more slowly than the influence function for BHHJ and does not return to  its 

baseline until the absolute value of the Contamination point is greater than 

5. This explains why the HD method is not robust to contamination at 3 or 

4 and the peak at approximately 2.5 suggests that this method would cope 

better than BHHJ with contamination at 1. 

Thus it seems reasonable to conclude that, as a result of their influence (or 
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bias) functions redescending to zero, the estimates obtained using BHHJ 

and HD are far more robust to large outliers than those obtained via OH. 

Furthermore, it is the rate at  which the influence (or bias) functions of 

the two density based methods redescend which explains how well the two 

density based methods will cope with Contamination at points which are 

likely under the model. Therefore it seems that in order for a method to 

be highly robust t o  large outliers its influence function must redescend and 

therefore lead to increased sensitivity to contamination at points which are 

plausible under the model. 

7.6 Efficiency 

A widely quoted advantage of the HD method is that it is asymptotically 

equivalent to maximum likelihood when fs = g and yet in these simula- 

tions the method was found to  be slightly less efficient than its rival the 

OH method which does not claim full efficiency (76% vs. 81%). It may 

be that the bandwidth used was inappropriate and led to the sub-optimal 

performance of the method. It could also be the case that sample size or 

number of samples taken were too small for the asymptotic equivalence to be 

demonstrated. Since the poor small sample behaviour of the HD estimator 

has been reported elsewhere (Harris and Basu 1121 developed the "Penalized 
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Hellinger Distance” estimator to address this problem) it seems likely that 

the samples used here were simply not large enough but nevertheless, two 

things are clear. Firstly, the HD method is not necessarily more efficient 

at estimating location or dispersion than many other robust methods and 

secondly for further progress to be made in understanding the interaction 

between bandwidth and efficiency for this method a second or higher order 

expression for asymptotic efficiency, as a function of h, must be obtained. 

The BHHJ method differs from OH and HD in that it is not asymptotically 

equivalent to maximum likelihood when fo = g but equivalent to it when 

cy = 0. This means that when f~ = g both OH and HD are generally quite 

efficient irrespective of the values placed on p and h whilst in contrast, the 

BHHJ is efficient for such data only when cy = 0. The choice of value for a 

is therefore vital t o  ensure the full efficiency of this method. 

7.7 Optimising performance by minimising 

the A M S E  function 

Although the same approach was used on all three of the methods studied 

(i.e. using the AMSE as a combined measure of robustness and efficiency to 

optimise performance) the practical application of this was slightly different 
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in each case. For each distance measure the first task was to derive an 

expression for the A M S E  function for each of the t,hree distance measures 

under consideration and this was used as the basis for deciding appropriate 

values for C Y ,  p and h. For BHHJ this function depended on a and the true 

density g (amongst other things) and so by replacing g by gE the relationship 

between the distribution of data and optimal value for CY could be explored. 

This demonstrated that when estimating both location and dispersion the 

optimal value of a is 0 for uncontaminated N(0,l) data and 1 for symmetric 

or asymmetric contamination. Replacing gE with the data gave a data 

based estimate of the AMSE function which could then be minimised to 

suggest an optimal value for a. This seems to be a fairly effective way 

of improving the performance of BHHJ, as demonstrated by the increase 

in efficiency from 54% t o  a more acceptable 72%, but there is scope for 

further improvements in the performance of this new method, particularly 

at the model. One possible course of action would be to try to estimate 

the AMSE more robustly in the hope that the value suggested for a would 

then be closer to the optimal. 

In the case of OH, replacing g by gE and G by G, in the AMSE function 

led to the surprising discovery that p = 1.2 would be optimal (or close to  

optimal) for all the types of data considered. For completeness, a data based 

estimate of the AMSE function was obtained and minimised as with BHHJ 
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but, as one would expect, this data-based approach led to generally larger 

MSE's  than simply using the optimal p = 1.2. The fact that p = 1.2 was 

found to be optimal for the types of data studied here does not necessarily 

mean that this value would be optimal for every possible type of data but it 

does demonstrate the merits of assessing robustness and efficiency jointly in 

this way because the notion that p = 1.2 might be a sensible choice was not 

identified when these two properties were considered separately by Ozturk 

and Hettmansperger [23] in their paper. 

The case with HD was slightly different again because the theoretical A M S E  

function, obtained by replacing g by gc, did not depend on the bandwidth 

h at all. This meant that a data based estimate of the A M S E  function 

(which does depend on h)  could be obtained and minimised as with the 

previous two methods but there is no means of knowing how far from op- 

timal the suggested bandwidths are nor whether a single value or formula 

for the bandwidth might be sufficient to ensure the acceptable performance 

of this method. Furthermore, although applying the new method did lead 

to consistently smaller MSE's  it is not clear whether the improvement was 

so small because the Sheather-Jones bandwidth performs very well anyway, 

because the expression for the asymptotic variance term in the AMSE was 

poor or because of the usual problems encountered in estimating a func- 

tion from data. It is therefore imperative that further work is carried out 
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to obtain a reliable second or higher order approximation to bias so that 

the relationship between bandwidth, efficiency and robustness can be fully 

explored. 

7.8 Computational issues 

Each of the methods studied presented different computational challenges. 

The BHHJ method is the simplest to implement because there is no need 

to estimate the true density directly from data, however, multiple roots are 

possible when the degree of contamination is high so applying this method 

is not always straightforward nonetheless. The computer programs for the 

OH method took considerably longer to run than those for BHHJ because 

sums of order statistics are needed instead of averaging over the data. There 

are no multiple roots to contend with however and the empirical distribu- 

tion function is simple to calculate. Applying the HD method requires 

significantly more computation than the other two methods because it in- 

volves kernel density estimates and numerical integration in addition to the 

numerical optimisation procedure which is required by all three methods. 

Furthermore, since the Hellinger distance estimating equation may also have 

multiple roots it is certainly the trickiest of the three methods to  implement 

but it should be emphasised that none of these problems were insurmount- 
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able, for the t,wo parameter problem at least, and the benefits of using this 

method greatly outweigh these disadvantages. 

7.9 Some observations relating to density and 

distribution based estimators 

A very useful benefit of using the AMSE to jointly assess robustness and 

efficiency is that it makes it possible to  compare the performance of several 

very different estimators within a common framework. Thus, having studied 

distance measures based on both density and distribution functions, it is 

now possible to make some general comments concerning the relative merits 

of these two classes of estimator. The following comments are based purely 

on intuition with no attempt being made to justify these suppositions with 

full mathematical rigour. However, they are interesting nonetheless and 

should, at the very least, provoke debate and will hopefully lead to  further 

research. 

An interesting feature of the OH method is that setting p = 1.2 for all 

types of data led to good all round performance. The fact that p = 1.2 

is optimal for robustness can be easily determined by examination of the 

influence functions (Figure 3.14, p.68). These influence functions share the 
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same general shape for all values of p but are bounded at different points so 

the most robust method is clearly the one which gives large data points the 

least influence. The optimal value for p with regard to efficiency is p = 0.57 

but despite being sub-optimal putting p = 1.2 lead to acceptable efficiency. 

This is because the influence functions for many values ofp are superimposed 

within the region in which uncontaminated N(0,l) data is likely to  fall (i.e. 

between t and - 3) so although a particular value of p may lead to greater 

efficiency there is little loss in choosing any p > 0.5. This hypothesis is 

supported by investigations regarding efficiency which were carried out by 

Oztiirk and Hettmansperger when the distance measure was proposed and 

showed the method to  be highly efficient at estimating location for many 

values of p .  

Extending the notion that the shape of the influence function within the 

range + and -3 for N ( 0 , l )  data indicates efficiency to HD and BHHJ is 

also intriguing. If one considers the influence function for the maximum 

likelihood estimator to be the ideal for efficiency and compare it to the 

influence function for BHHJ (with (Y = 1) and estimated bias function 

for HD the difference between the two methods in terms of efficiency can 

also be explained. Within the range of interest the estimated bias function 

for the Hellinger distance (Figure 7.2, page 197) is roughly the same as 

the influence function for the maximum likelihood estimator and so fully 



204 

efficient. In contrast, the influence function for BHHJ with CY = 1 (Figure 

7.1, page 193) is very different t o  that of maximum likelihood in the region 

of interest, having peaks at fl, which may explain why this method is so 

inefficient. 

In conclusion, my view is that if one were to  construct the influence func- 

tion of an ideal (i.e. simultaneously robust and efficient) estimation method 

it would have the following features. Firstly, to ensure robustness to large 

outliers it would redescend and be approximately zero for all values out- 

side the likely range of the N(0,l) distribution. For maximum efficiency 

this influence function should closely resemble that of maximum likelihood 

within the range + and -3. The ideal estimation method would therefore 

be density based and very similar to the Hellinger distance. 

It should be emphasised however that, as in the case of BHHJ, it is not 

strictly necessary to construct an estimator in this way to guarantee robust- 

ness and efficiency. The BHHJ method provides a bridge between maximum 

efficiency (with CY = 0) and extreme robustness (CY = 1) so providing there 

is a reliable way of choosing CY appropriately its performance will rival (and 

possibly exceed) that of the Hellinger distance. 
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7.10 My preferred method 

In comparing these methods the most important question one should ask 

is "which of these methods would you use in  practice and why?". Despite 

there being so little to choose between the two density based methods in 

terms of performance B H H J  would certainly be my first choice quite simply 

because it is the easiest to use and understand. Recall that the estimating 

equation is 

n dfs 1 
0 = fi (z) -dx - - 2 f? (Xi) U (Xi) ./ d@ i= l  

where Xi is the ith data point and U is the score statistic. 

A useful feature of this method is that for given values of a,  l? and U the 

first term in this estimating equation is constant and the other is just the 

average of n functions which are centred at 6'. Notice however, that when 

fo (x) = N ( 0 ,  U ) ,  x and f? are interchangeable so the second term could also 

be thought of as the average of n functions, each centred at the datapoint 

Xi. This means that for the normal family of models at least, it is quite 

easy to visualise the effect of each data point on the estimate of location 

which although of limited practical use, because the same does not apply to 

the estimate of dispersion nor indeed to location under many other models, 

does enable one to develop an intuitive feel for the method. 
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Another advantage of B H H J  is that it is equivalent to maximum likelihood 

when (Y = 0 irrespective of the distribution of the data. This means it is pos- 

sible to calculate and plot a sequence of estimators with a = O , O . l ,  0.2, ..., 1 

(as described in Section 4.6.4, p.108) which relates the most efficient esti- 

mate based on a data set to a highly robust one. The shape of this graph 

may be used to  identify certain types of contamination in the data or situa- 

tions in which the method has broken down, something which is not possible 

with either of the other two methods. 
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Chapter 8 

Conclusions 

The asymptotic mean squared error is a useful joint measure of the 

efficiency and robustness of estimators. 

The asymptotic mean squared error function may be used to determine 

the optimum value for a tuning parameter in a distance measure. 

Asymptotic relative efficiency may be too harsh a measure of the per- 

formance of estimators at  the model. Applying a fairly inefficient es- 

timation method to uncontaminated data does not necessarily result 

in large mean squared errors. 

The optimum value for p in Oztiirk and Hettmansperger’s criterion 

function is 1.2. 

Minimising a data-based estimate of the asymptotic mean squared 
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error function leads to reasonable suggestions for a,  p and h in the 

minimum density power divergence, Oztiirk and Hettmansperger’s cri- 

terion function and the Hellinger distance respectively. 

The derivation of some higher order approximation to  bias (similar 

to the influence function) for Hellinger distance estimators would be 

extremely useful and informative. 

Of the three estimators considered here, my preference is for the min- 

imum density power divergence (BHHJ). 
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Appendix A 

Asymptotic properties of 

estimators 

A.1 Derivation of the asymptotic mean and 

variance of the BHHJ estimator 

The density power divergence is defined as 

where 6' = (O,u, . . . , u ) ~  is a vector of n parameters from the model density 

fo, g the true density and 0 5 a 5 1. 
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Differentiating with respect to 8 gives the asymptotic estimating equation 

dfa 
- C E ) ~ ; ( Z ) -  - (1 + dd, d8 - J [(I + d8 a 

U (6') = f , F ' ( z ) ~  (2) - fs"(z).a (2) 9 (2) dz J J' 
which can be set equal to zero and solved to give the parameter 8, 

The true density g is unknown and must therefore be estimated in some way. 

The second integral in the asymptotic estimating equation, 

is the expected value of fi(z)ue ( z )  over g and so can be estimated by tak- 

ff(z)tis ( z )  g (2) dz 

ing the average of the function over the data. The estimating equation is 

therefore 

The solution to U,(€') = 0 is the BHHJ estimator, &. 

Subject to certain regularity conditions (see p.82 of Azzalini (21 for details), 

the asymptotic mean and variance of the BHHJ estimator 0, is obtained 

by expanding U,,(&) about U,(@,) using the Taylor series expansion 

(- ) 
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where UA(8,) is the vector of first derivatives and U;(Se) the matrix of 

second derivatives. 

The denominator, UA(0,), can be replaced with its expected value E(UA(8,)) 

(as a consequence of the "Law of Large Numbers") and the asymptotic mean 

and variance of +(e ,̂ - 0,) derived as follows 

The expected value of U,(@) with respect to the true density is 

Thus, E(U"(0,)) N U (Se) = 0. 
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E(U;(e)) = (1 + a)ug ( z )  u; (2) f S " + ' ( Z ) d Z  - fS""(z)is(z)dz J J 
n " 

The central limit theorem applies to U,,(e,) and so the asymptotic distri- 

bution of fi(& - e,) is Normal with 
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A.2 Derivation of the asymptotic mean and 

variance of the Hellinger distance esti- 

mator 

The following derivation of the asymptotic mean and variance of Hellinger 

distance estimators is obtained by using Taylor series to approximate both 

the estimating equation and kernel density estimate Zj2. The original aim 

was to obtain a second (or higher order) approximation to the asymptotic 

variance which would depend on the bandwidth h and therefore allow the 

asymptotic mean squared error ( A M S E )  function to  be expressed as a 

function of h. This function could then be differentiated and solved to 

find the minimiser, the optimal bandwidth. Unfortunately, as explained in 

Section 5.2 (p,118), this asymptotic expansion does not appear to converge 

and so could not be used in this way. However, it should be emphasised 

1 
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that the first term in this expression does agree to the formulae given by 

Beran [6] and was therefore used to obtain an expression for the A M S E  

function. The full derivation (including the higher order terms which were 

later discarded) is presented here. 

The Hellinger distance H ( 0 )  is defined as 

2 
H (0) = / (j! (x) - g; (x)) dx 

= 2 - 2 fa% (.)si (2 )dz  S '  
where 6' = (0,0, ..., w ) ~  is a vector of n parameters from the model density 

fa and g the true density of the data. 

Differentiating this function with respect to 0 gives the asymptotic estimat- 

ing equation 

H (6') = - / g ;  (z) j i i  (z) fe (z) d x  

= - / s ( z ) g ( x ) d x  

JL 
G' and s = where fa = 

Solving H (0) = 0 yields the asymptotic Hellinger distance estimator, O1. 

The true density of the data is not usually known and must therefore be 

estimated from the data. Replacing g with a kernel density estimate & 
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gives the estimating equation 

1 

g(8; h)  = - & $  (z) fi5 (x) fe (x) dx s 
The HD estimates, denoted by i& t o  emphasise their dependence on the 

bandwidth used in the kernel density estimate, are obtained by solving 

I?(e; h)  = 0. 

Subject to certain regularity conditions (see p.82 of Azzalini [2) for details), 

is expanded about 2 (81) using Taylor series to give the following 

approximation 

where *(SI) is the vector of first derivatives and E?"(&) the matrix of 

second derivatives. 

The vector @(&) can be replaced with its expected value E 

H'(81) ("Law of Large Numbers") and the asymptotic mean and variance 

of fi (& - 81) derived as follows 
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Differentiating H ( 8 )  with respect to 8 gives 

H' (8)  = - S (z) g (x) dx .I' 
2 

where f~ =$$, s = -fQ-, j~ = and S =$. a 

Hence H' (0,) = H' (8)ls=e, 

Since E( f i (8 ;  h ) )  = - s E(?; (x) )fi5 (x) f~ (a) dx we need an expression 
1 

1 I 

for E(?: (x) ) .  This is obtained by rewriting $2 (x) as 
1 

and using the binomial expansion to express 3: (x) as a power series. Thus, 

utilising the expression for the expected value of a kernel density estimate 

given in equation A.6 (p.226), gives 

where Kz = ~ - ~ K ( u ) u Z d u ,  f~ = %, s = &, g"(z) = & d2g 2) and 

The first term in this expansion is the asymptotic estimating equation H ( 0 )  

and so, assuming that the later terms are ignorable, Oh converges to O1. In 
h 
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general is not the location of the true distribution g so & is a biased 

estimate of the true location 8,. However, when fe = g there is no bias 

The variance of (0) is obtained from 

as follows 

Again making the substitution $ (z) = (1 + Fn(z)-d4)  g(2) + a power 
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series for 4- can be obtained as follows 

Taking expectations over the true density g leads to 
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where V (&) = E [(& - E &))'] and E (&) = E (& - 9)  

Thus, 
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r = 3, t = &and U = %. 

Utilising the expressions for cou(&(x), & ( y ) ) ,  s Kh (x - z )  s (5 )  dx, 

s Kj, (z - z )  g ( x )  dz and s Kh ( y  - z )  s ( y )  d y  identified as equations (A.4) 

to (A.7) on pages 225 to 226 the first term (A. l )  in this expression becomes 

a 9  f i 9  

where Kz = s_”, K(u)u~~u, s” (z) = d2s & z and 9” (x) = &. d Z g  z 

Utilising the relationship 
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and equations A.4 to A.8 on pages 225 to 227 the second and third terms 

(expressions A.2 and A.3) can each be shown to be 

The first few terms in the expression for the asymptotic variance of g(0) 

are therefore 

d 2 s  2 where K2 = f: K(u)u2du, j8 = %, s = A, s" (z) = # and g" (z) = 

W. 

The central limit theorem applies to fi! (e) so &(& - 6'1) has an asymptot- 

ically Normal distribution with E(&(& - 01)) and U C N ( ~ ~ ( & ,  - 6'1)) being 

&-'A and J-'KJ-' respectively where 

A = - s (x) g " ( Z ) K z  d~ 
h2 4 .I 
.I J = s (z) g (z) ds 
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The first order approximation to the asymptotic mean and variance of 

J;E(dh - 0,) is obtained by ignoring the higher order terms in A and K 

to give 

E(&(& - 01) = 0 

where 

J = S (z) g ( x )  dx J 
and 



225 

A.2.1 Some useful expressions 

X-- z  dx 
Substituting U = ~ and du= -- 

h h 

- - - L-m ~ K ( u ) s ( z  + uh)hdu 

uZh2 
2 

m 
- K(u)[ s ( z )  + uhs'(z) + -s"(z) + ...I du 

- 1, m m 
K ( u ) s ( z ) ~ u  - ~ s ' ( z )  K ( u ) u ~ u  sm 

m 
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(-4.7) 
h2gf f (y )  Kz 

2 Similarly, E (Kh (y - z ) )  Y g(y) + 

n 
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Therefore 

A.3 Derivation of the asymptotic mean and 

variance of Ozturk and Hettmansperger’s 

criterion function estimator 

The criterion function is defined as 

[G’(z) - F ; ( x ) ] ’ d ~ +  [(I -G(x) ) ’ -  (1 -Fe(x))’]’dx s 
where 0 = ( O , c r ,  

bution Fe, G is the true distribution function and p > 0. 

is a vector of n parameters from the model distri- 

Differentiating this function with respect to 0 gives the asymptotic estimat- 

ing equation 
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which can he set equal to zero and solved to give the parameter 8,. 

The true distribution function G is usually unknown however and is there- 

fore estimated by the empirical distribution function which leads to the 

estimating equation 

dFe ( x )  d x  X (8; p )  = 2p F,P (5) Fi-’ ( x )  ~ s dB 

dFa (XI dZ 
-2p 

+2p (1 - Fa (x))””-’ 

(1 - F, (z))” (1 - FB (x))”-’ 7 
WdX (A.lO) 

s 
s dB 

The solution of x ( B ; p )  = 0 yields the OH estimator, &,. 

Subject to certain regularity conditions (see p.82 of Azzalini (21 for details), 

the asymptotic mean and variance of the OH estimator is obtained by 

expanding X 0,; p about (6’”; p )  using Taylor series as follows 7- ) 

where ?(O,;p) is the vector of first derivatives and ?(B,;p) is the matrix 

of second derivatives. 

This leads to 
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Replacing 2 ( O p ; p )  with its expected value E ( 2 ( e p ; p ) )  (as justified by the 

"Law of Large Numbers") the asymptotic mean and variance of - 0,) 

can be derived as follows 

The expected value of ( 0 ; p )  with respect to the true distribution is 

Similarly, E(?(Op; p ) )  = A'(@,; p )  which is obtained by differentiating X (9; p )  
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with respect t o  B and evaluating at B = 0,. 

+ 2 p ( p  - 1) J (1 - G (x))” (1 - Fa (x))”-” [TI [?]‘dx 
+2p (1 - Fa (x))’”-’ d2Fa (x) dx  

do2 s 
The terms of equation A.10 which do not involve F, have no effect on the 

variance of i ( 0 ;  p )  therefore 

var(x(8;p)) = 4p2var [/ [F: ( x )  FBp-’ (x) - [I - F, (x)]” [1 - Fe (x)]”-’] y d . ]  
~ 

= 4p2 / v ( s )  v (t)  Cov (FL ( s )  , F: ( t ) )  ds dt (A. 1 la) 

+4p2 / / w (s) w ( t )  Cov (( 1 - F, (s))” , (1 - F, (t))’) ds d t  (A. l lb)  

-4p2 / /v(s)w(t)Cm (F: (s) , (1 - F, (t))”) ds  d t  

-4p2JJw(s)u(t)Cov((1 - F,(s))”,FL(t))dsdt  

(A.llc) 

(A. 1 Id) 
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P-1 d F s ( z )  where v (z) = F;-' (z) and W(Z) = (1 - Fe (z)) 7 

Now since 

Cow (F," ( s )  , F," ( t ) )  N , ' G ( S ) ~ - ~ G ( ~ ) ~ - ~ C O U ( F , ,  ( s )  , F,, ( t ) )  

= KG(s)P-lG(t)P-' [G (min ( s ,  t ) )  - G ( s )  G ( t ) ]  
2 

n 

The first term in this expression for the variance (A. l la )  can therefore be 

simplified as follows 

dFe(s)  p-i ____ dFe (t)Cov (F: ( s )  , Fl ( t ) )  ds d t  'PZ 1 SF:-* ('1 F F e  ( dB 

= 9 n J / ~ ( s ) ~ ( t ) [ G ( m i n ( s , t ) ) - G ( s ) G ( t ) j d s d t  

= !f 11 r(s ) r ( t )  [G ( s )  - G ( s )  G ( t ) ]  ds d t  

+g // T ( s ) r ( t )  [G ( t )  - G (s) G (t)]  ds d t  

S < t  n 

n 

- _ -  4p4 /j<' T ( s ) T ( ~ ) G  (s) 11 - G (t)] ds d t  
S < t  n 

+@ // T(s)T(t)G ( t )  [l - G (s)] ds d t  

= 8f // r(s)v(t)G (s) [l - G (t)] ds d t  

1<s n 

n S < t  

(1 - G (z))~-' p-1 where T (z) = FBp-l (z) W G P - ' ( s )  and U(.) = (1 - Fe (x)) do 

Similarly, 

Cov((I-Fn(s))',(l-Fn(t))') 

N p2 (1 - G(s))'-' (1 - G(t))'-' Cov(Fn (s) , Fn (t))  

= - (1 - G(S))~-' (1 - G(t))P-' [G (min ( s , t ) )  - G (s) G (t)] P2 
n 
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COV (Fl(s) > (1 - Fn (t))') 

N p2Gp-' (s) (1 - G(t))P-' Cow(F, (5) , F, ( t ) )  

= -GP-' (s) (1 - G(t))P-' [G (min (s, t ) )  - G ( s )  G ( t )]  P2 
n 

and 

which means that the second to fourth terms in the expression for the 

variance (A.llb-A.lld) can also be simplified to give 

= 11 [U (s) U ( t )  G (5) (1 - G ( t ) ) ]  ds dt, 
n s < t  
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P-1 dFe(z) 
d~ , where U (z) = F:-' (z) v, w(.) 

T (x) = GP-' (x) V F ; - '  (x) and U (x) = (1 - G (x)) 

(1 - Fe 

(1 - Fe (.))"I p-1 d!%(r)  
7 

Therefore, 

U a r ( x ( 8 ; p ) )  = d 11 T(s)T(t)TG ( s )  [l - G (t )]  ds d t  
71 s<t 

+8c 11 U (5) U (t)T G (s) [l - G ( t ) ]  ds  d t  

-4e 11 T ( s )  U (t)* G ( s )  (1 - G ( t ) )  d s  d t  

-d /J T ( t )  U ( s ) ~  G ( s )  (1 - G ( t ) )  ds d t  

-4g // U(s)l-(t)TG (s) (1 ~ G ( t ) )  ds d t  

-4g 11 u ( ~ ) T ( s ) ~ G  ( s )  11 - G ( t )]  ds d t  

n s<t 

+8f// u ( s ) u ( t ) T G ( s ) [ l  - G ( t ) ] d s d t  

-8f I/ T ( t )  U ( s ) ~  G (s) (1 - G ( t ) )  ds d t  

- 8 2  // U(t)r(s)TG ( s )  [I - G ( t ) ] d s  dt  

n s<t  

71 s<t 

11. 8 . 3  

71 3<t  

n s i t  

n s < t  

= 8c /I T(s)T(t)TG (5) [l - G ( t ) ]ds  d t  

n s<t  

11. s i t  

Q<t 

= 82 // (T ( S) + U (5)) (T ( t )  + U (t))T G (s) (1 - G ( t ) )  ds dt  

The central limit theorem applies to (0;p) (because the integrals may be 

replaced by sums of order statistics as detailed in Appendix C, p.246) so 

Jsi(B^, - 0,) has an asymptotically Normal distribution with 

E(&(iip - 0,)) N- 0 
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and 

where 

K = 2 1 . 2 1 1  ( r  (s) + U (s)) (T (t) + U (t))* G (s) (1 - G ( t ) )  ds dt 
3<t  

and 

When f a  = N (e, D’) the expression for J can be greatly simplified because 

the terms - 2 p s  FF-’ (2) v d z  + 2 p s  (1 - FS (z))’~-’ w d z  in the es- 

timating equation sum to zero for the location parameter and are constants 
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for the dispersion parameter. This leads to 

! iE ia -_ l  Z Q  Now when fa = N ( B , a 2 ) ,  % = -If 0 and d o  ,, f a  (XI so 

making the substitution z = (y) leads to the general expression 

d 
J = - d e  [ /Gp-’  (za + 8) QP-’ ( z )  11, ( z )  d z ]  

-- d [ / [ l - G ( ~ ~ + 8 ) ] ~ - ’ [ 1 - @ ( ~ ) ] ~ - ’ 1 1 , ( ~ ) d ~ ]  
d e  

where 11, represents either -0% or -0% as required. After differentiating 

with respect to 8 and reverting to the original parameterisation, it can be 

shown that 

dFa 
+ p  GP-’ ( x )  Fi-’ ( x )  z g  (x) dx. 
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Thus, when fo = N (0, U')  , the asymptotic variance of &(0, - 0,) is given 

by J-'KJ-'  where 

K = 2 // (T (s) + U (s)) (T ( t )  + U ( t ) )T G (s) (1 - G ( t ) )  ds dt 
s<t 

(1 - F@ (.))"-I 1- 
T (z) = GP-' (x) T F : - '  (z) and U (z) = (1 - G (z))"- 
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Appendix B 

Influence Functions 

B . l  Influence function for the BHHJ estima- 

tor 

The estimating equation for the BHHJ estimator is defined as 

where f~ is the model, g the true density and uo the score function 

Substituting the density function g E ( x )  = (l-&)g(z)+E6<(z) for g(z) enables 

the behaviour of the estimating procedure when the data contains outliers 

to be investigated. This dependence on E affects the parameter estimates 
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so 8, replaces 8 and the estimating equation becomes 
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Letting E -+ 0, yields the influence function, %, as follows 

where 

When f0 = g = N (e, oz) this reduces to 

B.2 Influence function for the Hellinger dis- 

tance estimator 

The estimating equation for the Hellinger distance estimator is as follows 

Substituting the density function g E ( z )  = ( l -&)g(z)+E6c(z) for g ( z )  enables 

the behaviour of the estimating procedure when the data contains outliers 

t o  be investigated. This dependence on E affects the parameter estimates 

so 8, replaces e and the estimating equation becomes 
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Differentiating this revised estimating equation with respect t o  E gives 

Letting E + 0 and rearranging to give the influence function, % gives 

dfe 

where 

J = gi(z)fo-T(s)-dz ' d2fe - 3 - [%lTdz.  s d82 

When fo = g = N(8,l) this reduces to 

de, - = ( e  - 8) .  
dE 

This is the same as the influence function for the maximum likelihood esti- 

mator. 
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B.3 Influence function for the OH estimator 

The estimating equation for the OH estimator is as follows 

O = / [l - G (x)]" [l - Fa (x)]"-' x d x  dFo - J(l - Fa (x)]""-' -&z dFo 
dB 

Substituting the distribution function G,(x) = (l-E)G(x)+&A<(x) for G ( x )  

enables the behaviour of the estimating procedure when the data contains 

outliers to be investigated. This dependence on E affects the parameter 

estimates so 8, replaces 8 and the estimating equation becomes 

Differentiating with respect to  E then gives 
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NOW using the relationships 2 
gives 

%'$, 3 = $$ and 2 = Q, G 
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Letting E + 0 yields the influence function, g, as follows 

where 

dFa 
s ( z ; p )  = p [(l - G (x))”’ (1 - Fo (.))”-I + Gp-’ (x) I$-’ (x)] (A, (x) - G ( x ) )  x d x  .I 
and 

8 Fa t (5; p )  = [ (1 - G (.)I” (1 - Fa (.)IP-’ *dx 
T 

- ( p  - 1) 1 [I - G (x)]” (1 - FS (z)]’-~ [ z] [ s] dx 
@FS 

+ ( 2 p  - 1) [l - Fo (X)]’”-” [%] [%] dz 

&Fa - 1 GP (x) I$-’ (z) =dx 

- (p - 1) Gp (x) FBp-’ (x) [ z] r$] dz 

+ Fip-’ (x) - d ~  

+ ( 2 p  - 1) 1 FP-* (x) [ 21 [ 21 dx. 

- J[1 - Fa (z)]””-’ s d x  
T 

J 
T 

PFS 
dS2 s 1’ 

When f~ = N (8, uz)  t (x;p) can be simplified greatly because the terms 

- J F82P-l ( 5 )  v d x  + J (1 - Fa (z))-”~-’ v d z  in the estimating equa- 

tion [B.1] sum to zero for the location parameter and are constants for the 
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dispersion parameter. Thus: 

d2 Fa 
- 

d82 

- ( p  - 1) J GP (x) F:-’ (x) [ z] [ $1 dx 

GP (x) FBp-’ (x) -dx 

T 

= / [l - G (.)Ip [l - Fa (.)Ip-’ dFa]  dx  

- GP (x) $, PBp-‘ ( x )  

-- [I Gp (x) Ff-’ ( x )  

d dFa 
d8 

- - - [I [l - G (.)Ip [l - Fa (z)]”-’ ~ d x ]  

d 
d8 

& = - L  z e  Now when fa = N (8 ,  U * ) ,  % = - i f s  ( x )  and (+) f a  (x) SO 

making the substitution z = (v) leads to the general expression 

d 

-- d [ ~ G p - ’ ( z ~ + 8 ) @ p - 1 ( z ) ~ ( z ) d s ]  

J = - d8 [I [I - G (ZU + 8)]”-’ [l - @ (z)]”-’$ ( z )  dz] 

d8 

where $ represents either -U% or -0% as required. After differentiating 

with respect t o  8 and reverting to the original parameterisation, it can be 

shown that in this case 

dFe 
J = p [l - G (x)]”-’ [l - Fa (x)]”-’ xg (x) dx  

dFe 
I 
+ p  GP-’ (z) Fl-’ ( x )  %g (z) dx. 
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The influence function for the location parameter when fo = N ( 0 , i )  is 

therefore 
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Appendix C 

Estimating equation for the 

OH estimator as the sum of 

order statistics 

The estimating equation for the OH estimator with fo = N ( 0 ,  u2) is 

where F,, is the empirical distribution function and z = (y) . 
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The empirical distribution F,, (x) is calculated using the formula Fn(x) = 

1 I (Xi I x) where I is an indicator variable and n is the sample size. 

This is a step function with values as follows 

" 

n 

i=O 
Thus for a generic function h (z) , h(x)Fl (x) dx = $ C ip J;&+'' h(z)dx.  

Applying this to the first term of the estimating equation (C.l) for the 

location parameter gives 

dz 
de 1 F i  (x) e-' (z - 8) & (x - 0) -dx 
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where c, = (i)” - (%)” 

The second term (C.2) is 

Using the same approach for the third term (C.3) as with the first leads to 

n 

= 1 { 1 - [l- (X@) - e ) ] ”  
i=l P 

and the last term (C.4) is 

The estimating equation for the location parameter in the Normal family 

of models can therefore be written as 
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n n 

0 = -- 1 - cia: (X( i )  - 8)  + - 1 - c: [l - IDo (X( i )  - R), '}  
P i *=1 1 { i= l  
n 

Similarly, for the dispersion parameter 2 = -; (G) the first term (C.l) 

is 

dz J dB 
F i  (x) a:-' (z - e)  (x - 8)  -dx 
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The second term (c.2) is 
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The last t,erm ((2.4) is now 

Therefore the estimating equation for the dispersion parameter in the Normal 

family of models can be written as 

n 

0 = -K(03,p - 1) + X c , K ( X ( i ) , p  - 1) + K ( w ,  2p - 1) 
i=l 

" 
+ ~ c : K * ( X ~ , p - l )  - K ' ( c n , 2 p - l )  

i=l 
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Appendix D 

Asymptotic mean squared 

error 

The multi-parameter mean squared error ( M S E )  is E [(d - 0') (8 - e%,'] 
where 0 = 81, BZ, ..., 8 k ) T  is the vector of parameter estimates and 8, = 

(6'1,,82r,...,8~.)T the vector of true parameters. Thus when there are k 

parameters to be estimated the M S E  is a k x k matrix with element [i,j] 

given by E [ (s, - Oi*) (& - Oj.)] for 1 5 z,j 5 k. 

- ( - -  

Assuming that E (B^)  = 0 then this reduces to 

T 
E [ (8 - e,) (e - e,) ] = (e - e,) (e - e , ) ~  + 

where e - 9, is the k x 1 bias vector and WIT e the k x k dimensional 

variance - covariance matrix of the estimators. 

(-1 
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In the two parameter case, when the location and scale of a Normal distri- 

bution are to  be estimated for example, , 8, = ( O s ,  u * ) ~  and the 

mean squared error is 

2 
2 

Assuming E (8) = 0, E [ (6 - 0,) ] = vur(6') $. (0 - E [(c - U*) ] = 

v u r ( Z ) + ( ~ - ~ , ) ~ a n d  E = c o v ( e ; Z ) + ( O - e , ) ( u - ~ , )  

which leads to  

vur(6) + (8 - e,)', 

cov(F; Z) + (e  - 0,) (U - U * ) ,  

cOzI(i7;ij) + (e  - e,) (U - U*) 

vur(Z) + (U  - U,) 
2 I M S E ( ~ ,  $1 = 

In order to obtain a single expression for the MSE (so the minimiser can 

be found), it is common practice to take either the trace or determinant. 

Using the simplest of these two approaches, the trace, leads to the following 

2 MSE(B)  N vur(6) + vur(2) + (e - e,)' + (U  - U,) 
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The asymptotic mean squared error (AMSE) can be obtained by replacing 

the variance and bias components with their asymptotic equivalents which 

gives the multi-parameter A M S E  as 

T 
As.E [ (4 - 0,) (s - 0,) ] = (6' - 0,) (6' - e,)?' + As.uar(B^). (D.l) 

Taking the trace, for the two-parameter case, then gives 

AMSE(8)  Y As.var(5) + As.var(2) + (6' - 0,)' + (0 - a,) (D.2) 

,. 
where As.uar denotes an asymptotic variance and 6' is an asymptotically 

unbiased estimate of 6. 

. 
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