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Abstract

In this study, we explore the relationship between the components of a
hybrid process consisting of a spatial point process and a lattice process using
two-dimensional spectral techniques. Simulated spatial point-lattice patterns
are used to demonstrate how the different cross-spectral statistics can reveal
correlation between the two components. A method to adjust for jumps
that normally occur in the cross-spectral phase statistic is then proposed.
Such adjustment is needed to enable us to calculate the slope of the phase
spectrum which measures the shift between the two components. Several
methods to calculate the slope are investigated. Asymptotic properties of the
cross-spectral statistics are derived and their confidence intervals estimated.
A test that the components are independent is described.

In a study region, lattice processes are observed at regular grids whereas
point processes can be observed anywhere. In order to account for discrepan-
cies that might arise due to this, methods to discretise the point pattern are
suggested. Cross-spectral techniques are then applied to analyse the joint
process of the discretised point pattern and the lattice pattern.

Finally, we apply the techniques suggested above to study the joint prop-
erties of two data sets. The first consists of altitude data of a region in a
rain forest in French Guyana together with the locations of a number of tree
species in that region. The second set consists of altitude data of the Sahel
region of Africa together with location of storms and some of their charac-
teristics. In order to incorporate the storm characteristics in the analysis,
cross-spectral tools used to analyse two components are extended to three

components.
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Preface

The relationship between a spatial point process and a lattice process is
explored in this study using two-dimensional cross-spectral techniques.

In Chapter 1, we review techniques used to study the individual processes.
First- and second-order properties in the spatial and frequency domain for
both processes are studied. Estimates and distributional properties of the
auto-spectral functions, which represent the frequency domain statistics, are
discussed. The estimate of the auto-spectrum, the periodogram, is known
not to be consistent. To overcome this undesirable property smoothing tech-
niques are used. Completely spatially random models and possible alterna-
tives are examined. A test for complete spatial randomness based on the
maximum periodogram ordinate is also reviewed. A number of simulated
examples are provided.

A hybrid process consisting of two components, a spatial point process
and a lattice process, is introduced in Chapter 2. We refer to this hybrid
process as a spatial point-lattice process. Second-order properties in the spa-
tial and frequency domains are proposed for this hybrid process. By analogy
with multivariate time series, see Priestley (1981a), and spatial bivariate
point processes, see Mugglestone and Renshaw (1996b), estimates in the fre-
quency domain, known as cross-spectra, are suggested. These estimates are
based on the discrete Fourier transforms of both components. A completely
spatially random point-lattice process is then introduced. Methods to simu-

late associated spatial point-lattice processes are also given. Cross-spectral



techniques are then applied to investigate the relationships between the two
components of simulated examples.

Several statistics are usually investigated under the flag of cross-spectral
analysis. A statistic that is of interest is the slope of the phase spectrum
which measures the magnitude and direction of the shift (if it exists) between
the two components. However, in most cases the phase spectrum contains
several jumps due to the restriction that its values should belong to the in-
terval (—m, 7). A method which extends the one-dimensional adjustment for
the phase spectrum of multivariate time series is provided in Chapter 3. Fur-
thermore, methods to calculate the slope of the phase spectrum are supplied.
These techniques are then applied to find the slopes of the phase spectra for
some of the examples of Chapter 2.

Asymptotic properties of the spectral estimates are derived in Chapter 4.
In addition, confidence intervals for these estimates are established. A test for
the independence between the two components is given. The test is based on
the coherency spectrum and extends the zero coherency test of multivariate
time series. Confidence intervals and the zero test for some of the examples
in Chapter 2 are also calculated.

In Chapter 5, we investigate a number of methods to discretise the point
pattern. This discretisation is suggested in order to account for artefacts that
might arise because lattice processes are observed at regular grids whereas
events of point processes can be observed at any location in a region. Cross-
spectral techniques are then used to study the correlation between the dis-
cretised point pattern and the lattice pattern. This approach is then used

for some of the examples of Chapter 2.
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Chapters 6 and 7 use the suggested cross-spectral techniques to explore
the relationships between the components of two data sets. The first data set,
the subject of Chapter 6, consists of altitude data of a region in a rain forest
in French Guyana together with the locations of a number of tree species
in that region. In this chapter, we study in detail the relationship between
the altitude data and four of the species. The analyses for the other species
versus altitude are provided in Appendix D. The second data set, which is
presented in Chapter 7, consists of altitude data of the Sahel region of Africa
together with the locations of storms and some of their characteristics. To
incorporate the storm characteristics in our study we extend cross-spectral
techniques of two components to three components.

General conclusions and suggestions for further research in this area are
supplied in Chapter 8. Some appendices are also supplied.

The computations for this thesis were carried out using predominantly
my own computer code written for the Splus statistical package and some

locally available libraries mmspatial and wanddensity.
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Chapter 1

Point and Lattice Processes: A
Summary

In this chapter, we give a summary of point and lattice processes and their
properties. In Section 1.1, a brief introduction to point and lattice processes
is given. Spatial domain properties of these processes are discussed in Sec-
tions 1.2 and 1.3, while frequency domain properties are examined in Section
1.4, The special case of isotropy is reviewed in Section 1.5. The spectral es-
timates for point and lattice processes and their distributional properties are
studied in Sections 1.6 and 1.7. Smoothing techniques for spectral estimates
are investigated in Section 1.8. Models for point and lattice processes are
discussed in Sections 1.9, 1.10 and 1.11. A formal test based on maximum
periodogram ordinates is reviewed in Section 1.12. Examples to illustrate

the use of spectral estimates are provided in Section 1.13.

1.1 Spatial Data: Introduction

In this section, we review basic definitions and terminology used for spatial

point and lattice processes.



A spatial point pattern is a set of locations in the two-dimensional space
within a given region, where events have occurred of particular interest to the
researcher, for example locations of oak trees at Sherwood forest. We refer
to these locations as events and to the region of interest as the study region.
The process that generates the point pattern is known as the point process.
Several methods are used to analyse the spread of events in the study region,

including the following.

e Distance methods are based on summaries of distances between either
a pair of events or an event and an arbitrary point in the study region.
These distances can be used to detect clustering or inhibition of a point
pattern. They are discussed by many authors such as Ripley (1981,
chapter 8}, Diggle (1983, chapter 5) and Upton and Fingleton (1995,

chapter 2).

o Two-dimensional spectral methods measure spatial periodicities in the
data. They have been discussed by, for example, Bartlett (1964},
Ripley (1981), Renshaw and Ford (1983) and Mugglestone and Ren-
shaw (1996b). These methods are extensions of one-dimensional spec-
tral methods for point processes (see Bartlett, 1963; Brillinger, 1972;

Brillinger, 1981).

A spatial lattice pattern is a set of quantitative measurements recorded on
a regular lattice, for example measurements of soil fertility for a given area
taken at regular spacings in an agricultural study. In general, these patterns
arise in planned agricultural trials and in satellite imaging. The process that

generates a lattice pattern is called a lattice process. Analysis of a lattice
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Figure 1.1: Spatial patterns: (a) point pattern represents the red deer occurrence in the
Grampian region; (b) lattice pattern is the altitude data of the study region.

process is provided via either a spatial domain approach using spatial auto-
correlation or a frequency domain approach using spectral analysis. Spatial
auto-correlation methods measure correlation between measurements at pairs
of sites (see Upton and Fingleton, 1995; Cliff and Ord, 1981).

The above terminology is by analogy with time series analysis. Time se-
ries analysis in the frequency domain has been studied extensively by many
authors such as Rayner (1971, chapter 7), Brillinger (1981, chapter 5), Chat-
field (1981, chapter 6), Priestley (1981a, chapter 6) and Diggle (1990, chap-
ter 4). Frequency domain analysis of lattice processes has been discussed by
Rayner (1971, chapter 9), Priestley (1981b, chapter 9), Ripley (1981, chapter
5), Renshaw and Ford (1983), Ford and Renshaw (1984) and Mugglestone
(1990).

Examples of spatial point and lattice patterns are given in Figure 1.1. The



lattice pattern represents the altitude within a subregion of the Grampian
region of Scotland. The point pattern represents the occurrence of red deer
within a given grid square. This data set is an extract from data collected
by the Red Deer Commission. It has been analysed by Buckland and Elston
(1993) and Augustin, Mugglestone and Buckland (1996). So point patterns
arise if interest is in locations of events. However, lattice patterns relate to

measurements made at grid sites.

1.2 First- and Second-Order Properties in the
Spatial Domain

Fundamental functions that describe first- and second-order properties of
point and lattice processes in the spatial domain are reviewed in this section.

Consider a point process, say X. The realisation of X is a set of locations
of events within a study region. The study region is usually denoted by
(. In most cases, §) is assumed to be a rectangular region [0, £] x [0, £5],
and in this study it is assumed that #, and ¢; are integers. The number of
events in a region R is denoted by Ny (R). For brevity Nx(Q) will usually
be written as Nx. The locations of events within £ will be denoted by
a; = (ayj,ay,) for j = 1,..., Nx. Note that vectors will be assumed to be
row vectors. Furthermore, the process X is agsumed to be orderly, that is
only one event is allowed at any location. The first-order intensity function

for this process is defined as (see Diggle, 1983},
An(a) = lim {w}(aeﬁ). (1.1)

Here dNx(a) = Nx{a + da) — Nx(a) is the number of events within a small



neighbourhood of point a, and |da| denotes the area of this neighbourhood
following the notation of Bartlett (1964). Note here that we will subscript
functions summarising the point process by N rather than by X since first-
and second-order properties are derived in terms of the number of events.

The auto-covariance function is defined as

yan(a, a) = lim
|da;],|daz|—0

{E({de (a1) — E{dNx (a;))][dNx (a;) — E(dNx (a2))]) }
|da1||da2| ,

N , E(de(al)de(a ))
= i} { ol }_’\N(al)AN(aZ)’

= /\NN(al,az) - /\N(al))\N(ag) (al -‘,é az;a;,az € Rz) (12)

The function Ayx is known as the second-order intensity function. Since the

m
|da1\,|da2i—>0

process is orderly we have Pr[dNx(a) > 1] — 0 as |da] — 0. Therefore, as
ida| — 0, E({dNx(a)}?) = Pr[dNx(a) = 1] = E{dNx(a}} = Anx(a)|dal|, see
(1.1). Bartlett (1964) includes this term in the complete covariance density

function, x(a;,a,), defined as

ryn(ap, a2) = An(ar)é(a; — ag) + yan(ay, az), (1.3)

where 6(2) denotes the Dirac delta function, see Section A.2.

Now consider a lattice process Y = {4, for b € R?}, where Y}, represents
a measurement made at b. Usually b is taken to belong to a subset of Z?,
and measurements made at Y}, = Y3, 5,y are usually associated with the grid
square [by, by + 1] x [bg, by + 1]. The term quadrat will usually be used to
denote a particular grid square. The first-order moment of a lattice process
is summarised by the mean py = E[Y]. The auto-covariance function of
a lattice process is given by yyy (b, bs) = Cov (Y,,, Yh,) . In what follows,

lattice processes will be corrected for their means.

3



1.3 Stationarity

In general, a process is stationary if all probability statements about the
process within a finite region 2 C R? are invariant under translations of that
region. Stationarity is a fundamental assumption for deriving theoretical
properties in the frequency domain. Often this assumption is relaxed and
a weaker requirement is allowed. A process is said to be weakly stationary
if both the original and translated processes possess the same moments up
to order k (see Priestley, 1981a). In what follows, second-order stationarity
will be assumed, unless otherwise stated. For brevity, we will use the term
stationarity to indicate second-order stationarity.

For a point process, stationarity implies that the intensity function, Ayx{a},
is constant throughout the region and the auto-covariance function depends
on a; and a, only through their difference, ¢ = a; - a,. Therefore, (1.2) and

(1.3) reduce to the following equations, respectively,

Yvn{ar, az) = ywwy(ar — az) = ywn(c} = Avn(c) — /\?\r:
.‘{N]V(al,ag) = KNN(C) = )\N(S(C) + ’}/NN(C). (14)
Stationarity for a lattice process ¥ implies that
E[Y] = puy, aconstant for all b,

Var(Yp) = 0vy, a constant for all b,

and Cov (Ypie, Yo) = 7yv(c).

However, the assumption that the lattice process is corrected for its mean

implies that py = 0. Heuce, vy (¢) = E[YpicYh).



1.4 Spectral Density Function

The spectral density function (or spectrum) for a stationary spatial point
process 1s defined as the Fourier transformn of the complete auto-covariance
function {see Bartlett, 1964; Mugglestone and Renshaw, 1996a; Mugglestone
and Renshaw, 1996b). Hence, the auto-spectral density function for process

X at frequency w is given by
fan(w) :/K:NN(C) exp{—iwcT}dc

= Ay + /nyN(c) exp{—iwc' }dc for w € R?, (1.5)
where ¢ = v/—~1 and 2" denotes the transpose of z. The inverse of (1.5) is
given by

(©) = 15 [ fiwles) explioe o
K =— exp{: :
NN (2m)? NN p

Similarly, for a stationary lattice process Y the auto-spectral density func-

tion is defined by
fyy(w) _ Zh Yyy (h) exp{—ith} if he Zz,
[ vy (h)exp{—iwhT}dh ifhe R

It is worth remarking here that the normalised spectral density function

(1.6)

fyy(w)dw/ai, where of is the variance of the process Y, can be interpreted
as the average of the proportion of the total power contributed by components
with frequencies between w and w + dw by analogy with time series analysis

(see Priestley, 1981a, chapter 4).

1.5 Isotropy

A process is said to be isotropic if the statistical properties of the process

are invariant under rotations. For stationary and isotropic processes the

T



covariance function depends only on the scalar distance between a; and ay,
namely {la1 — aqaf| = |[c]| = /¢} + €5 = t. Therefore, the spectral density
function of a stationary isotropic point process reduces to

fNN(Ld) = fNN(w) = AN + 27 [m t’}’NN(t)JU(tu))dt,
0

where w = /wZ+w?and Jo(z) = (2n)~' [T exp{—izsinu}du is an un-
modified Bessel function of the first kind of order zero. Similarly, for a

stationary isotropic lattice process the spectral function is given by

fyy(w) = fyy(w) =2 -/[;00 t"}fyy(t)JQ(tW)dt,

where Jy(z) is as defined above.

1.6 Estimation of Spectral Functions

1.6.1 Auto-periodogram of a Point Pattern

Let X = {(ay;,ay);7 =1,...,Nx} denote the set of events within a rect-
angular study region © = [0,£] x [0,4,]. An estimate for the auto-spectral
function, the auto-periodogram, is given in terms of the discrete Fourier trans-

form {DFT) of the co-ordinates of the point proéess as

Fny(wn) = Evnl{wy,we)v = Fn(p,¢)Fn(p,q), where (1.7)
Fy(p,q) = An(p,q) +iBn(p, q)
] X
> exp{—2mi{pay; + gas;)/Nx} (1.8)

VLo

1 Nx
= ﬁ Z exp{ —E'WNaI},
=1

where wy = {(wy,wy)n = (27p/Nx,2nq/Nx) and p = 0,=1,%£2,...; ¢ =

0,+1,£2,.... Although in principle Fyy(wy) can be calculated for all wy €

8



R?, it is evaluated only at the frequencies (wy, w,) v defined above, by analogy
with time series analysis (see Priestley, 1981a, chapter 6). The range of
frequencies is usually limited by the data analysed.

If X is a homogeneous Poisson process, see Section 1.9.1 for definition,
then the bias B(wy) of the estimate Fyn(wy) is given by Mugglestone (1990)

as

(L9)

. &iw . Eow 2
sin(-2})  sin{-%%)
Blwy) = 26,603 { mﬁ X 32_&.’;2
2 2

This result is an extension of the one-dimensional case which was given by
Bartlett (1963). A detailed derivation for the one-dimensional case is given

by Cox and Lewis (1968). Computing the bias term gives

0 for wy or one of its components a non-zero multiple of 27,

B(UJN) = 2€1€2Ai{ for Wy —* 0,
< 2£16,)%  otherwise.

Hence, the bias is maximum near zero frequencies, For processes other
than the Poisson process the bias does not usually have an explicit representa-
tion such as (1.9). However, it is possible to show that the bias is maximum
for wy = 0 (see Cox and Lewis, 1968, chapter 5). To eliminate the bias
near zero, Bartlett {1964) suggests that the co-ordinates be standardised by
replacing a1; and ag; by a); = Nxay;/6 anday;, = Nxag;/ly. Also, if the

periodogram values are not standardised they will start to repeat after Ny



rows and/or columns. Using the above standardisation (1.8) reduces to

Nx
Fy(p.g) =Y _ exp{—2mi(pa;; + ga};)}

j 1

= Zexp{ 21 ( pai] + qzjj)} (1.10)

* * j — 72 2
where (ai;,a3) = (35 %) and w = (wp,wg) = (G, FL). Moreover, the
DFTs of the standardised and original processes are related as follows,

Ny
Fy(p.g) = D exp{—2mi(pai;/6y + gaz;/2)}

i=1

= v Elgg X

{\/ﬁ by =
Vil Fy pNX/fla qNx /€2)

= VHLEN( ).

ZGXP{ Q?TﬁN ((pNX/fl}Gij+(‘2NX/E2)‘323')}}

Therefore,

Fyn(w) = Frn(wp,wg) = Funlp, @) Fn(p,q)
== £1£2 x FN(p’a q,)F(p"a ql)

= LHbFyn{wy, wy )N

. . q2irp 2m _ ¢2apNy 2mgN
where (wp,w,) = (52,70 and (wy,wp)yv = (5575 F5E). Therefore,
(wp, wq) = (wy,wy)y. Hence, Bartlett’s standardisation not only eliminates

the bias near zero but rescales the periodogram as well.

10



1.6.2 Auto-periodogram of a Lattice Pattern

For a lattice pattern, ¥ = {Yjp,4,, (01 = 0,..., &y - 1;00 = 0,... , o = 1)},
corrected for its mean, the auto-spectral function can be estimated in terms
of the DFT of the process Y by Fyy(w) = Fyy(w,,wy) = Fy(p, ¢)Fy(p, q),
where

Fy(p,q) = Ay(p.g) + iBy(p, q)
£1—142—1

1 . Ph g
= E E Y, xp{— — 4 = 1.11
/é:lgz (bl abZ) e‘(p{ 27“%( gi + ﬁg )}’ ( )

b1 =0 by=0

with p = 0,...,6, — ;¢ = 0,...,¢2 — 1 and (w,,w,) defined as before.
Since Yy, n) is evaluated at integer values only then the highest resolv-
able frequency, the Nyquist frequency, occurs when p = [£; — 1}/2 and ¢ =
[¢; — 1]/2; here ]c] is the greatest integer less than or equal to ¢. The
Nyquist frequency arises since we cannot distinguish between exp{—i{w;b; +
wyba)} and exp{—i(lw, + 2k7]b; + |w, + 2km)by)} for integer values (by, bg).
Hence, frequencies outside the range I = (~x,7) x (—m, 7} are aliased to
those inside I. If the dimensions of the study region are highly compos-
ite then (1.11) can be estimated efficiently using the fast Fourier transform
(FET), see Brigham (1988, chapters 8 and 11) for more details.

The periodogram is estimated in terms of the DFT of the process it-
self rather than its auto-covariance function. However, it can be established
that the two procedures are equivalent. The equivalence in the time series
case is established by Priestley (1981a, chapter 6). In fact, calculating the
periodogram directly from the DFT of the lattice process minimises diffi-
culties such as round-off errors that might arise when computing the peri-

odogram from the auto-covariance function. The latter approach would re-
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quire calculating the auto-covariance function first and then taking its DI'T

(see Renshaw and Ford, 1983).

1.6.3 Symmetry of Periodograms

All the periodograms that have been studied exhibit a kind of symmetry. For

both point and lattice processes, we have

Fos(w_p,w_g) = Fys(wp, wy) = Fye(—wp, —w,) and

Fss(w#pawq) = Fy (wpawwq) = Fss(_wpy wq) = Fss(wp: _“wq)a

where s = N or Y. Moreover, for a lattice process

Fyv(we -p,wy) = Fyy(wp,we—g), thus, a suitable form in which to out-
put the lattice periodogram is a matrix with p = 0,...,[¢;/2] and ¢ =
~(62/2],...,[(€2 — 1}/2] (see Renshaw and Ford, 1983).

Therefore, one of the frequencies, say p, needs only to vary over posi-
tive values, whereas the other, g, varies over both negative and positive val-
ues. In what follows, periodograms are usually evaluated at the frequencies
(wp,wq) = (27p/t1,2mq/fs) for p=0,...,[6,/2] and ¢ = —[£3/2], ... ,[(€s ~
1)/2).

1.7 Distributional Properties of Auto-Spectral
Estimates

In this section, we summarise the distributional properties for the auto-
spectral estimates. Sampling properties of point spectra have been studied
by Bartlett (1964) and Mugglestone {1990), whereas those of lattice spectra
have been studied by Grenander and Rosenblatt (1957) and Ripley (1981).

12



These results are mainly extensions of the one-dimensional cases. The one-
dimensional sampling properties of point spectra have been studied by Cox
and Lewis (1968) and Brillinger (1972), whereas those of time series have
been studied by Priestley (1981a, chapter 6). Note that the results given
below hold asymptotically, that is as £;, £ and Ny — oo.

For a stationary point process, X, it can be shown that the real, Ax(p, ¢},
and imaginary, By (p, ¢), parts of the DFT of X (defined in (1.8)) are asymp-
totically distributed as N(0Q, fyn(p, q)/2) for (p,q) # (0,0). However, for
(p,¢) = (0,0) we have By(0,0}) = 0 and Ax(0,0) ~ N(An, fan(0.0)/2).
Here N(u,c?) denotes the normal distribution with mean p and variance o?,

For a stationary lattice process, Y, Ay(p, q) is distributed as

=0 ifp=¢q=20,
AY(pa Q) ~ N(O, f}’)’(wp: wq)) if (wpa wq) S A, (1'12)
~ N(0, fyy{wp, w,)/2)  otherwise,
where
((p=0,q=—£;/2) if ¢1 is odd and £, is even,
(p=1£,/2,9g=0) if #; is even and #5 is odd,

A=<{lp=1/2,g=0),(p=0,g=—£/2),
(p=£41/2,9=—{2/2}}
L@ if ¢, and 45 are odd.

if £; and £, are even,

(1.13)

Here ¢ denotes the empty set. The functions Ay and fyy are as defined in

(1.11) and (1.6), respectively. Furthermore, By has the same distribution as
Ay except for {w,,w,) € A in which case By = 0.

In addition, it can be shown that As(p,q} and A{p',¢') for s=NorV

and (p,q) # (¢, ¢') are asymptotically independent, and that they are asymp-

totically independent from B,(p, q) using orthogonality properties presented

13



in Appendix A. Similarly, B,(p,q) and B(p',q") are asymptotically inde-
pendent. Therefore, the auto-periodograms for X and Y are, respectively,

asymptotically distributed as follows.

~ Ay + fNN‘(OsO)X% ifp=g=0
Fynlwy, w 2 ’ 1.14
v (wps g) {N _ﬁuf“'N(‘;‘ ALY )Xg otherwise, ( )
=0 ifp=qg=0,
FYY (wp}wq) ~ fYY(wpawq)Xf if (wpqu) € A: (1'15)
~ f""(“; ) 32 otherwise,

where ¥2 is the Chi-squared distribution with n degrees of freedom. Further-
more, Fyy(wy,wy) and Fy,(w,, w;) are asymptotically independent. Thus, for
almost all frequencies (wp, W), E{ Fos(wp,wq)} = fos(tp, wq) and

Var{Fys(wy, wy) } & f%(wp,wy). So although Fy {wp,w,) is approximately an
unbiased estimator of fy;(wp,w,), it 18 not a consistent estimator since the
limit of Var{F,(wp,w,)} is not zero as £;,f — oo when s = Y, and as
Nx — oo when s = N (see Ripley, 1981, chapter 5). Therefore, Fy,(wy,wq)
must be smoothed so that consistency is achieved. This is discussed further

in Section 1.8,

1.8 Smoothing Techniques

Several techniques for smoothing the periodogram are discussed in the liter-
ature. Most are given for the one-dimensional case but can be easily adapted
for the two-dimensional case. These techniques can be divided into the fol-

fowing two categories.

e Techniques based on smoothing the covariance function, using lag win-

dows, then calculating the periodogram.
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o Techniques based on calculating the periodogram first, usually using
the FFT and then averaging the periodogram ordinates to obtain a
smoothed periodogram. This technique is usually known as smoothing

the periodogram.

Chatfield (1981, chapter 7) discusses the comparative merits of three estima-
tion procedures one of which is based on smoothing the periodogram and the
others on transforming the covariance function. He concludes that with the
advent of high speed computers and the rediscovery of the FFT smoothing
the periodogram is being favoured. Moreover, the smoothed periodogram
has superior theoretical properties to the periodogram calculated using lag
windows. Discussions of time series smoothing techniques are also found in
Priestley (1981a, chapter 6) and Diggle (1990, chapter 4). Bartlett (1964)
suggests, for the case of spatial point pattern periodograms, the use of either
uniform or quadratic weighting for the individual periodogram values.

In what follows, two techniques for smoothing the different spectral es-
timates are discussed. Both are based on smoothing the periodogram ordi-
nates. The first technique is a modification of the weighted moving average
technique discussed by Diggle (1990, chapter 4). It has been used by Muggle-
stone and Renshaw (1996b) for smoothing the spectral estimates of spatial
point patterns with one and two components.

Let F* denote either the periodogram Fyy or Fyy. Assume that F* is
evaluated for p = Pi,..., P and ¢ = Qy,...,Q,. Let F be the smoothed

periodogram where the ordinates of F™* and F satisfy the following relation-
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ship

Flp.g) =Y > wuyF*(p+u.q+2),

(1.16)

1= J=—v

where wq 1)) = Wiy 35), W)

= Wiyay Way) = 0 for (2, 7) # 0, w0 > 0,

Wy 2 Wekg)s Way) = Wagtk) for £ an integer, and

D e 2aye—y Wy = L. Ideally the values of u and v should be chosen to

attain counsistency of the spectral estimate and to keep bias to a minimum.

In this study, a special case
be used and will be referred

follows.

of the weighted moving average technigque will

to as Method A. In detail, Method A works as

1. Assume that a periodogram, say £, is to be smoathed such that ordi-

nates are smoothed up

2. letu=llandv=11in

to & rows and columns away.

(1.16).

3. Calculate the periodogram F derived from F* by substituting the fol-

lowing values for w, ;) in {1.16):

Wign) =2 X <

(1/6 for p # (B or P) and
g # (@ or @2) [Case 1],
1/4 forp=(F,or ) and
g = {Q¢ or 7} [Case 2],
| 1/5  otherwise [Case 3],

W, £1) =W(+1,0) = Wo,0) /2,

Wi =0 otherwise.

Case 1 corresponds to a

typical ordinate, Case 2 corresponds to a corner

ordinate and Case 3 corresponds to an edge ordinate (see Figure 1.2 for
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Figure 1.2: A typical periodogram with an illustration of how Method A for smoothing
works. For each periodogram ordinate, the ordinates involved in the smoothing depend on
whether the ordinate is a corner, edge or typical ordinate. The shaded region represents
frequencies that are not usually reported. The values at the other frequencies are masked
to clarify the figure.

an illustration). In each case, the ordinate being smoothed is weighted

twice as much as its nearest neighbours that are involved in the smooth-

ing.
4. Set F*=F.
5. Repeat steps 3 and 4 £ — 1 times.

This transformation is similar to that of using a Gaussian kernel with
bandwidth equal to the number of repetitions (see Mugglestone and Renshaw,
1996b). An alternative version of Method A uses an enlarged periodogram
F** rather than F* in step 1. The enlarged periodogram is obtained by
estimating the periodogram at frequencies outside the range we are interested

in. This allows equal weights to be used for the range of frequencies we are
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interested in.

The second technique, Method B, involves subdividing the data into 5, x s,
disjoint subregions. Fach subregion is of the form (aR., (a+1)R;) x (bR,, (b-+
)R,) fora=0,...,s,—land b=0,...,s,—1 where Ry = {,/s, and R, =
¢»/s,. For each R, x R, subregion the periodogram is then computed. After
that the periodogram of the entire data set is derived as the average of the

periodograms of the subregions. In detail, Method B is as follows.

e Subdivide region into s, x s, disjoint subregions of equal dimensions

R x R, where R, and R, are defined above.

e In the case of a point pattern, transform the point pattern such that

each subregion is of the form (0, R.} x (0, R,).

Rax Ry
(2.3)

the auto-periodogram of the R, x R, subregion.

Ry xRy

e Calculate F* fore =1,...,8;59=1,...,8, where F*(w) is

o Calculate F(p,q) = = 3% PO F*(Rzz; Ry (p, q) for the required range

Sr Sy

of frequencies.

Method B is an extension of the one-dimensional smoothing technique dis-
cussed by Brillinger (1981) and Rigas (1996}, Further smoothing can be
achieved by applying Method A to the output of Method B.

Figure 1.3 represents a lattice pattern. This pattern is a realisation of a
cosine wave on a 32 x 32 lattice that repeats twice in the west-east (WE)
direction and six times in the south-north (SN) direction plus added noise.

The noise is generated from the standard normal distribution.

18
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Figure 1.3: A cosine wave plus noise repeating twice in the west-east direction and six
times in the south-north direction.

Figure 1.4(a) represents the unsmoothed periodogram of Figure 1.3. As
expected, this periodogram exhibits a peak at the frequency (2,6). Smoothed
estimates of the spectral function using Method A two, four and eight times
are provided in Figures 1.4(b) to (d). The peak at frequency (2,6) per-
sists in the smoothed periodograms. However, its power is spread to nearby
frequencies. So although smoothing the periodogram results in a consistent
estimator, it is obtained at the expense of the relevant information since the
bias increases as the degree of smoothing increases.

Figures 1.5(a) to (d) represent the smoothed periodograms of the pattern

in Figure 1.3 using Method B. These figures are obtained as follows:

e (a) results from dividing the region where the lattice pattern is observed

into 2 x 2 rectangular subregions of equal dimension and then applying
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Figure 1.4: Periodograms corresponding to Figure 1.3: (a) unsmoothed; (b) to (d)
smoothed using Method A two, four and eight times, respectively.
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Method B;
e (b) is obtained by smoothing the outcome of (a) using Method A twice;

e (c) is the result of subdividing the study region into 4 x 4 rectangular

subregions of equal dimension and then applying Method B;
e (d) is the outcome of smoothing (¢) using Method A twice.

The peak frequency in Figure 1.5{(a) occurs at (1,3) = (2/2,6/2), whereas
the dominant peak in Figure 1.5(c) is in the neighbourhood of the frequency
(1/2,3/2) = (2/4,6/4). Both of these peaks correspond to the frequency
(2,6) on the original scale. It can be shown, with the aid of some algebra,
that F(p,q) = F*(s:p, 5,4)- In addition, the frequency ranges in Figure 1.5
are shorter than the range in Figure 1.4. Since the length of the sides of the
subregions used in generating the periodograms of Figures 1.5(a) and (b) is
one half of those of the original region, and it is one quarter of those of the

original region for the periodograms in Figures 1.5(c) and (d).
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Figure 1.5: Smoothed periodograms corresponding to Figure 1.3 using Method B: (a)
by subdividing the region into 2 x 2 subregions and then applying Method B; (b) by
smoothing (a) using Method A twice; (c) by subdividing the region into 4 x 4 subregions
and then applying Method B; and (d) by smoothing (c) using Method A twice.
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1.9 Complete Spatial Randomness

In this section, we introduce the notion of complete spatial randomness
(CSR) for spatial point processes and lattice processes. In addition, the
theoretical and sampling properties for such processes are described. A spa-
tial process is said to exhibit CSR if it does not possess any structure. Hence,
CSR serves as the null hypothesis for testing if a spatial process has no struc-

ture against the alternative hypothesis that it exhibits some structure.

1.9.1 The Homogeneous Poisson Process

A stochastic model for a completely spatially random point process is the
spatial homogeneous Poisson process (HPP) (see, for example, Diggle, 1983,
chapter 4). A point process is said to be an HPP if, given Nx(Q2) = n, the
n events form an independent random sample from the uniform distribution
on 2. Alternatively, a process is said to be an HPP if, for any finite region
2, Nx(§2) follows a Poisson distribution with mean Ap|Q} for some Ap > 0.
Thercfore, for any two disjoint regions £2;, 22, Nx(€2y) and Ny (§25} are inde-
pendent. Hence, an HPP is stationary and isotropic (see, for example, Diggle,
1983; Mugglestone and Renshaw, 1996a). Thus, the first- and second-order
properties introduced in Section 1.2 reduce to: Ax(a) = Ap, Ayy(ar,a2) =
A, yyy = 0and fyny(w) = Ap. In practice, Ap is estimated by the ob-
served intensity, Nx/|€2]. However as mentioned before, the co-ordinates of
the point pattern are standardised before calculating the Fourier transform,
hence, || = 1 and Ap = Ny.

Furthermore, E{ Fyy(w)} =~ Ap = Ny implies that the periodogram is



constant for all frequencies under CSR. The term flat is usually used in this
case. Hence, departures from flatness in pertodogram plots would indicate
that the process exhibits some structure. In what follows, Fiyy is scaled by
dividing by Ny, unless otherwise stated. Therefore, E{Fyn} = 1 for an
HPP.

An HPP in the rectangular region 2 = [0, £1]x [0, £,], with a pre-determined

number of events, can be simulated as follows (see Lewis and Shelder, 1979).

1. Let n be the pre-determined number of events.

2. Generate X;, Xo, ..., X, as independent, uniformly distributed ran-

dom numbers on [0, £,].

3. Generate Y1, Y3, ... .Y, as independent, uniformly distributed random

numbers on [0, 5].

4. Return (X[, Y1}, (Xe,Y3), ..., (X, Y,) as the co-ordinates of the two-

dimensional HPP in the rectangle.

Figure 1.6(a) is a realisation of an HPP with 500 events on a 32 x 32
rectangular region. Its sample spectra are calculated for the range of fre-
quencies p = 0,...,16 and ¢ = —16,...,15 as recommended by Muggle-
stone and Renshaw (1996a). Figure 1.6(b) is the graph of the unsmoothed
periodogram; whereas Figure 1.6{c) is the smoothed spectrum using Method
A four times. The smoothed periodogram using Method B, where the orig-
inal region is divided into 2 x 2 subregions of equal dimension, is given in
Figure 1.6(d). Note here that the frequency range is not reduced despite the

subdivision of the original region. This is due to the fact that point patterns
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Figure 1.6: (a) A realisation of an HPP; (b) the unsmoothed periodogram of (a); (c)
simoothed periodogram using Method A four times; and (d} smoothed periodogram using
Method B where the study region is subdivided into 2 x 2 subregions.
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do not have a Nyquist frequency as it is the case for lattice patterns. As
expected, the sample spectra of the HPP exhibit no structure. In fact, when
smoothed the periodogram becomes almost flat and oscillates around one as

in Figure 1.6(c).
1.9.2 White Noise

A lattice process, {Y}}, is said to exhibit CSR if its components are identi-
cally and independently distributed {1ID). Usually the distribution is taken
to be the normal distribution with zero mean and variance oZ,,. Such a pro-
cess is usually known as Gaussian white noise. In this case, it can be shown
that fyy(w,,w,) = oy for (w,,w,) # 0. Hence, the spectrum of a Gaus-
sian process is flat. Therefore, o2, can be estimated by the average value
of the periodogram ordinates. However, ordinates w € {0, A}, where A is
as defined in Section 1.7, must be excluded from the average since their
sampling properties differ from the remaining periodogram ordinates. In
addition, ordinates Fyy(w,,w,) for p € {0,[€,/2] if ¢, is even} should be ex-
cluded for ¢ < 0 because they are repeats of ordinates with ¢ > 0. Thus,
Gyy = n7 Y, 20, Fyy(wy, wy) where summation is over p = 0,...,[£/2]
and ¢ = —[fy/2],...,{(£2 — 1}/2] but excluding the above ordinates and n is
the number of ordinates used in the summation. Therefore, the periodogram
of a Gaussian process, can be scaled by 6%, to have an expected value of
one. In examples to follow, lattice periodograms will be scaled by 6%, unless
otherwise stated. Thus, departure from flatness will indicate that the pro-
cess is not Gaussian white noise. Note that the asymptotic results for lattice

processes, reported in Section 1.7, hold exactly for white noise. Priestley
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(1981a, chapter 6) gives a detailed derivation of the distributional properties
for the one-dimensional white noise.

A realisation of a Gaussian white noise process with mean 10 and standard
deviation 2 on a 32 x 32 lattice is given in Figure 1.7(a}. The unsmoothed pe-
riodogram for the lattice pattern is presented in Figure 1.7(b). The smoothed
periodogram using Method A four times is given in Figure 1.7(c). Fig-
ure 1.7(d) represents the smoothed periodogram using Method B after sub-
dividing the region into 2 x 2 subregions. The spectral estimates do not
exhibit any particular structure. In addition, the smoothed spectra fluctuate

around the value one as we would expect for white noise.

1.10 Models for Point Processes

A number of alternatives to CSR for point processes are discussed briefly in
this section. Mugglestone (1990, chapter 4) gives a more detailed description
of possible alternatives to an HPP and their spectral estimates and provides

a number of references.

1.10.1 Modified Thomas Cluster Process

A modified Thomas cluster process (MTCP) is an isotropic alternative to
CSR where events exhibit a form of aggregation. An MTCP is encountered
when parent events distributed as an HPP, with intensity Ap, give rise to
offspring. The number of offspring per parent is generated by a Poisson
process with mean . The distribution of offspring relative to their parents
follows a symmetric Gaussian distribution, h(a), with variance o2, that is

h{a) = (2r0?)~! exp{—aa' /(20?)}. Note that only the offspring are retained
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Figure 1.7: {a} A realisation of a white noise process; (b) the unsmoothed periodogram of
(a); (¢) smoothed periodogram using Method A four times; and (d) smoothed periodogram
using Method B where the study region is subdivided into 2 x 2.
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in the final pattern.
The first- and second-order intensity functions of MTCP are given by:
Ao = dpp and Age(t) = AL+ App?(dmo®)~lexp{—t*/(40%}}, fort > 0.

Hence, the spectral density function is given by
fec(w) = feo(w) = Ac(l + pexp{—w?s®}).
An MTCP is simulated as follows.

1. The np parents are determined as a realisation of an HPP, using the

simulation method of Section 1.9.1.

2. A sample {n,} of size np is generated from the Poisson process with
mean g. The number of offspring per parent is given by n,, for k =

]'!"' T p.

3. The co-ordinates of the offspring are determined by displacing those
of their parents by the vectors (ejju, €2k}, j = 1,...,n, and & =
1,...,np. Here the {¢}’s are [ID variables from the normal distribution

with zero mean and variance 2.

1.10.2 Inhibition Processes

Inhibition processes are alternatives to processes that exhibit CSR in which
events are regularly spaced. Two types of regularity can be distinguished.
One type occurs when events are placed deterministically at a minimum
distance from each other, for example, on the intersection points of a regular
grid. The other type occurs when random events are constrained not to lie

within a minimum distance of each other. An example of the latter type of
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inhibition models is given by the simple sequential inhibition process (SSIP).
This model is characterised by its dynamic nature (see below). To simulate

an SSIP proceed as follows,
1. Generate the first event uniformly on the given region, {2.

2. Generate a second event uniformly on ). Retain the second event only
if its distance from the first event is greater than a minimum distance,

§.

3. Generate a third event, and retain this event only if it does not lie

within distance ¢ from the previously retained events.

4. Repeat the procedure of generating and retaining events until the re-

quired number of events is generated.

SSIPs are usually parametrised by their packing intensity, 7 = Awd?/4 where
A is the intensity of the process. The packing intensity represents the pro-
portion of the plane covered by non-overlapping discs of diameter § {see, for
example, Diggle, 1983). SSIPs are easily generated, however, their theoretical
statistical properties are intractable. Hence, sitnulation studies are needed

to investigate their properties.

1.10.3 Doubly Stochastic Poisson Processes

A common feature of the previous two models is the assumption that the
intensity of the point process is identical throughout the study region. A
doubly stochastic Poisson process (DSPP), or Cox process, arises when the

intensity of a Poisson process varies within the study region. Specifically,
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we talk of a point process driven by the intensity process {II(a)} where
I1 is a continuous stochastic process. The intensity process is usually as-
sumed to be a second-order stationary process. In this case, conditional on
IT we have E(dNx(a)) = E(II(a))|dal = Aul|dal and E(dNy(a)dNx(a')) =
E(Tl(a)I1(a))ldaj|da’| = (A + vyn{a — a')}|da||da’|. Here A is the expected
value of the process II and 7y is its auto-covariance function. Therefore, the

auto-covariance function of the point process is given by

vyvn(a,a’)|dal|da’| = ~ynn(a— a')|dal|da|
= E{dNx(a)dNx(a")} — E{dNx (a)}E{dNx(a")}
= (M +n(a - a'))|dal|da’| — \;|da]|da’|

= ~y(a - a’)|da||da’].
Thus, the complete covariance function of the process is
kyv(a,a’) = Ayd(a—a’) +yyy(a—a’) = Agd(a — a’) + yp(a — a').

The spectral density function of the point process is

fan(w) = /ENN(V) exp{—iwv ' }dv = A + f"yn(v) exp{—~iwv' }dv.

Bartlett (1964) has shown that the characteristic function of such a pro-
cess is equivalent to that of an MTCP if Il(a) = [ h(a — s)dM (s) where M
is another Poisson process and f is a bivariate distribution function. Despite
the formal equivalence between MTCPs and DSPPs they play different roles.
An MTCP reflects the belief that events of the point process tend to form

clusters. A DSPP indicates that the point process is heterogeneous, in the
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sense that the point process has a variable intensity as opposed to a constant
intensity.

In this section, different models for point processes were introduced.
These models serve as a benchmark when analysing real data sets. In ad-
dition, they are used in simulations of hybrid processes that are discussed
in the next chapter. Models for lattice processes are introduced in the next

sectlon.

1.11 Models for Lattice Processes

Two major approaches are used to model lattice processes. One is based
on the simultaneous specification of the lattice process and the other on
conditioning. Cressie (1991, chapter 6) gives a detailed survey of these models
with special attention to conditionally specified models. Simultaneous and
conditional spatial autoregressive Gaussian (SARG and CARG) models are
also discussed by Ripley (1981, chapter 5). Following Ripley’s approach
SARG and CARG models are defined by matrices .S and C, respectively.
The diagonals of both matrices are assumed to be identically zero.

Let the lattice process Y = {¥Y(p, 5,0, (b1 = 0,... ,&1=1;b, = 0,... ,{,—1)}
be indexed by £ = 0,... ,£,¢; — 1 where Y4, 4,y = Yi and & = &; + £185. A
SARG model is defined by Yy = e + Y ; SiY: — ) + € where ¢ are IID
normal variables with zero mean and variance g%; (I—S5) is non-singular and /
is the identity matrix. It can be shown that Y ~ N(u,c?(I-S)"'({/—-8T) 1)
where Y = (Yy,... , Yoe-1)' and g = (o, ..., ftgye—1) "

A CARG model arises if the conditional distribution at a site given all

the other sites is Gaussian. Then, Y ~ N(p,0*(I —C) Y, E(Y; |V, k # 1) =
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e + 3, Cru(Yr — ) and Var(Yx|Y), k # 1) = 0% where (I — C) is symmetric
and strictly positive definite (see, for details, Cressie, 1991). Ripley gives a
number of schemes to construct such models. We mention here two particular
examples.

The first example is generated by setting Sy, to be non-zero only if sites
k and [ are nearest neighbours and by setting g = 0. This results in

Yipoe) = B1Yie—180) + Fe¥oiv100) + 03 o ba-1) + FaXiprpor1) + €001 ,80)-
(1.17)

Bartlett {1975, chapter 2) shows that the spectral density function of the
model in (1.17) is proportional to [1 — 28, cos(w,) — 283 cos{w,)] ™2 for the
case where f, = [, and 3 = 54

The second example is generated by setting the entries of C' to be non-zero

only for nearest neighbours. This yields the following model

E [ Yip, 00 Vi), (03, b2) # (85, 05)] = oy o) + B1Y {0y —10) +

62}/(51&-1,&12) + ﬁ3Y(f11,52—1) + ﬁ4)/«(b1,b2+1}- (1'18)

Bartlett (1975, chapter 2) has also shown that the spectral density function of
(1.18) is proportional to [1 — 2/ cos(w,) — 28’ cos(w,)] ™} where 3 = (81 + )
and 3’ = %(ﬁg + A4).
A different type of model is provided via
Y(bt,bz) =Y, = Z A cos(w;bT + ¢’£) + €p. (1.19)
=1

Here A;, w; and n are constants; {¢} are IID uniform on (—,7) and in-
dependent from ¢ where ¢ is defined as before. It is easily proved, using

orthogonality relations presented in Appendix A, that the spectral density
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function for such processes is discrete with non-zero positive values at the
ordinates w;,! = 1,...,n. Models generated by (1.19) are usually studied

due to their simplicity and to demonstrate the potential of spectral analysis.

1.12 Test for CSR based on the Maximum
Periodogram Ordinate

In this section, a formal test of CSR for both point processes and lattice
processes is described. It is an adaptation of the test introduced by Fisher
(1929) which is based on the maximum periodogram ordinate of a time series.
The test developed by Fisher (1929) is summarised as follows. Consider
the time series {X:} fort = 1,..., N and suppose that this series can be

modelled as

J
X, = ZA;& cos(w;t + ;) + €, (1.20)

i=1
where J, A;, w;, 7 = 1,...,J are constants and the {¢;} are IID uniform

variables on (—m, 7). The {¢;} are IID N(0,0?) and are independent of the
{#;}-

Fisher (1929) derived the exact distribution for the maximum periodogram
ordinate (for the case N odd) based on the statistic

max( )
>

which is known as Fisher's g-statistic. Here, the {F,}’s are the periodogram
ordinates associated with the time series {X,}, and {p}’s are integers that

index frequencies where the periodogram is evaluated. Under the null hy-

pothesis that the time series is Gaussian white noise (that is it contains no
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harmonics or equivalently all the A;’s are zero) Fisher (1929) found that

/2] ,
s _
Pr(g > Z) = Z(—l)k+lm{1 - k'Z)n 1,
1 i .

where n = [N/2].
However, under the null hypothesis the periodogram ordinates when stan-
dardised by 0?/2 can be seen to be independently distributed as x% (see

Priestley, 1981a, chapter 6). Therefore, for any ¢ non-negative

Pr (05;2 < t) =1—exp{—¢/2}.

Since a x?2 is equivalent to an exponential distribution with mean two. In
X2
practice, the variance is usually unknown but under the null hypothesis

E(F,) = 0. Thus, an unbiased estimate of the variance is given by

o lg
OQ_EEFP’

where n is as above. If one can ignore sampling fluctuations as the sample

size increases then asymptotically

max{Fy)
Pr| L5 ~1— (1= exp{-t/2})" 1.2
r 5173 > 1 1— (1 —exp{-t/2}) (1.21)
Therefore,
Pr(2ng > t) ~ 1~ (1 — exp{--£/2})". (1.22)

The right hand side of (1.22) is approximately equal to the first term of
Fisher’s test.
To test for the null hypothesis against the alternative hypothesis that the

process contains a sinusoidal component (that is one of the A;’s is not zero)
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the following steps are carried out. Let o (0 < o < 1) be the chosen level of
significance, choose z, such that Pr(2ng > 2,) = « then compare 2ng with
zq. If 2ng > 2z, conclude that the series contains a harmonic component.

If the first periodogram ordinate is found to be significant then Whittle
(1952) suggests that Fisher’s test can be used to test the second maximum
periodogram ordinate. This is done by removing the maximum ordinate
then procceding as before. The same procedure is repeated until no more
significant ordinates are detected.

Fisher’s test can be adapted to the lattice process case. This is achieved by
extending (1.20) to two dimensions and noting that under the null hypothesis
of CSR. the standardised periodogram ordinates have similar distributions to
those in the one-dimensional case, see Section 1.7.

Next, Mugglestone and Renshaw (2000) note the similarity between the
distribution of the periodogram ordinates under the null hypotheses of Gaus-
sian white noise and of an HPP, see Section 1.7. Thus, {1.21) can be used to
test for the maximum periodogram ordinate of a spatial point pattern, since
2Fyn/A ~ x2 and A = Ny, see Section 1.9.1. Here A is the intensity of the
process and Ny is the number of events of the pattern. Thus &2 is replaced
by Nx in (1.21). In addition, Mugglestone and Renshaw (2000) remark that
conditional on the intensity of the point process the test based on (1.22) is
exact under the null hypothesis of CSR. They also note that a two-tailed test
is required for point processes, since periodograms for cluster processes tend
to have high values at low frequencies whereas inhibition processes tend to

have low values at low frequencies.
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1.13 Interpretation of Sample Auto-Spectra

In this section, we will give a brief interpretation of what spectral functions
measure. In general, the (p, ¢} element of the periodogram represents the
extent to which the covariance of the pattern is explained by the cosine wave
cos(2m(paq; /€1 + gag;/€3)), where £, and £, are the dimensions of the study
region. Geometrically, this frequency determines a vector that is perpendic-

ular to the waves (see Rayner, 1971, chapter 9). This vector which is drawn

from the origin is defined by its angle from the x-axis, # = tan ! (q’ffz), and

p/t1
2 2
its length, &k = 4/ ({7) + (E‘%) :

1.13.1 Point Spectrum

In the case of point processcs, possible uses of the auto-periodogram are
to detect departures from CSR, to explore whether certain features exist in
the data, and to identify what possible processes might have generated the
study pattern. Thus, the sample spectrum provides a guide to determine the
underlying point process. As mentioned in Section 1.9.1, for a point process
that exhibits CSR the auto-periodogram is flat. A peak at low frequencies
indicates that the process resembles an aggregated point process. However, a
peak at high frequencies indicates that the process is an inhibited process. For
a detailed discussion of these issues see Mugglestone and Renshaw (1996a).

Figure 1.8 represents realisations of two point processes and their sample
spectra. The point pattern in Figure 1.8(a) is generated from an MTCP on
a 32 x 32 rectangular region. The parameters used to generate this point

pattern are: np = 100, = 8, and ¢ = 0.5, where np is the number of
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parents, y {labelled as ne on graph) is the mean number of children per
parent, and ¢ (labelled as sd on graph) is the parameter that controls the
displacement of children with respect to their parents. Both the raw and
smoothed periodograms are characterised by a concentration of power at low
frequencies, see Figures 1.8(b) and (c).

Figure 1.8(d) represents the point pattern of an SSIP generated on the
unit square with 100 events and a minimum distance 0.08. Thus, the packing
intensity for this process is approximately 0.5. The sample spectra for this
point process, Figures 1.8(e) and (f), exhibit low values for low frequencies
and high values for high frequencies.

Using the two-sided test of Section 1.12, the significance of the peaks
detected in Figure 1.8 is given in Figures 1.9(a) and (b) for the clustered
and inhibited patterns, respectively. In Figure 1.9 the absolute value of
each pixel represents whether the corresponding periodogram ordinate was
found to be significant at the level indicated. The levels considered here are
1%, 5% and 10%. The sigu represents whether the significant values were
detected in the upper or lower tails of the maximum periodogram ordinate
distribution with the positive sign corresponding to the upper tail. For the
clustered pattern all the significant peaks were detected in the upper tail,
whereas for the inhibition pattern they were detected in the lower tail. For
relatively low frequencies the clustered pattern exhibits significant values at
the 1% level, whereas the inhibited pattern exhibits significant values at the
10% level.

Note here that the range of frequencies in the realisation of the SSIP has

been reduced to a smaller range than the typical range for point patterns

38



Clustered Patiern Inhibired Pastern,

up=likhne=8ad=5% n=i0, delta=0.08
! LU L T " —‘ 1 . - - '
T ¢ N ¥ [
- - . - M . .
ng . .
s . . .
- - N . .
i P '
ks . . ¢
LT * -
. —
o o2 i 0 o8 L0
x x
fed fud}

¥ Unsmoothed Peripdagran oy LUnsmoothed Periodogram
) (e}

ron

3
4 we
1 ¢ y -
o Smaothed Periodugram rr Smaonihed Periodogram
Method A 4 imes ¢ Method A 4 rimes
tr}

Figure 1.8: (a) A realisation of an MTCP, (b) and (¢) unsmoothed and smoothed
periodograms of (a); (d) a realisation of an SSIP, (e} and (f) unsmoothed and smoothed
periodograms of {d).
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Figure 1.9: (a) Significant periodogram ordinates at the 1%, 5%, and 10% levels for the
clustered pattern in Figure 1.8(a). The levels that appear in this graph are the upper tail
1% (ved), 5% (grey), and 10% (blue) levels; (b) Significant periodogram ordinates at the
1%, 5%, and 10% levels for the inhibited pattern in Figure 1.8(d). The levels that appear
in this graph are the lower tail 10% (red), 5% (grey), and 1% (blue) levels.

(p=0,--,16,¢ = —15,- - ,16). This reduction is essential to maintain in-
dependence between different periodogram ordinates, since the periodogram
is based on 2Ny transformations of the data. Mugglestone and Renshaw
(2000) give a guideline for the choice of the frequency range in which it is
assumed that the events are placed on an N’ x N’ lattice with N’ = V'N.
For the realisation in Figure 1.8(d) N, = 100 so one considers the frequency

range p=0,...,[VN/2](=5) and ¢ = =5,... ,4.
1.13.2 Lattice Spectrum

For lattice processes the basic use of the periodogram is to detect periodicities
that might be present in the data indicating departures from CSR. If the
process is white noise then this results in a flat periodogram, see Section 1.9.2.
Hence, all frequencies contribute the same power to the periodogram.
Applying Fisher’s test to the unsmoothed periodogram, Figure 1.4(a), of

the lattice pattern in Figure 1.3 the frequency (2, 6) is found to be the only

40



significant ordinate at the 1% level. Note that this frequency is the only
dominant peak in the periodogram. Hence, one concludes that the lattice

process repeats twice in the WE direction and six tirmes in the SN direction.

1.14 Summary

In this chapter, the basic notions and properties of spatial point processes
and lattice processes in the spectral domain were described. The asymptotic
distributional properties of the sample spectral estimate, the periodogram,
were discussed. The periodogram was shown to be an unbiased estimator
of the spectral density function but not a consistent one. Thus, smoothing
techniques had to be used to attain consistency.

Having established the necessary tools for spectral analysis, models for
CSR and possible alternatives were reviewed. For some of these models the
theoretical spectral density functions were reported. In addition, algorithms
for simulating such models were provided.

A formal test for detecting departures from CSR was then discussed.
This test is based on the maximum periodogram ordinate. Examples were
also provided to illustrate the potential of spectral estimates as a tool for
exploratory analysis of spatial patterns.

In the following chapter, a hybrid process consisting of a point process
and a lattice process will be introduced. Spectral analysis techniques will be

used to detect patterns for such hybrid processes.
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Chapter 2

Point-Lattice Processes:
Definitions and Spectral
Estimates

In the previous chapter, point and lattice processes were studied as indi-
vidual processes. In this chapter, a hybrid of the two processes, termed
a point-lattice process, is introduced. Point-lattice processes are defined in
Section 2.1. In Section 2.2, we discuss properties of point-lattice processes
both in the spatial domain and in the frequency domain. Cross-spectral es-
timates for these processes are introduced in Section 2.3. In Section 2.4 the
notion of CSR for point-lattice process is considered. Methods for simulating

point-lattice processes and simulated examples are provided in Section 2.5.

2.1 Point-Lattice Processes

A spatial point-lattice process is a process with two components: a point
process, X, and a lattice process, Y. A realisation of a spatial point--lattice
process is called a spatial point-lattice pattern. The region where the point

pattern is observed usually coincides with the rectangular region where the
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lattice measurements are recorded. Examples of such processes include mea-
surements made on a regular grid in a study region, such as planned agricul-
tural trials, together with events occurring in the same region, such as the
growth of a certain species.

To study point-lattice processes we need to explore relationships between
their components. Analyses of such spatial processes have been carried out
mainly in the parametric domain by considering the lattice process as an
explanatory variable in the model used for occurrence of events (see, for
example, Buckland and Elston, 1993; Augustin, Mugglestone and Buckland,
1996). In this study, a non-parametric approach based on two-dimensional
cross-spectral analysis will be used. However, spectral analysis can be used
to identify parameters in a given model.

The cross-spectral analysis approach used in this study is analogous to
the analysis carried out by Mugglestone and Renshaw (1996b) to investigate
properties of a bivariate point process (a process with two components where
each component is a point process). Two-dimensional cross-spectral analysis
for point-lattice processes is an extension of the cross-spectral analysis used
for one-dimensional hybrid processes: a one-dimensional hybrid- process is
a process with two components where one component is a one-dimensional
point process and the other is a time series (see Rigas, 1983; Brillinger, 1994).

Examples of point-lattice patterns are given in Figure 2.1, Figure 2.1(a)
represents occurrence of deer together with altitude within a subregion of the
Grampian region of Scotland. Figure 2.1(b) represents occurrence of the tree
species Iryanthera sagotiona together with altitude within a tropical forest

of French Guyana. The latter data set was supplied by Michel Goulard of
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Figure 2.1: Examples of spatial point-lattice patterns: (a) occurrence of red deer super-
imposed on altitude data of a region of Scotland; and (b) locations of a tree species in a
forest of French Guyana together with altitude values of the study region.

Le Centre INRA de Toulouse, France, and Hélene Dessard of CIRAD-Forét,
France.

It is worth remarking here that functions used to summarise properties of
two or more components will be prefixed with the term cross. For example,
we say cross-covariance of the spatial point-lattice process {X, Y’} and auto-

covariance of the point process X.

2.2 Assumptions and Definitions

2.2.1 Second-Order Properties in the Spatial Domain

In this section, we define second-order properties of point-lattice processes
in the spatial domain. Consider a point-lattice process {X, Y} where X is a
point process and Y is a lattice process. First- and second-order properties for

each component can be investigated using techniques of Chapter 1. However,

44



to study the relationship between the two components we define the cross-

covariance function of a point-lattice process as

E([dNx (b) — E(dNx (b)|[Yer — B(Ye)])
{ ) } @D

’}’Ny(b,b’) = lim
Jdb|—=0

for b,b’ € R?. Similarly, we can define vy (b',b), where yny(b, b’} =
vy~ (b, b) by definition.

2.2.2 Stationarity

As discussed in Chapter 1, stationarity is a fundamental assumption for de-
riving theoretical properties in the frequency domain. In what follows, we wil
define second-order stationarity for point-lattice processes. A point-lattice
process is said to be stationary if both component processes are individually

and jointly stationary. Hence, (2.1) reduces to

vy (b, b} = vyy (b = b') = yyy(a)

- lim {IE[dNX (a+c¢)~E(dNx(a+c))][¥e — E(Y.)] }
Idal-+0 |dal

L E(dNx (a+¢)Y.)

N Jﬁfﬂo{ |da| } ~ AVE(Y)

— I E(dNx (a + cj}y)

B |dlal|£1>0 { |dal } ’ (2:2)

since Y is corrected for its mean. Furthermore, stationarity implies that

ny(a) = yrn(-a).
2.2.3 The Cross-Spectral Density Function

The cross-spectral density function (or spectrum) for a stationary spatial
point-lattice process is defined as the Fourier transform of the cross-covariance

function, by analogy with point and lattice processes. In principle, for a
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point-lattice process two cross-spectra fyy and fyny should be used to in-
vestigate the correlation between the two components. However, in the case
of stationarity it is sufficient to consider only one cross-spectruim, say fyy.

The function fyy at frequency w = (w;,w,) is defined by
fay(w) = (27)%gny (W) = ['YNY(a) exp{~iwa'}da. (2.3)

The function gyy is defined in (2.3) because some authors use it as the cross-
spectral function rather than fyy. Moreover, gyy will be used in Chapter 4
to derive asymptotic properties of the cross-spectral function. The function
fvn can be defined by analogy with fyy. Further, fynv(w) = fyv(—w)
since yyy(a) = ny(—a) for a stationary point-lattice process. In general,
yvy{a) # yvy(—a). Thus, fyy will usually be a complex number.

By analogy with bivariate time series analysis, fyy I8 decomposed into

its real and imaginary parts as follows
fay(w) = /”/Nv(a) exp{—iwa' }da

= f’yNy(a) cos{waT}da—i['yNy(a) sin{wa’ }da

= eyy(w) — igny (W), (2.4)
see Jenkins and Donald (1968, chapters 8 and 9), Rayner (1971, chapters 8
and 9), Priestley {1981b, chapter 9), Chatfield (1981, chapter 8), and Diggle
{1990, chapter 8). The function cyy(w) is known as the co-spectrum and
gnvy{w) is known as the quadrature spectrum. Alternatively, fyy can be
represented in terms of its amplitude ayy (known as the amplitude spectrum)

and phase ¢yy (known as the phase spectrum). Hence, from (2.4)
Finv{e0) = 1)y (@) + Gy (@) exp {i tan™ (g (w) fexy (@)}

= ayy(w) exp{igyy (w)}. (2.5)
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In addition to the above spectra, the squared coherency and gain spectra are

defined by analogy with bivariate time series respectively as:

, _ Chy (@) + giy (W) _ iy (@)

) O e (@) T (@) o (@)’ 29)
_ fyrlwloyy({w) _ oyy(w)

frwleo) = \/ fov@w)  fen@)’ =0
_ [ fav(wlony(w) _ any (w)

Enpy (w) = \/ @ hr@) (2.8)

It can be shown that the squared coherency spectrum satisfies the inequality
0 < vyy(w) < 1 by using the Cauchy-Schwartz inequality, for any two

processes Y and Z we have [E(Y Z)]2 < [E(Y)]?[E(Z)]?

2.2.4 Isotropy

For a stationary, isotropic (isotropy being defined in the same sense as
isotropic point and lattice processes) point-lattice process the spectrum de-

fined in (2.3) reduces to

Fov (@) = fay (@) = 27 /0 " ey (8ot

where w = | /w? + w? and Jy(z) is an un-modified Bessel function of the first
kind of order zero, defined in Section 1.5. In this case, fyy(w) is a real

number which implies that
cvy(w) = fav{w) = avy(w) and gyy (W) = gny{w) = 0.
2.3 Estimation of Cross-Spectral Functions

Consider a point-lattice pattern with components X and Y observed on a

study region [0, £1] % [0, £;] where X denotes the point pattern and Y denotes
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the lattice pattern. It is also assumed that Y is corrected for its mean.
Define the cross-periodogram of the pattern as Fyy(p,q) = Fn{(p,0)Fy(p, q)

where Fy(p,q) and Fy(p,q) are as defined in (1.10) and (1.11), respectively.

Therefore,
Nx pa qa
. o L3 2j
FNY(p1Q) - (;CXD{ 27”’( El + BQ )}) X
£ —1482—1

1 b1 qby

Y, 5,) €XP {27?@(—— + =)

(\/€1€2 EAZ:OI;ZZ:D (b1.b2) 6 £y

= (AN + iBN)(AY ~ Z.BY)
= (ANAY + BNBy) - ?;(ANBY - BNAY)

= CNY - ?:QNYy (29)

where Cyy and Q vy are estimates of the co- and quadrature spectra defined
in (2.4), respectively. Similarly, estimates of the amplitude (Ayy), phase
(®ny), squared coherency (Y yy), and gain (Enjy, Zy|n) spectra defined in
Section 2.2.3 can be derived by substituting the estimates of the co- and
quadrature spectra in (2.5) to (2.8). If the raw estimates of the co- and
guadrature spectra are substituted in (2.6) then Tyy will be equal to one
at all frequencies. Therefore, to obtain a useful estimate for the squared
coherency one or more of the auto-, co- and quadrature spectra must be

smoothed (see, for example, Priestley, 1981b).
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2.3.1 Symmetry

The estimates of the cross-spectral functions are symmetric in the following

sense:

Fny{(-p,—q) = Fny(p, @),  Cnv(—p,—q) = Cnv(p,q),
QNY(_p: 'AQ) = _QNY(psQ)a ANY(_pa _Q) :ANY(p:Q)a

Pyy(-p, —q) = “I’NY(Pa CI): TNY(_pa —Q) = TNY(p: CI)-

Therefore, one of the frequencies, say p, is needed only to vary over positive
values and the other, say ¢, varies over both negative and positive values,
as in the one-component case. In what follows, both the auto- and cross-
periodograms are evaluated at the frequencies (w,, w,) wherep = 0,... ,[¢1/2]
and ¢ = —[£2/2),... ,[(¢2— 1)/2]. It is worth noting here that w, and w, will

be used interchangeably, similarly w, and w,.

2.3.2 Smoothing and Scaling

[t was mentioned above that we need to smooth the cross-periodograms to
obtain a meaningful estimate for the squared coherency spectrum. In exam-
ples to follow the auto-, co- and quadrature periodograms will be smoothed
according to one of the techniques discussed in Section 1.8. On substituting
these estimates in (2.5) to (2.8) the smoothed estimates of amplitude, phase,
squared coherency, and gain periodograms are obtained.

Furthermore, in Chapter 1 we mentioned that the point and lattice pe-
riodograms are scaled such that in the case of CSR the expected values
of the estimated auto-spectra are equal to one. The cross-spectra esti-

mates will be scaled similarly. The scaled co~ and guadrature spectra are
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defined as (03' = CNY/\/J\T&%; and EQ = QNy/m. Calculating
the amplitude and gain spectra after scaling the co- and quadrature peri-
odograms yields ;1 = AN}//M, .%My = ENIY/\/W, and éy[_)\r =
Zvin/ \/3)2/),/—]\6{ . However, the phase and squared coherency are not affected
by scaling because the same scaling factor appears in the numerator and de-

nominator of the formulae defining these spectra.

2.3.3 Interpretation of Sample Cross-Spectra

In this section, a brief description of what the different cross spectra measure
is given. The following terminology is in accordance with Priestley (1981b,
chapter 9) and is based on the result that stationary processes possess spec-
tral representations.

The co-spectrum, Cyy, represents the covariance between the coeflictents
of the in-phase components of the two patterns. The quadrature spectrum,
Qny, represents the covariance between the coefficients of the out-of-phase
components. The amplitude spectrum measures the relative value of the
power at the frequency w in the components X and Y. The squared co-
herency spectrum measures the square of the linear correlation between the
components of the point-lattice process at frequency w. Moreover, the closer
the square root of this value is to unity the stronger the relationship between
the two processes is at frequency w. Gain spectra are used mainly when one
suspects there is a causal relationship between the components of a point-
lattice process. So |y {w) represents the regression coeflicient at frequency
w in the linear regression of Ny on Y. An equivalent interpretation holds for

Zyn(w). The phase spectrum represents the mean value of the phase shift
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between the components X and Y at frequency w, in the sense described
by Priestley (1981b), assuming that the phase and amplitude of the spectral
representations for each process are independent random variables.

To demonstrate explicitly what the phase spectrum measures a lattice-
lattice process is considered. A lattice-lattice process is a process in which the
two components are lattice processes; more details are provided in Chapter 5.
Suppose that one of the components is a linear transformation of the other
component with a shift and added noise, denoted by say Y, = aXp-q + €
where d is the shift between the two processes. It can be proved that the
phase spectrum for this model is a linear function of frequency and that its
slope in a specified direction is the magnitude of the shift in that direction.

Figure 2.2(a) is the lattice pattern, X, of Figure 1.3. Figure 2.2(b) is
the lattice pattern X shifted to the east by d = (d,,d2) = (1,0). Denote the
shifted process by Y. Figures 2.2(c), {d), and (e) represent the estimated co-,
quadrature, and amplitude spectra, respectively, of the lattice-lattice pattern
presented in Figures 2.2(a) and (b). The co-spectrum exhibits a positive peak
at the frequency (2, 6) indicating that the in-phase components are positively
correlated. The quadrature spectrum exhibits a trough at this frequency; this
indicates that the components are out of phase. The amplitude spectrum
has also a peak at this frequency, thus, confirming that the two processes
are correlated. However, whether they are positively or negatively correlated
cannot be detected from the amplitude spectrum; one needs to refer to the
co-spectrum.

Figure 2.2(f) is the estimated phase spectrum. From this graph one can

deduce that the phase spectrum is a linear function of frequency. Further-
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more, one can deduce that the two patterns are in phase in the SN direction
and that there exists a phase shift in the WE direction. The value of this
phase shift can be calculated from the slope of Figure 2.2(f). For example,
for the bandwidth ¢ = 0, p = 1, ... , 15 the periodogram values increase from

(937—82)r

ngﬁfr to 1%%%# and since w, = w, = 2xwp/f; then d; = 8% = 1. Therefore,
32
we can deduce empirically from the phase spectrum that the second lattice,
Y, is to the east of the first, X, by one unit.
Figures 2.2(g), (h), and (i) represent the estimated squared coherency and
gain spectra. These estimates fluctuate around one implying that the two
processes are linearly correlated at all frequencies. Since the two components

are linear transformations of each other then the gain spectra and the squared

coherency must be identically equal to one.
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Figure 2.2: (a) Figure 1.3 and (b) the shifted pattern of (a); (c) to (f) are the raw
estimates of co-, quadrature, amplitude, and phase spectra; (g) to (i) are the smoothed
estimates of the squared coherency and gain spectra.
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2.4 CSR for a Point-Lattice Process

As in the case of a single component a model that would serve as a null
hypothesis for point-iattice processes is needed. Therefore, CSR for a point-
lattice process has to be specified. A stochastic model that serves this pur-
pose is given by the point-lattice process where the two components are
independent and component X is an HPP whilst component Y is Gaus-
sian white noise. Thus, vyy = 0 where yyy is defined in (2.2). Therefore,
Fvy (w) = 0 for all w. Consequently, cyy(w) = 0, gyy(w) =0, any{w) =
0, unvy(w) =0, Eny(w) =0, and &yn(w) = 0.

It might seem that ¢ny(w) is indeterminate but it can be shown that it
is uniformly distributed over the range (—/2,7/2) (see Jenkins and Donald,
1968, chapter 8). The above results hold for any point-lattice process where
the two components are not correlated. Hence, departures from flatness
in any of the cross-spectral periodograms except for the phase spectrum
indicate that the two components are correlated. It is worth noting that the
phase spectrum is defined (mod 27). However, ®yy(w} is usually taken to
belong to the interval (—m, 7). Restricting ®ny(w) to this interval leads to
discontinuities in the phase spectrum.

Figure 2.3 is a realisation of a point-lattice pattern with two independent
components X and Y; X is the realisation of an HPP given in Figure 1.6 and
Y is the realisation of a white noise process given in Figure 1.7. This pattern
will be referred to as CSRPLE. Figures 2.4 and 2.5 represent the smoothed
estimates of the auto- and cross-spectra of CSRPLE using Method A four

and eight times, respectively. The auto-spectra are relatively flat and close
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HPP + WN

Figure 2.3: CSRPLE: a realisation of a point-lattice process that exhibits CSR.

to the expected value one. The estimates of the co-, quadrature, amplitude,
squared coherency, and gain spectra are also flat and fluctuate around the ex-
pected value zero. The phase sample spectrum has no structure. In addition

to smoothing, all the periodograms are scaled as discussed in Section 2.3.2.
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2.5 Simulating a Point-Lattice Process

In this section, methods to simulate point-lattice processes with associated
components are introduced. These methods can be divided into two cate-
gories. One is based on simulating the lattice pattern first while the second
is based on simulating the point pattern first. Potential applications of the
first category can be found in forestry. For example, altitude data that are
recorded on a lattice might affect the growth of a particular tree species.
Examples of the second category might be found in agriculture, such as the
composition of soil nutrients, which can he observed on a regular grid, being
altered due to the presence of a certain type of vegetation.

For each simulation method an artificial point-lattice example is provided.
These examples illustrate how cross-spectral estimates can be used to study
the relationship between the two components of a point-lattice pattern. In
some of these examples association between the two components is limited
to a couple of frequencies, whereas in the rest of the examples association is
spread across a wider range of frequencies. These two types of association

mirror relationships present in real point-lattice patterns.

2.5.1 Simulating a Point-Lattice Process 1

In this section, we propose three methods for simulating a point pattern given
a realisation of a lattice process. Two of these methods are based on thresh-
olding the lattice pattern. The first method reflects the belief that the point
process is thought to have originated from an HPP, but depending on thresh-

olded values of the lattice pattern only a subset of the events is retained. For
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example, seeds spread homogeneously across an agricultural field may not
all grow due to variability in soil nutrients. Here seeds are potential events
of a point pattern and soil nutrient measurements form a lattice pattern.
The second method reflects piecewise homogeneity of the point pattern in
which the piecewise intensity function is obtained by thresholding the lattice
pattern. In the third method points are thinned according to an intensity

function that depends on the lattice pattern.
2.5.1.1 Thresholding

In this section, the two methods that are based on thresholding the lattice
pattern are discussed. Given the lattice pattern, the first method which will

be referred to as THRESA generates the point pattern as follows.
1. Generate an HPP and let K be the number of events of this pattern.

2. Retain a point if the value of the lattice quadrat the point belongs to

is within a pre-determined range.

3. Let R denote the total number of events retained. If the number of
events is pre-specified, say Ny, then set K = Nx — I? and repeat steps
1 and 2 until the required number of events is attained. Otherwise,

stop.

Assuming that the lattice pattern is given, the second method involves
the following steps to generate a point pattern. This method will be referred

to as THRESE. Let Y be the lattice pattern and let
Ap = A (64,8 + 1] x (b2, b2 + 1],
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for b =0,...,f; —1and b, =0,... ,#, — 1, be the quadrats determined by

this lattice. Then the point pattern, X, is generated as follows.

1. Let {Ay] denote the matrix generated by thresholding the lattice pat-
tern Y. For example, one can set entries of Ay to be equal to cor-
responding entries of the lattice pattern if the lattice entry exceeds a
given value and set to zero otherwise. Note here that Y is assumed to

be non-negative.

2. Generate another matrix, [N x], where individual entries Ny (b, bg) are

sampled from a Poisson process with mean Ay (b1, bo).

3. In each quadrat, Ay, generate an HPP in which the number of events

is given by Ny (b1, o).

Next, we simulate two artificial examples using THRESA and THRESHB,

respectively, and study their properties using spectral analysis.
2.5.1.2 Example 1: THRESACOS

In this example, the point and lattice components have simple structures,
hence, the association between the two is bound to be simple. Figure 2.6
represents a realisation of a point-lattice process and its spectral estimates

are provided in Figure 2.7. The lattice pattern, Y, was generated by setting

b b i b b
Yio, 4y = 2cos(2m( 22 + L2y ysin2r (B2 + £ 4 ¢4
' g} EQ gl £2 ’

where £/ = = 64,p=56,¢g=4,b=0,...,4; — 1,0 =0,...,f, — 1, and
€(b,.b2) aT€ 11D random variables from the standard normal distribution. The

minimum of this realisation was then subtracted to ensure that the lattice
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Point-Lattice Process Example
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Figure 2.6: THRESACOS: a realisation of a spatial point-lattice process. The lattice
pattern is a cosine + sine + noise, and the point pattern is generated using THRESA.

values are positive. The point pattern, X, was then generated according
to the method THRESA with Nx = 1000. Events were retained only if
7 < Y < 11. The lattice pattern ranges from 0 to 11.26, hence, events are
associated with relatively large values of the lattice pattern.

Figures 2.7(a) and (b) are the raw estimates of the auto-periodograms
of the point and lattice patterns, respectively. Both periodograms exhibit
a distinct peak at the frequency (5,4) corresponding to the deterministic
component of the lattice process. The power at this peak contributes to
almost 70% of the total power in the lattice spectrum. Thus, the lattice
spectrum is composed of waves (stripes in the pattern of Figure 2.6) repeating
five times in the WE direction and four times in the SN direction. These
waves are perpendicular to the vector that determines an angle of 38.66° with
respect to the WE direction. Henceforth, when we report the direction of

travel of the waves we will use the terminology that the waves travel in the
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direction of the vector with angle 0 to mean that the waves are perpendicular
to the vector which determines an angle § with the axis in the WE direction.
Using Fisher’s test the peak at (5,4) was found to be the only significant
peak at the 1%, 5%, and 10% significance levels.

The peak at (5,4) in the point auto-periodogram indicates that the pat-
tern resembles a cluster process. Indeed, events are clustered at large values
of the lattice pattern. Furthermore, there is a minor peak at (10, 8) which
can be attributed to the fact that the clusters exhibit a pattern of regu-
larity. This arises because events belonging to different clusters cannot lie
within a minimal distance from each other by construction of the pattern.
These two dominant peaks were found to be the only significant ordinates
at the 1%, 5%, and 10% significance levels using Fisher’s test for point pro-
cesses. Better insight about the individual components of the point-lattice
pattern can be gained by looking at the polar spectra for these processes (see
Mugglestone, 1990). However, we are interested mainly in the interaction be-
tween the two components of the point-lattice process rather than studying
each individually.

Figures 2.7(c) and (d) are the raw estimates of the co- and quadrature
spectra, respectively. Both spectra exhibit a peak at the frequency (5,4). The
peak in the co-spectrum implies that events tend to occur at large values
of the lattice pattern. Furthermore, the two patterns are out-of-phase as
indicated by the peak in the quadrature spectrum. This is expected since
the point pattern component peaks/troughs do not coincide exactly with
those of the lattice pattern, the point pattern is associated with the upper

quartile of the latfice pattern.
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Figure 2.7(e) represents the smoothed amplitude spectrum. Again, the
peak emphasises the correlation between the two components of the pattern.
Figure 2.7(f) is the smoothed phase spectrum. The phase spectrum contains
a number of discontinuities which can be attributed to the fact that the phase
spectrum is constrained to the interval (—m, 7).

The squared coherency spectrum, Figure 2.7(g), exhibits a peak in the
neighbourhood of the frequency (5,4). Hence, the two components are lin-
early correlated at this frequency. The gain spectrum of the point pattern
given the lattice pattern presented in Figure 2.7(h) has power at most fre-
quencies with a mean of 0.8693 and a median of 0.8309. In contrast, the
gain spectrum of the lattice pattern given the point pattern presented in
Figure 2.7(i) has its power concentrated at a peak around the frequency
(5,4) and is almost zero elsewhere. Thus, given the lattice process, Y, one
can make inferences about the behaviour of the point process, X, for most
frequencies. This can be attributed simply to the way the point process was
simulated conditionally on the values of the lattice pattern. On the other
hand, given the point process inferences about the lattice process can be

made only around the frequency (5,4).
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Figure 2.7: Spectra for THRESACOS (Figure 2.6). (a) and (b) Raw auto-periodograms;
(¢} and (d) raw co- and quadrature spectra; () to (i} smoothed amplitude, phase, squared
coherency and gain spectra using Method A four times.

64



Point-Lattice Process Example
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X

Figure 2.8: THRESBMA: a realisation of a spatial point-lattice process. The lattice
pattern is a moving average and the point pattern is generated using THRESB.

2.5.1.3 Example 2: THRESBMA

Figure 2.8 is the graphical representation of a point-lattice pattern where the
lattice component is a spatial moving average and the point component is
generated using THRESB. The lattice pattern, Y, has been generated by

1 1
Yooubs) = 3€010) T g{f(m—l,zn) + €by+1g) T E(briba=1) T EBr b2+ }s

where by, 00 = 0, ..., 31, €uy) are IID from N(10,1), and u,v = ~1,...,32.
Then THRESB was used to generate an associated point pattern. Events
were generated if 0.76 < Y/Y* < 0.86, where Y* = 11.35 is the maxi-
mum of the lattice pattern. Note that the minimum of the lattice pattern
is 8.669. Thus, events are associated with relatively low values of the lattice
pattern. The total number of events generated is 3242. A random sample

from the point process of size 742 was then chosen. The number 742 was
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itself randomly chosen from integers less than a thousand. The reason for
not retaining all the events is that in the real examples discussed later the
number of events does not usually exceed 1000 events.

Figures 2.9(a), (b), (¢), and (d) represent the raw auto-spectra for the
point and lattice components, and the raw co- and quadrature spectra, re-
spectively. These spectra exhibit concentration of power at low frequencies,
The smoothed amplitude spectrum, Figure 2.9(e), exhibits the same struc-
ture as the above spectra.

Furthermore, the lattice spectrum exhibits concentration of power around
the lines w, = 0 and w, = 0. This feature usually occurs in image analysis
when image discontinuities are produced by wrap-round of the image do-
main. Tapering is then used to remove the artificial vertical and horizontal
stripes that occur in the spectra as those in Figure 2.9(b) (for more details see
Glasbey and Mardia, 2000; Glasbey and Horgan, 1995; Robinson, 1983). Fig-
ure 2.10 gives the significant ordinates of the lattice and point periodograms
at the 1%, 5%, and 10% significance levels using Fisher's test.

The negative concentration of power at low frequency magnitudes in
the co-spectrum implies that the two components are negatively correlated.
Thus, events tend to occur at low lattice values. The quadrature spectrum
has negative concentration of power around frequencies with small magni-
tudes. Therefore, there is a phase shift between the two components.

The phase spectrum, Figure 2.9(f), reveals a negative slope in the WE
direction despite the existence of discontinuities at some frequencies. The
squared coherency spectrum, Figure 2.9(g}), has the same power distribution

as most of the above spectra. The values for the squared coherency spectrum
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are relatively high for frequencies with small magnitudes. For the frequency
band with p=0,...,7and ¢ = —7,...,7, the mean and median values of
the square root of the squared coherency spectrum are 0.8378 and 0.8468,
respectively. Similar behaviour is demonstrated by the gain spectrum pre-
sented in Figure 2.9(1). However, the gain spectrum of Figure 2.9(h) has its
peaks at high frequencies.

In summary, the two components are negatively correlated and out of
phase. In addition, there is sotne evidence that the two processes are linearly

correlated at low frequencies as seen from the squared coherency spectrum.
2.5.1.4 Thinning

Another method to generate a point pattern given the lattice pattern is
discussed in this section. This method which will be termed THIN uses
the techniques of thinning a point process introduced by Lewis and Shelder
(1979) to generate a non-homogeneous Poisson process. The idea of thin-
ning was also used by Ogata (1981) who provided a number of algorithms
to simulate one-dimensional point processes specified by their conditional
intensities. The intensity of the point pattern generated by THIN depends
on the lattice pattern as it is the case for THRESB. However, generation of
events in THRESB is completely determined by the lattice pattern but this
is not true of events generated using THIN. The steps involved in generating

a point pattern using THIN are as follows.

1. Define the intensity function, {A(a)}, of the point pattern to be a
function of the lattice pattern. For example, A(a) can be defined as

A(a) = Ya] = Y{[a))faz)) OF a8 an average of lattice values of neighbour-
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Figure 2.9: Spectra for THRESBMA (Figure 2.8). (a) and (b) Raw auto-periodograms;

(¢} and (d) raw co- and quadrature spectra; (e) to (i) smoothed amplitude, phase, squared
coherency and gain spectra using Method A four times,

68



& - A3 - F s -— =5
™ |- , - -
Point Process Significant Ordinates Lattice Process Significant Ordinates
(a) (b)

Figure 2.10: (a) Significant ordinates of the sample point spectrum of THRESBMA
(Figure 2.9(a)); (b) significant ordinates of the sample lattice spectrum of THRESBMA
(Figure 2.9(b)). The pixel value indicates the percentage level of significance.

ing quadrats, assuming that Y is non-negative.

2. Generate a point pattern and let Nx denote the number of events of
this pattern. For example, the point pattern can be generated from an
HPP with intensity equal to A*, the maximum of the intensity function
generated in Step 1. Another example is provided by simulating an
HPP process of parent events. Then for each parent event generate an
integer, j, from a Poisson process with mean equal to the underlying
intensity at the location of that event. Next by analogy with simulating
an MTCP, for each parent generate j offspring by displacing the par-
ent’s co-ordinates by a random variable from the normal distribution

with zero mean. In the final pattern retain offspring only.

3. Generate Ny uniformly distributed variables, U, on the interval (0,1).
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Point-Lattice Process Example
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Figure 2.11: THINCOS: a realisation of a spatial point-lattice process. The lattice
pattern is cosine + noise and the point pattern is generated using THIN.

4. Retain a point if U; < \;/A*,i=1,..., Nx where A, is the intensity at

the 7** event.
2.5.1.5 Example 3: THINCOS

The lattice pattern in this example exhibits a simple structure, and the point
pattern is generated using THIN. Figure 2.11 represents the graph of the
point-lattice pattern THINCOS. The lattice pattern component of THIN-

COS was generated by

3b;  4b, 2b;  3by
Y(Iu,bg) = 2COS(27T(EZ o -3? ) + COS(??T(a + 3—2 ) + €y b2)>

where b = 0,...,63,00 = 0,...,31, and €y, 5,) are IID random variables
from the normal distribution N(0,1). The point pattern was generated by

first simulating a sample of five hundred parents from an HPP. Next, the
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number of offspring for each parent was obtained from a Poisson process
with mean equal to the quadrat value the parent belonged to. After that the
co-ordinates of the offspring were calculated by displacing the co-ordinates of
their parents by a random variable from the normal distribution N(0, 0.064).
Finally, offspring outside the study region were excluded from the pattern.
Note that parents were also excluded from the pattern. The resulting point
process had 4367 offspring. The point process was then thinned using steps
3 and 4 of THIN. The intensity at a particular location was calculated as
Yo, 02} ¥ Ap, where Ap = 500/(32 x 64) ~ 0.244 is the intensity of the pattern
formed by the parents. The number of offspring retained was 2682.

Figure 2.12(a) is the point pattern sample spectrum. Peaks are detected
at frequencies (5,4), (24, 3), and (24,5). Figure 2.13(a) gives the significant
periodogram ordinates using Fisher’s test. The peaks in the lattice pat-
tern sample spectrum, Figure 2.12(b), occur at {(5,4) and (2, 3). Note that
the magnitude at (5,4) is greater than that at (2,3) in agreement with the
magnitudes of the cosine components that were used to generate the lattice
process.

The co-spectrum, Figure 2.12(c), reveals that the in-phase components
of the point-lattice process are positively correlated at the two frequencies
(5,4) and (2, 3}. Similarly, the quadrature spectrum, Figure 2.12(d), implies
that the out-of-phase components are positively correlated at the same fre-
quencies. Hence, there is a phase shift between the two components. The
correlation between the two components is emphasised by the peak in the
amplitude spectrum, Figure 2.12(e). No general trend, however, can be de-

tected in the phase spectrum, Figure 2.12(f).

71



The squared coherency and gain spectra, Figures 2.12(g) and (i), exhibit
a peak in the neighbourhood of the frequency (5,4). However, the other gain
spectrum, Figure 2.12(h), has a peak in the neighbourhood of the frequency
(—16,31). Note that the squared coherency is almost zero elsewhere. This
can result in an erratic behaviour in the phase spectrum. In Chapter 4, it
will be shown that the variance of the phase spectrum is dependent on the
inverse of the squared coherency spectrum.

Next, methods to simulate the lattice process given the point process are

discussed.
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Fligure 2.12: Spectra for THINCOS (Figure 2.11). (a) and (b} Raw auto-periodograms
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(c) and (d) raw co-and quadrature spectra; (e) to (i) smoothed amplitude, phase, squared
coherency and gain spectra using Method A four times
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(a) (b)
Figure 2.13:  (a) Significant ordinates of the sample point spectrum of THINCOS

(Figure 2.12(a)); (b) significant ordinates of the sample lattice spectrum of THINCOS
(Figure 2.12(b)). The pixel value indicates the percentage level of significance.

2.5.2 Simulating a Point-Lattice Process II

In this section, point-lattice processes where both components are driven by
a third stochastic process are considered. These processes will be referred
to as doubly stochastic point-lattice processes (DSPLP). Such processes will
eventually lead to simulating point-lattice processes by simulating a point
pattern then simulating an associated lattice pattern. A model that fits the
above characterisation is provided in what follows. Let the point process be a
DSPP driven by {II(u)} then an associated lattice process can be generated

by setting
o= I1(v)dv, (2.10)

where Ay, is as defined in Section 9.51. In addition, we assume that II

is stationary and belongs to the class of stochastic processes discussed in
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Section 1.10 in which MTCPs and DSPPs are mathematically equivalent.
The first- and second-order properties of the DSPP are given in Section 1.10.
The first- and second-order properties of the lattice process are derived below.

First, let us standardise the span of the integral for the lattice process in

(2.10). From (2.10) we have
by +1 ba+1
Y :/ / H('Ula'U2)d'U2d’Ula
by [y
where v = (v1,v;) and b = (by, bs). Let w; = vy ~— b and uy = vz — by then

1 1
Yb - [ / H(’Ul + bl,'UQ + bg)dﬂgdul = / H(u + b)dll (211)
0 0 Agp

Thus, E[Yp] = [, Ell(u +b)du = [, Andu = Ay where Ell(u) = Ay and

u = (u;,us). Also,
E[YyYy] = E [ / M(u + b)du f T + b’)a’u’]
Ag A('.l
= E [ / [(u + b)(u' + b’)dudu’}
A AN
- f / E[f(u+ b)I(u + b')] dudu’
Ag 4 Ap

= / / M+ yn(u+b - (0 + b)) dudu,
A v Ag

where E[TI(b)TI(b')] = A4 +~n(b—b'), see Section 1.10 for more details. The
second-order properties of the point-lattice process in the spatial domain are

summarised by
E{dN(b)Yy} = E{T(b)Yi }|db]
- ]E{H(b) Aon(u+b’)du} b
_ fA E{II(b)TI(u + b)}du|db|
- fAO [A +yn(b — (u+1b))] duldbl.  (2.12)

]



Further,

vy (b, b)|db] = vyy (b — b)|db| = E{dN (b)Y} — E{dN (b}}E{Ys } =

/ (M + va(b — (u+ b"))] duldb|-Af|db| = U (b — b’ — u)du| |db.
Mo A

0
Therefore, yyy (v} = IAD ya(v — u)du, setting b — b’ = v. Thus, the cross-

spectral density function is equal to

fay(w) = fR? Yy (v) exp{—iwv ™ }dv

= f f (v — u) exp{—iwv " }dudv
r2 J A,

= / f vir{v — u) exp{—iwv " }dvdu
Ao J R

= / / v(a) exp{ —iwa' } exp{—iwu’ }dadu
Do J R

= f exp{—-z‘qu}du/ vi(a) exp{ —iwa’ }da
Ag R?

= (fan(w@) = An) f exp{—iwu }du, (2.13)

Ag
where a = v — u. However,

. 1l
/ exp{—iwu'}du = / f exp{—t(wzu1 + wyug) fdusduy
Ap [¢] (]
(e__ij:);]) ("7_‘::;1) for w, # 0w, # 0,

_ Ej:j;l for w, # 0;w, =0,
e 2=l _?;::;1 for w, = 0wy # 0,
1 for wy = 0;w, =0,
inwa /2) sin{uy /2) .
5'“({“;;5;?;;}"53 for w, # 0;w, #0,
sin{wy . _
= I i { e for wg # U wy =0,
% for w, = 0w, # 0,
1 for wy =0, w, =0.
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Hence, fyy(w) = e 5™ (fyn(w) — Au)x

sin{ws /2) sin{wy /2) .
e 20wy 10T We 7 050y 20,

SN for w, # 0y, =0,

51(11%:01%@ for w, = 0w, # 0,

1 for w; = 0;w, = 0.

(2.14)

In addition, the spectral density function of the lattice process is

sinf{wz /2) sinfwy /2) 2 .
( ( {‘”2/2)(1”5/2}3 ) for w, # O’W'y # 0,
M) for w, % 0:w, = 0
fYY(UJ) == (fNN(w) — )\H) % 4 ( ‘ww/2)2 , # Wy ,
(SIFw:J/;) )) for wy = 0wy # 0,
k]' fOI'(,um:O;wy:U_

It is worth noting from (2.14) that the phase spectrum is

pny(w) = ﬂ—w%ﬂa
since fyy(w) is real because it is an auto-spectral density function. Hence,
the slope in each direction of the phase spectrum is equal to —1/2. One can
correct for this phase shift, which is an artefact arising from the construction
of the process, by multiplying the cross-spectrum by e 5™ This is equiv-
alent to translating the co-ordinates of the point process by (—1/2,—1/2).
However, translating the point process co-ordinates is bound to create bound-
ary problems when considering realisations within a study region which is
why we mutliply by el

To simulate a DSPLP we note the equivalence between MTCPs and a
class of DSPPs mentioned in Section 1.10 and that E(dNx (Ap)) = An|As| =

An = E(Yy). Thus, one can simulate the point pattern component as an

MTCP as discussed in Section 1.10. The lattice pattern is then generated
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by assigning to each grid point of the lattice the number of events enclosed
within the quadrat associated with that grid point. The resulting lattice will
be termed a count lattice and will be defined formally in Chapter 5. Noise
can be added to the lattice pattern.

Having established the properties of {2.10) one can easily generalise this
model. One possibility is to assume that the point process is driven by the
process II; and the lattice process is driven by Il such that II; = all,
where o > 0. These processes will be termed as linked DSPLPs. Note
that setting o = 1 in the above results in a DSPLP. Another possibility is
to assume that II; + IIs = ¢; such processes are termed balanced DSPLPs.
These generalisations can be viewed as extensions of linked and balanced
bivariate Cox point processes as defined by Diggle and Milne (1983). The

cross-spectral density functions for the last two models are defined by

sin{wz/2) sin(wy /2) £ wy # 0wy # 0

. ((wzﬁ))(wuf'?)
cwetwy Siti{we for Wy # O,w _ D,
Sy (w) = ke )(fNN(w) — M) ¥ sislhfi:/%) !
W for w, = 05wy # 0,
1 for w; = Oyw, =0,
where £ = « for a linked process and k = —1 for a balanced process.

Next, we provide three artificial examples. The first of these examples is
a realisation of a linked DSPLP. The second example is a modification of the

first one, and the third is a realisation of a balanced DSPLP.
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MTCP + Count
np=200, nc= 10, sd=.5

0 5 10 15 20 25 30

Figure 2.14: LINKED: a realisation of a point-lattice process determined by (2.10). The
point pattern is equivalent to an MTCP with the following parameters: Np = 200, N¢ =
10,0(sd) = 0.5.

2.5.2.1 Example 4: LINKED

Figure 2.14 is a realisation of a linked DSPLP determined by (2.10). The
point pattern is a DSPP which is equivalent to an MTCP with the fol-
lowing parameters: Np = 200, Nc = 10, and ¢ = 0.5 on a 32 x 32 lat-
tice. Note that the distribution function of the intensity of this DSPP is
(a) = Ap 0%, h(a — Py) where Py denotes the location of a parent, Ap
the intensity of the parent pattern, Np the number of parents generated, and

h(a) is as defined in Section 1.10. The lattice pattern is the count lattice of
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the point pattern. The total number of events of the point pattern is 1965.

Theoretical auto- and cross-spectra for this example are given in Fig-
ure 2.15 and the corresponding estimates are provided in Figure 2.16.
These graphs indicate that the empirical results are in agreement with the
theoretical results.

The estimated auto-, co-, and amplitude spectra are characterised by
concentration of power for relatively low frequencies. The peaks in the esti-
mated co-spectrum indicate that the two components are positively related.
The peaks and troughs in the estimated quadrature spectrum indicate the
existence of a phase shift between the two patterns. The estimated phase
spectrum is linear and the mean of its slopes in the WE direction is ap-
proximately -0.5, and in the SN direction is approximately -0.5 as expected.
The values of the squared coherency spectrum are close to one across most
frequencies. Thus, the two components are strongly related for most frequen-

cles.
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Figure 2.15: Theoretical spectra for the pattern in Figure 2.14 (LINKED): (a} and
(b) auto-spectra; (c) and (d) co- and quadrature spectra; (e) to (i) amplitude, phase,
coherency and gain spectra.
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Figure 2.16: Estimated spectra for LINKED (Figure 2.14). {a) and (b) Raw auto-
spectra; {c) and {d) raw co- and quadrature spectra; (e) to (i) smoothed amplitude, phase,

coherency and gain spectra smoothed using Method A four times.
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MTCP + (Count + Shift + noise)
np=200, nc= 10, sd=.5, sn = -3

0 5 10 15 20 25 30

Figure 2.17: LINKEDSHIFTED: modification of the point-lattice pattern of Figure 2.14
(LINKED). The point pattern is as that of LINKED but the lattice pattern has been shifted
and Gaussian white noise added to it.

2.5.2.2 Example 5: LINKEDSHIFTED

Figure 2.17 represents the pattern formed by the point pattern component
of the previous example LINKED and a transformation of the lattice pattern
component of this example. The lattice pattern was obtained by shifting the
lattice pattern of LINKED three pixels to the south and adding Gaussian
white noise.

The lattice and amplitude sample spectra presented in Figures 2.18(a)

and (b), respectively, resemble those of the previous example. Note here
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that we have corrected for the -1/2 shift as discussed in Section 2.5.2. The
co-spectrum, Figure 2.18(c), is dominated by troughs rather than peaks indi-
cating that the shifted lattice process is negatively correlated with the point
pattern. The troughs and peaks in the quadrature spectrum, Figure 2.18(d},
indicate that the two processes are out of phase. The squared coherency,
Figure 2.18(e), still exhibits power at most frequencies, but it is not as close
to one as the previous example. This is due to the added noise.

The most interesting feature of this example is the phase spectrum, Fig-
ure 2.18(f). The phase spectrum is seen to be constant across the WE di-
rection despite some discontinuities that are due to the (—m, 7} constraint.
In the SN direction the phase spectrum decreases linearly as the w, compo-
nent of the frequency increases. Calculating slopes in the SN direction across
bands that contain no discontinuities results in approximately -3. Thus, em-
pirically one can deduce that the lattice process is to the south of the point
pattern by 3 pixels.

In principle, one can remove the phase shift to reveal the exact relation-
ship between the two components. In Figure 2.19 we represent the cross-
spectra after multiplying the cross-spectrum by e®%==34) where (0,~3) is
the detected phase shift. The co-, amplitude and squared coherency spectra
in this figure resemble those of LINKED. However, the phase and quadrature

spectra are almost zero everywhere.
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Figure 2.18: Spectra for LINKEDSHIFTED (Figure 2.17). {a) Raw lattice periodogram;

(b) smoothed amplitude spectrum; (c) and (d) raw co- and quadrature spectra; (e) and
(f} smoothed squared coherency and phase spectra using Method A four times.
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Figure 2.19: Cross-spectra after correcting for the phase shift detected
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(a) raw co-spectrum;

86



Balanced Cox
np=200, nc= 2000, del=1

0 5 10 15 20 25 30

Figure 2.20: BALANCED: a realisation of a balanced DSPLP where the number of
parent events is 200, the joint intensity is 2000/ 322 and the minimal distance is 1.

2.5.2.3 Example 6: BALANCED

Figure 2.20 is a realisation of a balanced DSPLP on a 32 x 32 lattice. Sim-

ulation of balanced DSPLPs is usually carried out using the following steps.

1. Simulate a parent process from the HPP with intensity Ap, in this

example A\p = 200/(32 x 32).

2. Simulate another two HPP processes X and Y with intensity C', in this

example C = 2000/(32 x 32).
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3. Thin one of the processes, say X, by retaining events if they are within
a distance J from the parent events. Thin the other process, say Y,
by excluding events that are within & from the parent events, in this
example 6 = 1. The two processes are, therefore, negatively correlated.
The above steps generate a bivariate, balanced Cox point process, for

more details see Mugglestone (1990).
4. Transform one of the processes, say Y, to a count lattice process.

The auto- and cross-spectra of the pattern in Figure 2.20 are presented in
Figure 2.21. The auto-spectra resemble those for LINKED. The co-spectrum
indicates that the two processes are negatively correlated. The quadrature
spectrum indicates that there is a phase shift between the two components.
However, the magnitude of this phase shift cannot be determined from the
phase spectrum without further adjustments. Techniques of how to adjust
the phase spectrum are discussed in Chapter 3. The values of the squared
coherency are close to one for low frequencies and are close to zero for high

frequencies,
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Figure 2.21: Spectra for BALANCED (Figure 2.20). (a) and (b) Raw auto-
periodograms; (c) and (d) raw co- and quadrature spectra; (e) to (i) smoothed amplitude,
phase, squared coherency and gain spectra using Method A four times.
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2.6 Summary

In this chapter, spectral analysis for spatial point-lattice processes was intro-
duced. Different cross-spectral estimates were presented. Several methods
to simulate associated point-lattice processes were provided. In addition,
theoretical cross-spectra of linked and balanced DSPLPs were derived. Arti-
ficial examples were generated in order to demonstrate the potential of cross-
spectral estimates as exploratory tools to analyse the correlation between a
two-dimensional point process and a lattice process. For these examples not
only we were able to determine whether the two components were positively-,
negatively-, or un-correlated but we were able to determine if they were out
of phase. In some cases, we were able to calculate the magnitude of the phase
shift. The examples demonstrated that when the two components were re-
lated but where the power in the auto-spectra was concentrated at a couple
of frequencies, the co- and quadrature spectra exhibited simple structure.
In this case, the phase spectrum was usually unstable, mainly because the
squared coherency was close to one only at a couple of frequencies rather
than across the whole range of frequencies. However, when the power in the
auto-spectra was distributed across a range of frequencies the phase spec-
trum behaved in a less erratic manner. Furthermore, the constraint on the
phase spectrum to lie in the interval (—7, 7) sometimes resulted in a number
of discontinuities. Thus, one needs to adjust the phase spectrum. This issue
will be discussed in the next chapter together with methods of computing

the slopes of the phase spectrum.
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Chapter 3

The Phase Spectrum: Practical
Considerations

In the previous chapter, we saw that the phase spectrum usually contains a
number of discontinuities. Thus, in most cases it is difficult to interpret the
phase spectrum as it stands. In this chapter, we will introduce two techniques
to estimate the slope of the phase spectrum. In Section 3.1 we introduce a
technique which adjusts the phase spectrum in order to calculate its slope,
while in Section 3.2 we present a second technique that does not require such

an adjustment.

3.1 Adjusting the Phase Spectrum

In the one-dimensional case and for a bivariate time series where one series is
a linear shift of another the phase spectrum is theoretically a linear function
of the frequency (sce Priestley, 1981b, chapter 9). In addition, the slope of
the phase spectrum represents the shift between the two series. However,
due to the (—m, ) restriction the phase spectrum might contain a number

of dicontinuities, such as those encountered in the two-dimensional case, and
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hence it is difficult to calculate the slope. In an ideal situation, the phase
spectrum, ¢yy(w), should be plotted on a cylinder so that —x coincides
with 7, but this is not practical (see Priestley, 1981b). Hence as suggested
by Priestley (1981b), one should plot for each w three values, one in each of
the following ranges (—3x, ~x}, (—m, 7), (7, 37) and then join the matching
entries.

In the two-dimensional case, this adjustment might be done for each
ordinate of the frequency w. This reduces the problem basically to applying
a one-dimensional adjustment. For example, adjusting the phase spectrum
in the WE direction will require applying the one-dimensional adjustment
across the range of frequencies in the WE direction for every frequency in
the SN direction. However, we do not have to restrict ourselves to the ranges
suggested above. More ranges can be used to attain a coherent graph. The
ranges to be used have length 27 and are of the form (—n + 2k7, 7+ 2k7) for
k =0,%1,.... For the examples to be presented the total number of ranges
using the modified procedure does not exceed five.

To illustrate how the automated version works for the one-dimensional
case, a typical example of a one-dimensional phase spectrum, {6}, is rep-
resented by circles in Figure 3.1. Plots of {f,} + 27 are represented by the
rhombuses and crossed rhombuses in Figure 3.1. Whereas it is easy to spot
the matching entries by eye, an automated version where the ranges are re-
stricted to only (—3m, —7), (=7, 7), and (7, 37} will require 32 x (¢ —2)+3 x 2
operations. Here £, is the length of the {#,} vector. This automated ver-
sion also requires that the three vectors which hold the original data and

the transformed data are retained throughout the computation. However,
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Figure 3.1: The circles are the original values of a hypothetical phase spectrum. The
other symbols are the values of the circles mapped to (—5m, —=3w), (=3, —7), (mw,37),
and (3, 57) for a typical frequency band in the WE direction. The line represents how
the automated procedure used in this study chooses the appropriate values. The linking
criterion is to minimise the distance between consecutive points.

allowing for more ranges to be used and adjusting the vectors as and when a
jump is encountered will reduce the number of operations to 3 x ({p —2) + 2.
In addition, only one copy of the vector is required at any one time in this
modified procedure. A jump is observed when the distance separating two
consecutive ordinates of the phase spectrum, say |0, — 6|, is greater than
one of the distances |(62 £ 27) — 6;|. In this study, we will use the modified
approach in computing adjusted phase spectra. Using the modified approach
for the {6,} example results in the entries joined by the line in Figure 3.1.
To illustrate how the modified approach works in the two-dimensional case
we apply it to two of the examples of the previous chapter. Figures 3.2(a)
and (b) represent the graphs of the adjusted phase spectra in the WE and
SN directions for the example LINKED of Section 2.5.2.1. Adjusting the
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Figure 3.2: (a) and (b) adjusted phase spectra in the WE and SN directions for LINKED;
(c) and (d) histograms of the slopes corresponding to (a) and (b), respectively.

phase spectrum of LINKED in both directions results in the same spectrum

because the original phase spectrum contained only one discontinuity in each

direction. The slopes in each direction are approximately —0.5 as expected

(see Figures 3.2(c) and (d)).
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Figure 3.3: (a) and (b) adjusted phase spectra for THRESACOS, Figure 2.7(f}, in the
WE direction and in the SN direction; (¢} and (d) histograms of the slopes corresponding
to (a) and (b), respectively.

Next, the adjusted phase spectra for the example THRESACOS of Sec-
tion 2.5.1.2 are represented in Figures 3.3(a) and (b). The histograms of the
slopes for these spectra are given in Figures 3.3(c) and (d). The histograms
indicate that the majority of slopes lie between {—1,0). The range of slopes
in the SN direction is (—2.10, 3.85) with mean —0.38 and median —0.51. In
the WE direction the range of slopes is (—2.82,1.73) with mean —0.36 and
median —0.46; the minimum is attained at frequency ¢ = 1. This extreme
value is due to the non-linear behaviour of the adjusted phase spectrum in

the WE direction along this frequency. It can be seen from Figure 3.4 that
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Phase Spectrum

WE Freq.

Figure 3.4: Profile of adjusted phase spectrum in the WE direction for THRESACOS,
Figure 3.3(a), along the SN frequencies ¢ = —4, ... ,4. The far left panel of the bottom
row corresponds to ¢ = —4, the second left panel of the bottom row corresponds to g = —3,
and so forth such that the far right panel of the top row corresponds to ¢ = 4. The dots
are the original data, whereas the line is a linear model fitted to the data.

a linear fit to the adjusted phase spectrum in the WE direction along the

frequency bands g = —4,... ,4 is poor.
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In fact, for the panels of Figure 3.4 with ¢ = 0 and ¢ = 1 a jump of
approximately —27 is observed around the WE frequency of 0.6. This jump
might be an undesirable outcome of the correction method due to its point
by point approach, thus care should be taken when using it. If the jump
is removed then a decreasing linear trend might reasonably fit the points in
these two panels,

Another problem associated with the adjustment procedure is computa-
tional efficiency since the number of adjustments required is of the same order
as the dimensions of the study region. Therefore, a method to calculate the
slope of the phase spectrum without adjusting it would be desirable. In the

next section such a method is presented.
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3.2 Phase Correlation Methods

In this section we look at alternative methods to estimate the phase shift
between a point process and a lattice process. If the phase spectrum, &, of
a point-lattice process is a linear function of the frequency, namely ®(w) =
wd" + K where d is the phase shift and K is a constant, then d can be
estimated by:

o [(61-1)/2) [{€2—-1)/2) dip  dog

(dl,dz) = arg (I;lli)z{) ZM:/Q] q_;z/g Bp,q COS [ ) — 2w ( 7, + ?2—)]
{3.1)
where 3 is a given set of weights, and #; and ¢, are the dimensions of the
study region.

Glasbey and Mardia (2000) derive (3.1) in an attempt to minimise the
mean-square-difference between images (a matching criterion) within the
framework of image warping. In doing so, they arrive at a set of weights
which is given by the ampiitude values, 4 (p,q), of the cross-spectrum; the
associated criterion is known as the covariance criterion. However, they point
out that these weights can be modified to obtain a range of matching crite-
ria. For example, setting 3, , = 1 for all p and ¢ gives the phase correlation
criterion of Kuglin and Hines (1975). This criterion can be viewed as the
correlation after transforming the patterns (images) so that the auto-spectra
are flat, see Glasbey and Horgan (1995, chapter 3). Berman et al. (1994)
introduce a closely related method to the above, which is Fourier based and
accounts for aliasing, in order to estimate band-to-band misregistrations of
images within the framework of remote sensing.

Further, Glasbey and Mardia (2000) introduce a new approach by as-
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suming that the elements of the phase spectrum are independent von Mises
variates with concentration parameters equal to the weights, and term this
criterion the Fourier-von Mises similarity measure. This assumption is based
on asymtpotic properties similar to those derived in Chapter 4 (see Glasbey
and Mardia (2000) for more details). Equation (3.1) is then replaced by the
log-likelihood:

[(6-1)/2) [(£2-1)/2) dip  dag [(£1—-1)/2] [(£2-1)/2]
Z Z ﬁpqcos[ )—27’1’(121 )] Z Z log(Zo (Bpq)),

=—{61/2] q=—[f2/2] —[€1/2] g=—(€2/2]
(3.2)

where [y (k) is the modified Bessel function of the first kind and order zero.
Glasbey and Mardia (2000) use weights that are modelled by the log-linear

function:

Bpq = exp (PO + p1 [wpgl + p2 pr,qlg + p3 log (A(p, Q))) 3 (3.3)

with parameters (g, p1, P2, £3)s Wpg = (Wp, Wq) = (2%9,%‘1), and |wy ] =

N /wp2 + wg. Both the phase correlation and the covariance criteria are special
cases of (3.2). Using (3.2} one can also derive the variance of ((ﬁ, c?g) Note

that the density function of the von Mises distribution with mean g and

concentration k, VM (u, k), is given by

exp (r cos (¢ — p))

ol () (3.4)

9(p) =

where 0 < ¢ < 27,k > 0,0 < p < 2, and Iy (k) is as above. If & = 0 then
{3.4) reduces to the circular uniform distribution.
Equation (3.1) extends the one-dimensional spectral estimation of time

delay between bivariate time series introduced by Hamon and Hannan (1974)
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who derived asymptotic optimal weights. The two-dimensional version of

T(p.q)
1-T{p,g}"

such weights is given by setting 8,, = These weights are thus
inversely proportional to the variance of the phase spectrum (see Section 4.1
for derivation). In addition to the simple delay modelled by (3.1) Hamon and
Hannan (1974) consider other models for the phase spectrum with several
parameters. However, if the ratio I_TP(,EL) is small, Hannan and Thomson

(1988) suggest estimating the phase shift by maximising the one-dimensional

version of
[(£i—1)72] [(€2-1)/2]
d d
Z Z log [1 =T (p,g)cos® S @ (p,q) ~ 27 @b, .
£ &y
=—18,/2) g=—[£2/2)

(3.5)

Based on the simulations they carried out they found that (3.5) performed

better than (3.1) in cases where the ratio Jfrp(;’!)q) is small. Chan et al. (1978)
use a weighted least squares approach to estimate the phase shift (time delay)
between one-dimensional signals.

The above approaches are closely related to the analysis of circular data.
Fisher and Lee (1992) propose regression models for circular data on linear
explanatory variables, which generalise the models given by Gould (1969)
and Johnson and Wehrly [1978). In particular, Johnson and Wehrly (1978)
derive a method of obtaining angular-linear distributions when the marginal
distributions are completely specified. Further, Fisher and Lee {1983) define
a correlation coefficient between angular variates.

Equation (3.1) can be computed efficiently for all integer values using the

Fast Fourier Transform, and then an iterative method, such as the Newton-

Raphson method, can be used to determine (cfl, 61'?2) to a finer resolution. For
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this reason we will focus on (3.1) to compute the phase shifts for the examples
of Chapter 2. The estimates of the phase shifts and their standard deviations

are presented in Table 3.1.  Tn Table 3.1 the amplitude weights correspond

Table 3.1: Estimates for the phase shifts of the examples presented in Chapter 2.

Example | Amplitude Weights Unity Weights
—F Estimate s.d. Estimate s.d.
d; ds di ldy |d; do dy | ds

THRESACOS -0.461 | -0.512 | 0.027 | 0.029 | -0.479 | -0.469 | 0.025 | 0.025

THRESBMA 2,552 | -4.641 | 0.053 { 0.125 | 2.684 | -3.961 | 0.066 | D.069

THINCOS -0.066 | 0.098 0.020 { 0.035 | -0.053 | 0.102 0.031 | 0.042
rLINKED -0.485 | -0.558 | 0.022 { 0.021 | -0465 | -0.606 | 0.026 | 0.026

LINKEDSHIFTED | -0.005 | -3.047 | 0.013 { G.012 | -0.026 | -3.043 T0.024 0.024

BALANCED -0.221 | -5.122 | 0.047 | 0.033 | -0.303 | -5.003 | 0.070 | G.047

Example HH Weights

Estimate 1s.d.

| d |dy |d |dy

| THRESACOS -0.163 H-o.wzslo.ozxs 0.046
| THRESBMA 2731 | -3.985 | 0.081 | 0.108
[ THINCOS -0.070 0.189 L0.063 0.083
| LINKED -0.480 | -0.547 | 0.010 | 0.610
LINKEDSHIFTED | -0.011 | -3.043 | 0.018 | 0.018
BALANCED 0.005 | -5.135 | 0.092 | 0.075

to the weights used in the covariance criterion, the unity weights correspond
to the weights used in the phase correlation criterion, and the HH weights
correspond to the asymptotic weights derived in Hamon and Hannan (1974},
Note that the results for LINKED are similar to the estimates derived in the
previous section. For the examples THRESACOS, THRESBMA, THINCOS,
and BALANCED where the coherency is concentrated at low frequencies,
weights which are band limited will be favourable. In the next chapter,
we will discuss a method to determine the range of frequencies where the

coherency is non-zero. Then one can use the above methods for the band
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limited frequencies in order to determine the phase shift. Nevertheless, the
main advantage of using the above methods in comparison to those presented
in the previous section is that there is no need to do separate computations
and adjustments for each direction. In addition, the bias introduced by

smoothing the phase spectrum is avoided.

3.3 Summary

A technique for adjusting the phase spectrum to remove discontinuities due
to the (—m, 7) restriction was introduced in this chapter. Using the adjusted
phase spectrum slopes in both the WE and SN directions were calculated. In
some cases, however, we have seen that this adjustment was inadequate due
to the point by point approach of this method. Thus, methods that estimate
the phase shift between the components of a point-lattice process without
the need to adjust the phase spectrum were discussed. In the next chapter,

asymptotic properties of the cross-spectral estimates will be derived.
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Chapter 4

Asymptotic Properties of
Cross-Spectral Estimates

In this chapter, the asymptotic distributions of cross-spectral estimates for
point-lattice processes are derived. These distributions are studied in Sec-
tion 4.1. Confidence intervals for the cross-spectral estimates based on the
asymptotic results are provided in Section 4.2 and a formal test of zero co-
herency is discussed. In Section 4.3, confidence intervals are derived for some
of the examples of Chapter 2 and the test of zero coherency is applied to the

coherency spectra of all the examples of Chapter 2.

4.1 Distributional Properties of Cross-Spectral
Estimates

In this section, we will discuss the asymptotic properties of the cross-spectral
estimates of point-lattice processes. The distributions that will be derived are
extensions of those developed by Brillinger {1969) for an r vector-valued time
series, Brillinger (1970) for an r vector-valued p-dimensional series, Brillinger

(1972) for r vector-valued interval functions, and Rigas (1983) for a hybrid of
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a one-dimensional point process and a time series. Priestley (1981b, chapter
9) also studied the distributions of multivariate time series.

Let Z{(a) = {Nx(a),Y,} be a hybrid process consisting of the process
of the number of events, Ny, of a two-dimensional point process, X, and a
lattice process, Y, for a € R?, see Section 1.2 for more details. For mathe-
matical convenience we assume that the lattice process is defined for a € R?.
Henceforth, we will drop the dependence of N on X in order to simplify
notation. A number of assumptions and definitions about the hybrid process
will follow.

The point and lattice processes satisfy the assumptions of Chapter 1. In
addition, the hybrid process is assumed to be strictly stationary, that is the
process { N(a+c), Yy} has the same probability distribution as {N(a), Yy}
for any a, ¢ € R?. Define the second-order moment between the components

of Z(a) as
pny(a)da = E{dN(a + c)Y,}, (4.1)

where a = (a1, 0) and da = dajday. The cross-covariance function defined in
Section 2.2 is equivalent to the limit of uyy as da — 0. The cross-cumulant

function is defined by
Cum{dN(a +c), Y.} = Cov{dN(a + c), Y.} = vy (a)da, (4.2)

where ¥ denotes the complex conjugate of z. The cross-covariance function
satisfies the condition [ |ul|yyy(u)ldu < oo. Note that the lattice process
is assumed to take both complex and real values for reasons of completeness

only. More details about the cumulant function are provided in Appendix B.
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The hybrid process is also assumed to possess moments of all orders and

to satisty

k-1
f“‘/Z‘UUJ! oo (0 u® D) dutY - gqu* Y < 0o, where
=1

(4.3)

Yot (0, uE g qu gy =

Cum{dZ,,(uV +t),--- ,dZ,_ (u*Y 4 t),d7, ()}

for by,...,bx = (Y or N); k= 1,2,..., and u¥, .., ,ulD ¢t € R Note

that lu} = vuuT = vu? + 2, where u = (u,v) and that the process dZ is
delined as

= (o Y

{see Brillinger, 1970; Brillinger, 1972). Equation (4.3) is a form of a miz-
ing condition. The mixing condition implies that the process of increments
{N{A),Y(A)}, where N(A) = [, dN(a),Y(A) = [,Y.da and A is a
subregion of R?, has the property that values of the process that are well

separated in space become independent.

Next, we define the k**-order cumulant spectral density function as

b8 ("""(1)3 s ,w(k-lj’ w(k)) = Gby by, (w(l)’ cae ;w(kil))
k-1
- (zﬂ)—Q(k»l)f...fexp{_izwmum*}
=1
X Yoyt (WD uF Y du® - guY

= (27r)_2(k—1)fbl---bk (w{l), e ,w(’“l)),
(4.4)
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for wV . w® € R? where Zf::lw(j) = 0, and the other variables are as
defined before. Note that the function gyy defined in (2.3) is a special case
of (4.4) where k =2, b = N, and b, = Y. The cross-periodogram statistic is

defined by
Gyy(w) = (2m) *Fyy(w) = (27) *|Q| 7 Fy(w) Fy (w) (4.5)
for w € R?, where @ = [0, 4] x [0,43), || = £, x £,
Fy(w) = Lexp{—’iwaT}dN(a), (4.6)
and Fy (w) :Lexp{—iwaT}Yada. (4.7)

F'is known as the finite Fourier transform of the process. The DFTs defined
in Section 1.6 are the estimates of (4.6) and (4.7) for a realisation of a point-
lattice process. In practice to avoid bias near w = 0, we use the modified

cross-periodogram statistic

Gay(w) = (2m) 2 Fyy = 2m) 2O Fy (w) Fy (w), (4.8)
where Fy(w) = Fy{w) — AvA(w) = Fy(w) — E[Fy (w)], (4.9)
Fy (w) = Fy(w) — prA(w) = Fy(w) — E[Fy (w)], (4.10)

and A(w) = [, exp{—iwa' }da.

Next, we state a property that describes the asymptotic behaviour of
the cumulant function of several finite Fourier transforms. This property is
required to establish the distribution of finite Fourier transforms and some
properties of the cross-periodogram. The proof of this and other properties

will be provided in Section 4.1.1. Let Z(a), a € R?, be a hybrid process
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satisfying (4.3), then as £;, £, = 0o we have

k
Cum{Fbl(wm),‘-A ,Fbk(w(k))} 2k UA(Zw )

=1

G (@M, W Y L O(L) (4.11)

for w®, ... w® ¢ R?, where L = max(f,,#;). Thus asymptotically the

curmulant function of finite Fourier transforms of k components tend to a
multiple of the k*-order cumulant spectrum.

Using this property, one can prove that for any two frequencies (say

wil and w@ such that wl) £ w* £ 0 for j, k = 1,2) as £;,£, = oo the

Fourier transforms F. Z(w(j ) are asymptotically independent and distributed

as

N7 (0, (27)*1Qgzz(w?)), where (4.12)
o [Fy(w)
Falw) = [ﬁ’y(w)] )

_Ngnn{w) gyy(w)
grat) = 2] i),

Here NY denotes the bivariate complex normal distribution, see Section A.3,
If w = 0 then F(w) is asymptotically N, (0, (27)?|2/gzz(0)) and indepen-
dently from the above. Furthermore, if wW) for j = 1,... ,n are chosen such
that w® — w as ¢, £y —» co then Fz(w)) are asymptotically independent

{NS:(O, (2m)2(QUgzz(w)) for w # 0,
N2(0, (2m)|2gz2(0))  forw =0,

variates. Therefore, for most frequencies the mean-corrected finite Fourier

transforms of the hybrid process are asymptotically distributed as bivariate

complex normal variables with mean zero and covariance matrix a multiple of
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the second-order cumulant spectral matrix. In addition, they are independent
for different frequencies.

As an immediate consequence of this result and the definition of the
(complex) Wishart distribution given in Section A.3, it can be shown that
for the periodogram defined by (at frequency {w))

Gy = (2n) W,z = (2#)”2(Ql’1ﬁ2};r = [CSNN CfNy] ,
Gyvy Gyy

we have asymptotically that:

y N Wil gzz(w)) fw#0,
Gzz(w) {Wg(l,gzz(ﬂ)) if w = 0.

Here, W denotes the complex Wishart distribution defined in Section A.3
of dimension two and one degree of freedom, W, denotes the Wishart distri-

bution of dimension two and one degree of freedom. Furthermore,

Gi(w) = (21) 7 Fy(w) = (2W)”2|Ql_1ﬁ(w)ﬁ‘j(w)T fori,5 =Y, N.

Therefore, the periodogram ordinates are distributed as independent (com-
plex} Wishart variates with one degree of freedom and covariance matrix the
spectral density. The distributional properties of the auto-spectra provided
in Section 1.7 are an immediate consequence of this result and the following
property of the {complex) Wishart distribution. For non-zero frequencies, G
is distributed as Wf(l,gzz(w)) which implies that é‘ss for s = NorY is
distributed as g,,x3/2. This property is a special case of that reported in
Brillinger (1981, chapter 4) where the number of degrees of freedom of the
complex Wishart distribution is taken to be n = 1 and therefore the number

of degrees of freedom of the Chi-squared distribution is 2n = 2. The equiv-
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alence for zero frequencies can be established in a similar way. However, as

Brillinger (1981) puts it:

being, a Wishart with just 1 degree of freedom, the distribu-
tion is well spread out about fxx(A) [gzz(w)]. Therefore, Ig‘,)(()\)

[é zz{w)], cannot be considered a reasonable estimate.

However, under the above assumptions the spectral density function is a
smooth function of frequency (see Brillinger, 1970). Therefore, a reasonable
estimate at a particular frequency might be constructed by averaging nearby

values of the periodogram. Thus, one can consider the uniformly smoothed

periodogram,
Gzz(w) = 1 iézz(w fQi i Fzz(w®) = (27) 2F 22 (w),
™o M
where w® for k = 1,...,m are nearby frequencies to w. This smoother is

a special case of the smoothers introduced in Section 1.8. Again, using the
above results and the properties of the (complex) Wishart distribution the
following holds asymptotically:
G (o) ~ {ijéC(m, g22(w)) ifw#0,
m~ W, (m,gZZ(O)) if w=0.
Having established the asymptotic joint distribution of the cumulant spec-
tral density function for a point-lattice process, we proceed to give the asymp-
totic properties of the cross-periodogram statistic. It can be shown that

asymptotically Gny (w), which is the cross-periodogram defined in (4.8), has
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the following properties:

, %im E{ éNy(w)} = gnyy(w) forw #0, (4.13}
and , %im Cov{éNy(r),éNy(s)} =

6{r — s}ann(rt)gyy(—r) + 8{r + s}gny(r)gyn(-r)
(4.14)
for r,s # 0, where §{} is the Kronecker delta defined in Section A.2.

Thus asymptotically the cross-periodogram is an unbiased estimator of
the second-order cross-cumulant spectral density function. Equations (4.13)
and (4.14) can then be used to deduce the asymptotic behaviour of covari-
ances for the co- and the quadrature spectra defined in (2.4). Here the

co-spectrum is written as

(@) = PGy ) + G} = H v w) + Fav (@)},

and the quadrature spectrum is written as

(2m)?
2i

{Gwv(@) = Gav(@)} = o {Fav(w) - Fav (@)},

dny (W) = 5

Therefore, the covariance matrix of Fyy, Fyy, ény, and §yy 1s given by

Fyy(w)  Fry(w) ény{w) dny (w)
Fyn(@)|  [fiy(w) Ifar@)? fun(w)eny(w) fun(w)gvy(w)
Fyy(w) [y (w) Jry(w)eny (w) fry (W)gny (w)
Eny (w) K Hfvn(w) fry(w) evy(w)avy (w)
+Rp(w) — ghy (W)}
dny (w) %{fNN(w)fYY(U-’)
! +hy (W) — iy (W)}

(4.15)

110



Here K = 1 but if G is used instead of G then K = m. Only the upper
triangle of the covariance matrix is reported; the lower triangle is derived
by sytmetry. The matrix in (4.15} is similar to that reported in Priestley
(1981b, chapter9) for any two components of a one-dimensional multivariate
time series.

The asymptotic results for amplitude, phase and squared coherency spec-
tra are derived by expanding these functions around their means using Taylor
series expansions, and retaining the first two or three terms. Taylor expan-
sions are needed since the amplitude, phase and squared coherency spectra
are non-linear functions of ¢yy, dny, FNN, and Fyy. In fact, using just the

first two terms of Taylor expansion for functions of several variables gives

E{dny } = any, E{ény } = dny, E{ony } = vny,

and

Ny Kao? 1
VE),I'(O{NY) ~ QNY {U_N; + 1}

Var(g?)Ny) ~ %{-U—i—; - 1}

Cov(¢ny, tny) ~ 0
Var(Oyy ) ~ 2Kuyy (1 — vny)*
If the statistics are caleulated at frequencies of the form w, = 2—?? where
p and £ are integers then similar results to the above can be established
for the equivalent discrete Fourier transforms. Since wpy; = w, (mod 27)
then this should be taken into account when stating conditions in the above
results. Moreover, the Kronecker delta in (4.14) should be replaced with

the Kronecker comb defined in Section A.2 to account for the equivalence of

frequencies modulus 27.
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Next, we establish equivalent properties of those defined above for the
estimates defined in Chapter 2. The quantities defined in (2.9) are the sample

estimates of the modified cross-periodogram statistic defined by

Gry(w) = (27) 2 Fyy = (2m) Q] Fy(w) Fy (w), (4.16)

where Fy and Fy are as defined in (4.6) and (4.10). The above definition is
required because the lattice pattern in Chapter 2 is assumed to be corrected
for its mean which is equivalent to the Fourier transform of the lattice pattern
being corrected for its mean. However, no such correction is carried out for

the Fourier transform of the point pattern. Defining

el

Fy(w) =
one can establish a similar result to (4.12) with the zero-mean vector being re-
placed by n = (AyA(w),0)". Hence, Fy (w) are asymptotically independent
for different frequencies and distributed as NF(n, (27)%Qgzz(w)), where
gzz is as defined above. The property Cov(X + ¢, Y) = Cov(X,Y) for c a
constant ensures that the covariance matrices for the distributions of ¥ and
F coincide. Also, one can define G[F] and G[F] in a similar way to G[F] and
G[F].

Equations (4.13) and (4.14) still hold if G is replaced by G. In addition,
the covariance matrix defined in (4.15) also represents the covariance matrix
of Fyn, Fyy, (‘:(: %{Fwy +f\?1\;}), and Q(: %{};— FNY}). Asymptotic
properties of the associated amplitude (¢&) , phase (qaﬁ) and squared coherency
(U) coincide with those reported for &, .;5, and ©. Note here that Cyy,
Qny, Any, Pny, and Tyy are the sample estimates of ¢, ¢, &, g\b, and v,

respectively.
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4.1.1 Proofs

In this section, we provide proofs for the asymptotic properties stated in the

previous section.
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4.1.1.1 Proof of (4.11)

To prove (4.11) let
A =Cum{F, (W', o [P, (w(k))}

:Cum{f exp{-—iw“)a(l)T}del(a(l))a Ty
Q

/ exp{—iw*a®T1dz, (a“‘})}
0

k
:f / exp{—i'$ " wPal)T} Cam{dz,, (a2, - ,dZ, ()}
o Jo P

k
_ ; GigH)T
= expq| — w'a X
fyroe e 3owaty

ot oo S GG, 0
2/ / fu / exp{——iz:(w{T a7’ +wy’ag’}} x
o Jo 0 :
F=1

i & 1 k k—1 k k—1 k
’Ybl"'bk((a(l)_ag )7ag)_a‘g ))a :(a(l }_ag }:aé )_‘ag )))

dagl)dag) e da(lk_l)da;kfl)dagk)dagk)

S o [ “ )0
:[ / exp{—i 3wl a;)}/ / exp{—i Y wal) x
o ¢ i=1 0 0 j=1
() g® 00 g0y (1) gl en)

’.}/bl"'bk((al — Gy 7,0 Qg 1 2

da(ll) s dagk}dagl) - -daék)

[2) £y k ) _
[ [ )
0 0 j=1
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¢ ¢
where [1 /]exp{ szl al

G R B O

1 52

Yoy - bk((a( = al =a2 (k))

? bl

dalV - dalP. (4.17)

For the time being we shall drop the dependence of the above equation on the
y-ordinate. Set u; = ag"') (1’“) forj=1,... k-1 agk} = u and substitute

these values in (4.17) then

B pli—u f1—u
B= j f / exp —i( > w u;,+u2w }

'Yblu-bk(ula T auk»l) duy - - - dug_qdu.

Let ¢ = exp{-—z’(zj 1w1 uJ + uzj L w? )}751...5k(u1, oo ug—1) and inter-

change the variables u and u,_; then

{1—u fH—u
B = / f / v f Cdul v d’uk_g du duk_l
& Up_1 v =
fl Eluuk 1 21—?.5 El —Uu
f f / ] C dul R d’LLk_.z du duk_l.

Next, define the following for j =1,... ,k—1
M; = £; - max(0,uj, -+, ug-1),
mj = —min(0, w;, -+, Ug_1)-

Then,

—~Ug—1 if ug 1 < 0,

Mgy = —min(0, ;) = {0 if ug_; >0, and
-1 3

El if Up—y < 0,

M1 =6 —max(0,up_,) =
k-t ! X( s 1) {E’l—uk_1 ifuk_l > 0.
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Thus,

0 Mgy pfi—u f1—u
B:/ f / f C’dul---duk,gdaduk_l
—f Sy — i
£ M1 f—u fi—u
+ f f f / Cduy - dug_odudug 1.
1] M1

Therefore, B = f fM" R fi—u C diy - - dug_y du dug_1 - Interchang-

Mr—1 v U

ing the variables u;_» and u gives
£1 —mg_1  pME-1 bi~Mi_1 pMi_: by pli—up.2
=LA/ 0 R R A A
~f =My Y —up2 My -1 Mg -1 bi—Mgp_y Jmp_y
21 —u flwu
/ e / C d’bﬂl <o du duk,g d’u.k_l. (418)
—u —

In (4.18) it can be shown that the limits of the variable u are my_2 and My_,
for the lower and upper bounds, respectively, regardless of the limits of the

variable uj_». Therefore,

1—mg1 pMrez ph-u £ —u
/ / / / * / Cdu1 <du duk_g dukAl.
M1 M.z v-—u -u

Next, interchange the variables u and ux_3 by defining the limits of the vari-
able u,_3 in the same manner as that of ug_y and repeat the above steps until
the last variable u, is reached. Figure 4.1 is a graphical representation of how
the limits of the integrals involving the variables u and wu; are interchanged.

The final step of interchanging variables leads to the following equation

£1—1g—1 £ — 2y —my My
:[ / / / Cduduy - duj - dig_y
- My, M; — Mo mi
£1—rng_1 =TT £1—my M k )
f f f / C’/ exp{—iungﬂ}du
My M; —M; m §=1

7

duy - - duy - - dug_y,
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Figure 4.1: Interchanging limits for the variables u and u;.

where ' = exp{“z Z] . wl uj,}*ybi b (Ur, s, gy ). Next, repeat the above

for the y-ordinate then (4.1.1) becomes
fy—ngy [32 n; £3—ng f fﬁl Mg—1 /el"‘mj ffl*mz
[ /Nk 1 / Mp_1 —M; ~ Mz
Dg 8"?{632“ . j"‘dt&kﬁldvl"'d?)j"'d’l)k...l.

Here, we have for j=1,... ,k—1

) (k)
UJ a:g a‘2 3
NJ = £2 - max(o, Uja T 3Uk*1)!
n; = - min(O, gyt ,'Uk—k)a
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k
and a(g [ Furthermore,

N1 pM k
D:/ f exp{ zz u-i—w Yy }dudv
n

mi le

k-1
5’:exp{—é2w J},
—‘exp{—szQ Uj}
H= '701“43&((”15'“1)! e :(uk—lavk~1))'

Therefore,

/ f fﬂgwnk 1/21 My /vb-—nj‘/\ ffg ng j*flﬂmg
£ My _y Mo

DEE" Hduy dvy -+ - duyduy - -duk_l dvr_1

/ / / DEdutl) - dut*-Hdut-1.
i 82y 2

Here, we have for j = 1,. ~1,

u = (u;,v5),
du" = du; du,

Q; =[-Mj, & —my] x [Ny, & — 1y,
and Qk = [‘“31,@1] X [—62,62]. AlSO,

k-1
£ = exp{—i Z wu®’ }’Ybl"‘bk u®, .. u*Y).
=1
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Set A(E?:l w)) = sz :‘ exp{—iZ?zl( Doy 4w u)}du dv and consider

RO R VAT AR A AT AT T

exp{ Z(wb)u +wi) }du dv‘

ST,

‘exp{ zi u—l—w2 }ldfudv

=1

£2  pmy 9 M, L2 £y
AL L e
0 O 4] mi Ny

:Egm[+n1(Ml —m1)+( lVl)(Ml

e,

However,
k-1 k-1
lmll = l - min(oluls cee 7“’6*1)' < Z lu.;ll < Z Ill(]}l,
=1 =1
k—1 k—1
{nil = ‘ - min(oavl: s :U’C—l)[ < Z‘U.’."l < Z (u{‘?)iv
Jj=1 Jj=1
k-1 k-1
(€ — M| = jmax(0,uy, ..., up_1)] < Zlujf < Z lu],
i=1 i=1
k~1 k—1
[l ~ Ny = |max(0,v,... ,ve_1)] < Z ju;| < Z lut|,
j=1 i=1
and |1‘Vf1 — TThl = \51 - ma.x(O, Upyeo- ,Uk_l) + min(O,ul, Ce ,uk,1)| S El.

Therefore, ‘D — A(SE, W) | < 2ty + 6) S )| < 4D TE )]
and L is as defined before which implies that D = A(Z w) + €, where
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e} < 4LZ ! u?|. Thus,

k

i k-2 k-1
"A(Z“(J))fn /ﬂ -/ £ dutV - gul2 guk-D
j=1 & k-] 2

+/ / f eEdul® . gut B dylk-b,
) S8 TP

However,

k-1
'/ / ¢ € du® ---du(’“‘”}sf / ALS” € |du)
2 192 Q. 1, L

=1

/ / 4LZ|“U [, (@Y, a2 g
1, 2

j=1

S 4L.[ - f Z |u(j)|l’Yb1'--bk (u(l)a e au(k—l))ldu(l)
R2 B2 i1

< KL =0(),

since by (4.3}

k=1
/ o / Z |u(j)l|7b1"'bk (u(1)7 e 7u(k_1))1du(1) e du(kul) S K/4a

and K is a finite number. Therefore,

k .
— A(Z w(j)) /n o Edut .. .quttb 4 O(L)
j=1 k

22

k
= (27r)2(k‘1)A(Z w(j)) X
ij=1

(277)"2“»-—1)/9 fn EduV .. qu* U+ 0O(L).
k 2

Hence, as ¢1, 6, — o0

k
A= (22 DA " w Mgy, (P, u® ) 4+ O(L).
g=1

This proves (4.11).
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4.1.1.2 Proof of (4.12)

To prove (4.12), first standardise ¥ (w) by multiplying it by |Q|*%. Then,

ot} - i)

(@)
ot [EPN @)} — AvA(w)
=19 [E{Fy (w)} - ugﬂ(w)}

=0.

Cov{mr%ff‘z(w(l)), |n|faﬁz(w(2))} - FQ|1E{FZ(w(1))pZ(wm))T}

= Q7' M, and

where 1 is the 2 x 2 matrix of ones.

If w +£ w then |Q|‘ICOV{ﬁZ(w(1)), Fz(w(Q))} =0 as £,f, — 00,

If wl = w? and w™ # 0 then A(w!V — w?) = Q).

So |n|-lcov{ﬁz(w(1)),Fz(w(U)} = (27)%gz2(w™). For higher order mo-
ments/cumulants this will involve calculating cumulants of order greater than

two such as

k
Jﬂ[ﬁg(Jum{ﬁbl (W, - ,Fbk(w(k))} = ’ﬂ|“§{(zﬂ)2{k_l)‘&(zw(j)) X

i=1
Gby .. by (w(l)a R 1w(kn1)) + O(L)}
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Now O(Z_\(Efﬂwwj) = ((€2]) so for & > 2 the above equation tends to
zero asymptotically. This proves (4.12) for the case w # 0 by using the
remark on cumulants of normal variables given in Result 2 of Appendix B.

A similar proof holds for the other case.
4.1.1.3 Proofs of (4.13) and (4.14)

The proofs of (4.13) and (4.14) are provided in what follows.
Consider E{éNy(w)} o) 2Iﬂ| {FN( )y (w )} but

E{FN(w)Fy(w)}:E{(FN( ) — AvA (W) (Fy (w) — py Alw ))}
= Cov{Fy(w), Fy(w)}
= Cum{ Fy{w), Fy (—w)},

because E{ Fy(w)} = AvA(w), E{ Fy(w)} = pyA(w) and
Cov(Y,2) =E{YZ} — E{Y }E{Z} for complex variables Y and Z. So

E{GNY(W)} = (Q—Tr)lzﬁ@(]um{FN(w),Fy(—-w)}
= (Q—ﬁ)lglﬂ{(Zﬁ)zA(w - w)gNy(w) + O(L)}
= gNY(w)1

as £1, € — oo since A{w —w) = A(0) = £14, = |©2|, and O(L)/|2] — 0.

This proves (4.13). Equation (4.14) is proved as follows. Consider

Cov{é,w(r),ézw(s)} = COV{%I“QWFN(I‘)FY(“I'): mﬁh’(s)ﬁy(#s)
= WCOV{FN(r)Fy(—r),FN(S)FY(—S)}
= (Q_W)_}‘TQ_PCUHI{FN(I‘)F’Y(_I.)’ ﬁN(_S)ﬁY(S)}
1
= @r
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Using Lemma B.2.1 and the properties of cumulants, G can be written as
G = Cum{(Fn(r) — AwA@))(Fy(-1) — prA(-1)},
(Fn(—8) = AnA(=8))(Fy (s) — pyA(s) }
= Cum{ Fy(r) Fy(~1) = AwA() Fy (—1)
— iy A(=D) Fy(r) + AnA(r) py A(—T),
Fy(=5)Fy(s) — AvA(—8) Py (s)
— iy A(8) Py (~8) + AwA(=8)uy A(s)}
= Cum{ Fn(r) Fy (1), Fx(—8)Fy(s)}
— pyA(s)Cum{ Fy(r) Fy (—1), Fy(-s)}
— AvA(-s)Cum{ Fy(r)Fy (-1), Fy(s)}
— py A(—1)Cum{ Fy(r), Fy(—s)Fy(s)}
= AwA(r)Cum{ Fy (1), Fy(—s)Fy(s)}
+ Ay A(-1)A(=8)Cum{ Fy (), Fy(s)}
+ Avpy A(r)A(s)Cum{ Fy (1), Fy(—s)}
+ AL A(r)A(—s)Cum{ Fy (1), Fy (s)}
+ 12 A(=1)A(s)Cum{ Fi(r), Fy(—s) }

=0+P+Q+R+S+T+U+V+W.
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Again using Lemma B.2.1, the components of the above equation can be

expanded to
O = Cum{Fy(r), Fy(-1), Fx(-8), Fy(s)}
+ Cum{ Fy(r) }Cum{ Fy(—r), Fx(—s), Fr(s)}
+ Cum{ Fy(—r) }Cum{ Fy(r), Fn(—s), Fy(s)}
+ Cum{ Fy(-s) }Cum{ Fy(r), Fy(—r), Fy(s)}
+ Cum{ Fy (s) }Cum{ Fy (), Fy(-1), Fy(~s)}
+ Cum{Fy(r)}Cum{ Fy(~ }Cum{Fy r), Fr(s)}
+ Cum{ Fy (r)}Cum{ Fy (s) } Cum{ Fy (—r), Fx(—s)}
+ Cum{ Fy{~rt) }Cum{ Fyx(—s)} Cum{ Fy(r), Fy (s)}
+ Cum{ Fy(~r) }Cum{ Fy-(s) } Cum{ Fyy (r), Fx(—s) }
+ Cum{ Fy(r), Fn(—s) }Cum{ Fy(—r), Fy(s)}
+ Cum{ Fy(r) —1)}Cum{ Fy (-r), Fx(-s)},
P = —puyAls) {Cum{FN  Fy(~r), Fy(—8))
+ Cum{ Fy(r) }Cum{ Fy(-r), Fy(-s)}
+ Cum{ Fy (- 1)} Cum{ Fy (x), Fn(~3)} },
Q = ~AyA(—s {Cum{FN  Fy(-1), Fy(s)}
+ Cum{ Fx(r) }Cum{ Fy (—1), Fy (s)}

+ Cum{Fy(—r)}Cum{FN(r), Fy(S)}}
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R =~y Al-r){ Cum{ Fy(x), F(~s), Fy(s)}
+ Cum{ Fy(~s) }Cum{ Fx(r), Fy(s)}
+ Cum{Fy ()} Cum{ Fy(r), Fx(-s)} },

8 = ~AwA(){Cam{Fy (~1), Fy (=), Fr(5)}
+ Cum{ Fy(=s)}Cum{ Fy (~1), Fy (s)}

+ Cum{ Fy (s) } Cum{ Fy () ,FN(—S)}}.
With the aid of some algebra, it can be shown that

G = Cum{Fy(r), Fy (- 1), Fy(~s), Fy(s)}
+ Cum{ Fy(r), Fy(-s) }Cum{ Fy(—r), Fy (s} }

+ Cum{ F(r), Fy(-r) }Cum{Fy (-1}, Fy(-s s)}.

Hence,
g = (Zﬂ)z{B)A(O)gNYNy(I‘, -~T, —S) -+ O(L)
-+ {(27()2A(I‘ - S)gNN(I') -+ O(L)} X {(Q?T)ZA(—I' + S)gyy(—‘r) +O(L)}

+ {(2m2A(r + s)gny (r) + O(L)} x {(2m)?A(=r = 8)gyn(-1) + O(L)}.

Rearranging and simplifying the above entries give
G = (27)°|Qgnyay(r, -1, —8) + (2m)*|A(r — 8)]2gnn(r)gyy (—T)
+ (2m)*|A(r + 8)[*gny (r) gy (-T)
O(L){A(r — s)gnn(r) + A(=r + 8)gyy(~T)

A(I‘ + S)Q'Ny (I‘) + A(—I‘ — S)QYN(—I') + O(L)}
Note that

lA a)] = l exp{ O‘,ltl + aztg }dt dtzl < dt;dtz = 6132 iﬂl
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Hence,

G = (QW)ﬁlmgNYNY(I‘, -1, -8} + (QW)4|A(I' - S)|29NN(1‘)QYY(—I‘)

+ (27)YA(r + 8)|2gny (T)gyn (—r) + O(L?),
since O(|Q]) = O(L?). As £y, 3 — o0 we have

m{(2ﬁ)6{QIQNYNy(r, —r, —5)

+ (2m)*1A(r = 8)Pgwn (r)gyy (-x)

Cov{éNy(r),éNy(s)} =

+ (2m)YA(r + 8)Pgny (r)gyn(-t)
+ O(L3)}
— 8{r — s}gnn(r)lgyy(-T)

+ 6{r + s}gny (r)gyn(-T)

for r,s # 0. Note that L‘%Jf:)%z — §{a} as £,, 43 — oo, where 4 is the Kronecker

delta defined in Section A.2. Hence, equations (4.13) and (4.14) are proved.

4.2 Confidence Intervals

By analogy with Brillinger (1981) and Priestley (1981a, chapter 9) methods
to construct confidence intervals for spectral estimates are discussed in this
section. In Section 1.7 the standardised auto-spectra were stated to be inde-
pendently distributed as Chi-squared variables with two degrees of freedom,
X2, for w # 0. Thus, confidence intervals can be constructed for the auto-
spectra based on this distribution. However, these estimates are unstable
being based on the x3 distribution, hence smoothed estimates are used.

The asymptotic independence of scaled pericdogram ordinates together
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with (1.14) and (1.15) imply that smoothed periodogram ordinates are asymp-
totically distributed as
Z Z W) X5 = Zwkxg (4.20)
= J=—v
In practice the distribution of such a variate is usually approximated by the
K2 distribution. The degrees of freedom, n, and the multiplier, K, of K X2
are determined by equating the first and second moments of K x2 to those
of (4.20) Brillinger (1981)see. Hence,

nK—2Zwk—ZZ Zw(mﬁ.z

1=—u J=—u

and 2nK2—4Zwk—4Z Zw

1=—u j=—v
Therefore, n = 2/(3 -, w?) and K = 2/n. In the case where the weights are
uniform, that is wx = 1/m for k = 1,... ,m, the distribution of {(4.20) is ex-
actly LyZ . For computational convenience, uniform weighting will be used
when constructing confidence intervals, unless otherwise specified. Thus, a

100(1 — @)% confidence interval for fys(w) is

mFg(w) mF(w)
Xom (L = @/2)" X3m(/2)

(4.21)

where 2 (a) is the 100a percentile of the Chi-squared distribution with n
degrees of freedom, s = ¥ or N and Fj; is the uniformly smoothed non-scaled
auto-spectrum. As the sample size increases the normal approximation to
the above distribution can be used to construct confidence intervals.

In Section 4.1 an estimate of the cross-spectral density was provided via

Fyy (w) =m '3 0, Fyy(w®)). Furthermore, it was shown that Fyy (w'®)
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for £ =1,...,m can be considered as m independent estimates of FNy(w)
for w® near w. Thus, one can construct a confidence interval for the co-

spectrum, cyy (w) = Re{fyy(w)}, based on the estimate
C=Cuyrlw)=m D Re{Fyy(w®)} =m™> Cr.
k=1

Let 62 = (m — )7 300 (Ck ~ 0)2 then, by analogy with Brillinger
(1981}, the Student’s ¢ distribution can be used to approximate the distri-

bution of the variate ”f,'\"/ca Hence, a 100(1 — «)% confidence interval for ¢ is

given by C £ —f}\/ﬁt,n_l(l — «/2), where t,(3) denotes the 10073 percentile of
Student’s ¢ distribution with » degrees of freedom. Alternatively, the normal
distribution N (¢, £{fnn fyv + ¢* —¢*}) can be used to find an approximate
confidence interval.

The confidence interval constructed for the co-spectrum can be used to
test whether the two in-phase components of the hybrid process are correlated
at a particular frequency. If the two components are uncorrelated then one
expects the co-spectrum to be zero. The same procedure can be used to
obtain confidence limits for the quadrature spectrum by replacing ¢ by ¢
where ¢ = gyy (w) = Im{fyy(w)}-

The other cross-spectral estimate for which one might be interested in
calculating a confidence interval is the phase spectrum. A confidence interval
for the phase spectrum may be derived by approximating tan{®} = -Q/C
by a normal distribution with mean tan{¢} and variance £ sec*{¢}(v~'—1).
The mean and variance are derived by using Taylor expansion {see Priestley,
1981b).

Note that if v = 0 then one can show that ¢ is uniformly distributed
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on (—n/2,7/2). This can be done by noting that when v = 0 then C and
() are uncorrelated. Further, if C' and ¢} are assumed to be bivariate nor-
mal, then in this case they are independent with zero means and common
variance w‘g—{ fnnfyy}. This implies that their ratio is Cauchy. Hence, the
tan~! transformation results in a uniformly distributed random variable on
(—m/2,7/2) as stated in Section 2.4.

Hannan (1970, chapter 5) gives the following confidence interval for the

phase spectrum

Isin{® — ¢} < tapm—1)(B) 2(—;:}“’,
where t and 3 are as before. This confidence interval is derived from the
distribution of the complex regression coefficient, ['(w) = %%, of Von N
(see Section 4.2.1 for more details). For computational convenience we will
use the earlier approach to find a confidence interval for the phase spectrum

because we compute the phase spectrum based on the tan™! function.

4.2.1 Test for Zero Squared Coherency

In this section, a test for zero squared coherency is discussed. This test is
an adaptation of a test for the one-dimensional multivariate case discussed
by Priestley (1981b, chapter 9). The two-dimensional version follows imme-
diately. Hence, we will only summarise the one-dimensional test statistic.
Under the null hypothesis that the coherency, \/v, is zero we have

(m =D/ _(m-1T __
1 — (\/T)Q = -7 = I22(m-1)

where F,, is the F-distribution with p and ¢ degrees of freedom, and m is

(4.22)

the number of ordinates used in smoothing the periodogram at a particular
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frequency. An insight into this result can be gained by investigating a linear
relationship between the two components X and Y of a bivariate process as
outlined below. Consider

V()= > hu)X(t—u)+et),

u=—n0

where e is added noise and uncorrelated with X and & is a function. In
addition, € and X have zero means.

However, the spectral representation theorem implies that
dZy(w) = N(w)dZx(w) + dZ(w), (4.23)

where M = [ exp{itw}dZy(w), M =Y, X, ¢ and
T{w)y =320 __ h(u)exp{—iuw}, (see Priestley, 1981a, chapter 4). Note that

the process dZ,r has the following properties:

E{dZp (w)} =0 for all w,

E{|dZx (w)]*} = farae(w)dw for all w,
E{dZy (w)dZp(w)} =0 for w # W,
where faar(w) is the non-normalised auto-spectrum. For the case where
¢ and X are zero mean complex Gaussian, Goodman (1963) proves that
the increments dZ,,dZy and dZy are also zero mean complex Gaussian. In
addition, he concludes that even for non-Gaussian processes the increments

can still be regarded as complex Gaussian. Therefore, treating (4.23) as an

ordinary linear regression problem yields the following quantities:

1. residual sum of squares (RSS):

E{le((w)]Q} - f}’}’(w)(l . |F(w)|2fXX(w))dw,
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2. erplained sum of squares (ESS):
E{|T(w)dZx (w)[*} = [T (W) fxx (w)dw.

Since I'(w) = J{;—:—% then RSS = fyy(w)(l — v(w)ldw and

ESS = v(w)fyy(w)dw. Therefore, IE{%% = Tf% as required.

Hannan (1970, chapter 5) gives a detailed derivation of the density func-
tion for the coherency spectrum, ff@ = —4—% The derived den-
sity yields (4.22) under the null hypothesis.

Note that for the two-dimensional point-lattice process and under the
null hypothesis of CSR, where the point process is an HPP and the lattice
process is white noise, the individual DFTs are distributed as Gaussian ran-
dom variables. Thus, one can extend the above arguments in an obvious way
to derive a zero coherency test for the two-dimensional case. In the next

section, we will apply the results of this section to some of the examples of

Chapter 2.
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4.3 Application

In this section, we will construct confidence intervals for auto- and cross-
spectra of the examples LINKED and CSRPLE of Chapter 2. In addition,
we will provide the figures for the zero test statistic for the other examples
of Chapter 2.

Figures 4.2 and 4.3 represent the profiles of the auto-spectra of LINKED
together with 95% confidence bands at each frequency. The profiles are
obtained by conditioning on the WE frequencies since this results in fewer
panels per plot. For most frequencies the auto-spectra lie close to the upper
bound of the confidence bands. This is because the upper bound for most
ordinates is calculated as (9F,,(w)/x%:(0.05/2)) ~ 1.1 F,,(w) since most or-
dinates have eight neighbours. In addition, the spectral power is concentrated
mainly around low frequencies. The similarity between the point and lattice
spectra is attributed to the method that generated them. For comparison
Figures 4.4 and 4.5 give the 95% confidence bands for the auto-spectra based
on using Method A once and the approximation K'x2. This approach results

in wider confidence bands.
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-15 5 0 5 10 15 15 S5 0 5 1015

Point Spectrum

SN.freq

Figure 4.2: Profile of the point spectrum of LINKED using uniform smoothing, solid line,
and the 95% confidence band around each frequency, dotted lines. The far left panel of
the bottom row corresponds to p = 0, the second left panel of the bottom row corresponds
to p = 1, and so forth such that the far right panel of the top row corresponds to p = 15.
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Lattice Spectrum
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Figure 4.3: Profile of the lattice spectrum of LINKED, solid line, and the 95% confidence
band around each frequency, dotted lines.
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Figure 4.4: Profile of the point spectrum of LINKED, solid line, using Method A once
and the 95% confidence band around each frequency, dotted lines.
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Lattice Spectrum

Figure 4.5: Profile of the lattice spectrum of LINKED, solid line, using Method A once
and the 95% confidence band around each frequency, dotted lines.
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The co-spectrum plots reveal that the two components are positively cor-
related for frequencies in the range p = 0,...,9 and ¢ = —10,...,10, see
Figure 4.6. It is worth noting here that the confidence bands around most
frequencies in the above range exclude zero. Furthermore, the co-spectrum
is almost zero outside this range, thus, the in-phase components are uncorre-
lated for high frequencies. For low WE frequencies the quadrature spectrum
resembles a sine wave, see Figure 4.7. This feature fades out as the WE fre-
quency increases. In fact, for large WE frequencies the quadrature spectrum
is almost zero.

Figure 4.8 represents the profile of the zero coherency test statistic to-
gether with the corresponding upper 5% critical point of the F distribution.
The figure implies that the two components are correlated at almost all fre-
quencies. However, this correlation is pronounced for the frequency range
p=20,...,9and ¢ = —10,...,10. Having established the range for which
the squared coherency is non-zero, one can construct confidence intervals for
the phase spectrum in this range. Figures 4.9 and 4.10 represent the tan-
gent of the phase spectrum together with the corresponding 95% confidence
bands for the frequency band p = 0,...,5 and ¢ = —5,...,5. The first
of the two figures is conditioned on the WE frequencies, while the other is
conditioned on the SN frequencies. The figures reveal that the tangent of the
phase spectrum decreases linearly along these frequencies. Hence, one can
conclude that the two components of the hybrid pattern are positively corre-
lated in the frequency range p =0,...,9 and ¢ = —10,...,10. In addition,
as lmplied by the quadrature spectrum and the tangent of the phase graphs

there exists a phase shift between the two components.
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Figure 4.6: Profile of the co-spectrum of LINKED, solid line, and the 95% confidence
band around each frequency, dotted lines. Dashed line represents the zero value.
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Quadrature Spectrum
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Figure 4.7 Profile of the quadrature spectrum of LINKED, solid line, and the 95%
confidence band around each frequency, dotted lines. Dashed line represents the zero
value,
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Figure 4.8: Profile of the zero coherency test statistic spectrum for LINKED, solid line,
and the corresponding upper 5% critical point of the F distribution, dotted line.
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Tanphase Spectrum

SN.freq

Figure 4.9: Profile of the tangent of the phase spectrum of LINKED, solid line, for
p=20,...,5and g = —5,...,5, conditioning here is on the WE frequencies, and the 95%
confidence band around each frequency, dotted lines.
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Tanphase Spectrum

WE.freq

Figure 4.10: Profile of the tangent of the phase spectrum of LINKED, solid line, for
p=0,...,5and ¢ = —5,...,5, conditioning here is on the SN frequencies, and the 93%
confidence band around each frequency, dotted lines.
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Figures 4.11, 4.12, 4.13, 4.14 and 4.15 represent the profiles of the
auto-, co-, quadrature and zero coherency spectra, respectively, for CSRPLE.
The confidence bands are calculated at the 99% confidence level. The auto-
spectral power is spread across all frequencies as expected for a completely
spatially random process. The co- and quadrature spectra oscillate around
zero. Note that all the confidence bands include zero. The zero coherency
statistic is well below the upper 1% critical point of the I distribution for
almost all frequencies. As expected, one can conclude that the two processes
are uncorrelated,

For the examples THRESACOS, THINCOS, THRESBMA and BAL-
ANCED of Chapter 2 graphs of the zero coherency statistic are presented
in Figures 4.16, 4.17, 4.18, and 4.19, respectively. The plots for THRE-
SACOS and THINCOS reveal that the two components are correlated in the
neighbourhood of the frequencies where the lattice spectra have their power
concentrated, see Figures 2.7 and 2.12. However, the plots for THRESBMA
and BALANCED imply that the two components are correlated at low fre-
quencies. The zero coherency figures for LINKEDSHIFTED are not shown
because they closely resemble those for LINKED. Thus, using the zero
coherency test we are able to determine the range where the two components
are correlated formally. Having done so, we are then able to find confidence
intervals for the tangent of the phase spectrum. In addition, this test plays
an important role when studying the phase spectrum, since the variance of
the phase spectrum is inversely proportional to the squared coherency, see
Section 4.1. So if the coherency is zero then the phase spectrum is expected

to behave in an erratic manner because its variance will tend to infinity.
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Paint Spectrum

SN.freq

Figure 4.11: Profile of the point spectrum for CSRPLE, solid line, using uniform smooth-
ing and the 99% confidence band around each frequency, dotted lines.
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Figure 4.12: Profile of the lattice spectrum for CSRPLE, solid line, and the 99% confi-
dence band around each frequency, dotted lines.
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Figure 4.13: Profile of the co-spectrum for CSRPLE, solid line, and the 99% confidence
hand around each frequency, dotted lines, Dashed lire is the zero line,
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Quadrature Spectrum
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Figure 4.14: Profile of the quadrature spectrum for CSRPLE, solid line, and the 99%
confidence hand around each frequency, dotted lines. Dashed line is the zero line.
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Coherency Test

SN.freq

Figure 4.15: Profile of the zero coherency test statistic spectrum for CSRPLE, solid
line, and the dotted line represents the upper 1% critical point of the F-distribution.
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Figure 4.16: Profile of the zero coherency test statistic spectrum for THRESACOS,
solid line, and the corresponding upper 5% critical point of the F distribution, dotted line.
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Coherency Test

Figure 4.17: Profile of the zero coherency test statistic spectrum for THINCOS, solid
line, and the corresponding upper 5% critical point of the F distribution, dotted line.
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Figure 4.18: Profile of the zero coherency test statistic spectrum for THRESBMA, solid
line, and the corresponding upper 5% critical point of the F distribution, dotted line.
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Figure 4.19: Profile of the zero coherency test statistic spectrum for BALANCED, solid
line, and the corresponding upper 5% critical point of the F distribution, dotted line.
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4.4 Summary

In this chapter, the asymptotic distribution of the cross-spectral statistic
matrix Gzz(w) was established to be a complex Wishart distribution of di-
mension two with one degree of freedom for w # 0, and to be a Wishart
distribution of dimension two with one degree of freedom for w = 0. The
cross-periodogram statistic was found to be an unbiased estimator of the
cross-spectral statistic G ny(w). The cross-spectral estimates at different fre-
quencies were shown to be asymptotically independent of each other. Having
established the asymptotic properties of the cross-spectral statistic, confi-
dence intervals were obtained for the auto-, co-, quadrature and phase spec-
tra. In addition, a test for zero coherency was discussed. It was verified
that the test statistic followed an F distribution. Furthermore, confidence
intervals were provided for some of the examples of Chapter 2, and the test
for zero coherency was used to determine whether the two components of the
examples were correlated. In the next chapter we will discuss another tool
that one might use in an attempt to uncover patterns of correlation in peint-
lattice processes. This tool is based on discretising the point pattern and
studying the joint properties of the resulting pattern and the lattice pattern

using spectral analysis.
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Chapter 5

Lattice-Lattice Processes

Lattice processes are observed at regular grid points. However, this property
is not shared by point processes that can he observed anywhere in the study
region. This situation might lead to some complications in the estimates of
the cross-spectra, especially the phase spectrum. So one might consider dis-
cretising the point process in order to eliminate any discrepancies attributed
to the above fact. Lattice-lattice processes, their properties and their esti-
mates are discussed briefly in Section 5.1. In Section 5.2 methods to discretise

the point pattern are discussed and some examples are considered.

5.1 Estimates

A lattice-lattice process is a process with two components where each com-
ponent is a lattice process. Both components are observed in the same study
region. Thus the matrices that represent both processes have the same di-
mension. Analysis of such processes can be carried out in the same manner
as point-lattice processes by replacing estimates of the point process with

those of a lattice process.
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Let {¥1,Y2} be a lattice-lattice process where ¥ and Y, are observed
on the rectangular region [0, 4] x [0,4,]. Then in accordance with previous
chapters one can estimate the auto-spectra via (1.11) and the cross-spectra
via

FY1Y2 (pv Q) = F‘:’l (pa Q)F}’g (pa )

41—1£3-1
pby qb; }
ex 27 + — X
( /7 gQ Z Z 1(by,b) p{ (61 A ) ) (5.1)

=0 b=0
S pbl sz
\/g_gg Z ZY2 by bz) EXP {2m(£—1 + _EZ_)}

where F' is the DFT of a process, (b, b2) denote the grid points where the
processes are observed, and p, ¢ are integers that index frequency (wy,w,),
compare (5.1) to (2.9). Equation (5.1) can then be decomposed either into
its real and imaginary parts or into its amplitude and phase spectra. In
addition, the squared coherency and gain spectra may be estimated.
Asymptotic properties can be derived in the same manner as for point-
lattice processes. These properties are a special case of the properties derived
by Brillinger (1970} for an r vector-valued p-dimensional series where
r = p = 2 (see also Priestley, 1981b, chapter 9}. Therefore, as scen from
{5.1) one can adjust the spectral techniques discussed so far to accommodate

lattice-lattice processes.

5.2 Point Processes into Lattice Processes

In this section, methods to discretise a point pattern are investigated. A
point pattern can be transformed to a lattice pattern via simple binning,

linear binning, fitting a fine lattice or using a kernel intensity estimator.
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Details of these methods are given below. Note that if the number of events
is large and the dimensions of the region are composite then discretising the
point pattern results in computational gains because we are able to use the

FFT.

5.2.1 Simple Binning

In this study, simmple binning constitutes discretising a point pattern using
either a binary or a count operation. Let X be the point process compo-
nent of a point-lattice process in the region [0, £;] x [0, £;). The associated
binary lattice {BL) or presence/absence lattice, X ZL, is defined as follows:
let XP4(b1,by) denote the value of the lattice in the quadrat Ay = Ay, 4),
where Ag, 5,y = [0y, by + 1] x [bg, bz + 1], then

BL 1 if at least one event occurs in Ay,
X (bl y b2) = . .
0 if no events are present in Ay,

where by = 0,... ,¢1 =1, b, =0,... ,f, — 1. The count lattice (CL), X¢T, is

obtained by assigning the number of events in the quadrat Ay, to XL (b, by).

5.2.2 Linear Binning

As discussed by Wand and Jones (1995) linear binning assigns weights to
the nearest neighbouring grid points of an event. Let the rectangle formed
by the nearest neighbours be partitioned into subrectangles according to the
position of the event within the rectangle, see Figure 5.1 for illustration.
Then the weight at a given neighbour is calculated as the proportion of the
area of the opposite subrectangle to the total area. For example, the point

X1 in Figure 5.1 is assigned the weight a; where ay is the proportion of the
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Figure 5.1: An example illustrating how weights are assigned to neighbouring grid points
of an event X using linear binning. Points X1, Xo, X3 and X4 are assigned the weights
a1, az,a; and a4 respectively, see main text for more details.

area of the subrectangle determined by the event at X and the point X3 to
the area determined by the points X, X3, X5 and X,. For examples in this
study the area of the rectangle determined by the neighbouring grid points is
always one because the grid is sampled at unit intervals. The lattice resulting

from using linear binning will be denoted by LBL.

5.2.3 Fitting a Fine Lattice

Let {XTE} denote the class of lattices fitted to the point process X such that
no more than one event is present in a given quadrat. Each member of this
class is termed a fine lattice (FL). Let XL be a member of this class such

that the dimensions of XL are the smallest integer multiples of £; and #,.
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Let the dimensions of X/ be m#;, and néy. If m or n is greater than one
then the lattice component ¥ of the hybrid process should be enlarged to
have the same dimension as X L. The enlarged process Y“* can be obtained

from the process Y by assigning to the quadrats

[mby, mby + 1] X [nby,nby + 1], ... ... ,

[m(bl + 1) - ]., m(b1 + ].)] X [n(b2 + ].) - ].,’ﬂ,(bg + 1)]

of the enlarged process the same value as the quadrat Ay, of the process Y.
Alternatively, the lattice pattern can be interpolated to fit the finer grid.

Computationally XZL is determined as follows.

1. Let X“L be the count lattice for the process X. If all the entries in
XL are either zeros or ones then set XZL = X®% and stop, otherwise

go to step 2.

2, For X¢% > 1 determine the minimal distance between events in the
corresponding quadrat. Let A_;, be the quadrat where the (global)

minimal distance 1s detected.

3. Determine the minimal integers m and n such that if Ay, is divided
into m x n subquadrats then no two events within A belong to the

same subquadrat.

4. Let XFL be the lattice with dimensions m#é; x nf; and entries zero if

srn

no event is present in a quadrat and one otherwise.

Note that fitting an FL is computationally expensive especially if the mini-

mum distance is relatively small. In practice, the point processes are usually
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recorded to a certain number of decimal places, so one can use this number
to define the minimal distance. However, this might lead to heavy computa-
tions it the locations of points are given to great precision due to the size of

the lattices required.

5.2.4 Kernel Intensity Estimator

The kernel intensity lattice (KIL), X*4Z, is obtained by finding estimates
of the number of events at the grid points (b, b2) using the kernel intensity

estimator. The kernel intensity estimator is defined as

Nx
X*L(bH) = > Ku(b - a), (5.2)
Jj=1
where a; (7 = 1,..., Nx) are the locations of the events of the point process

X in the study region, Ny is the number of events of the point pattern and H
is a symmetric positive definite 2 x 2 matrix known as the bandwidth matriz.

In addition, Ky(b) = (det(H))_1/2

K(H ?b") where K is a bivariate func-
tion satisfying [ K(b)db = 1 and is known as the kernel function. Usually
the kernel function is taken to be a bivariate symmetric probability density
function, for example, the bivariate standard normal distribution (see Wand
and Jones , 1995).

Conditional on the number of events N—lxXK”* = h(b; H) can be treated
as a kernel density estimation problem. This enables us to use existing tech-
niques addressing the different issues related to the choice of the bandwidth
matrix and the kernel function, the former being the most important of the

two (see Wand and Jones , 1995}. Several bandwidth selectors have been

studied in the literature including least squares cross-validation (LSCV) and
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plug-in methods, see Wand and Jones (1994) and Wand and Jones (1995,
chapter 4) for more details. The usual criterion for selecting a bandwidth
when using the two selectors mentioned above involves minimising the mean

integrated square error (MISE) function of h, namely
MISE{h(H)} = / E{h (b, H) — h(b)}2db,

where A is the true process. The LSCV method is based on minimising the
quantity

Nx
LSCV(H) = / h(b,H)%db — 2N ! Z h_;(a;, H),

j=1
where ﬁ,j is the kernel estimator based on the sample less the point a;. As
the name suggests plug-in methods are based on inserting estimates of the
unknown parameters that are encountered in the formulae of the asymptotic
MISE optimal bandwidth.

Diggle (1985) has proposed a kernel estimator for the one-dimensional
DSPP that does not require conditioning on the observed number of events.
Diggle and Marron (1988) have proved the equivalence between bandwidth
selectors for Diggle’s {1985) intensity estimator and LSCV bandwidth selec-
tors for the one-dimensional kernel density. In the light of this equivalence
further studies might be carried out to investigate the possibility of an equiva-
lence between bandwidth selectors for kernel density and intensity estimators
for the one- and two-dimensional cases using plug-in methods.

In this study, we will use the plug-in approach within the conditional
framework. The reason for this choice is the availability of computer code

that calculates the two-dimensional kernel density estimator and uses the
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plug-in method for bandwidth selection. The computer code is available
from wanddensity library of Splus functions.

Another issue related to the kernel intensity estimator is the boundary
effect, whereby the intensity function is extended beyond the study region by
setting it equal to zero, and where the intensity is positive at the boundaries,
for more details see Diggle and Marron (1988). This situation will result in
the kernel intensity having discontinuties at the boundaries. Diggle (1985)
has addressed this problem for the one-dimensional point process. He sug-
gested that the one-dimensional version of (5.2) can be modified to correct
for boundary problems by dividing the estimator by the convolution of the
kernel function with one over the study area. This correction can be easily
extended to the two-dimensional case. However, we will overlook this prob-
lem due to the illustrative role the kernel intensity estimator plays in this

study.

5.2.5 Application

The point pattern of the example LINKED of Chapter 2 is discretised as
an illustration of the above methods. Figures 5.2(a) to (e) represent the
graphs of the point pattern of LINKED, and the discretised point pattern
using BL, CL, LBL and KIL, respectively. The discretised pattern using FL
1s not included in Figure 5.2 due to graphical resolution limitations. The size
of the resulting lattice using FL is 3040 x 3040 corresponding to a minimal
inter-event distance of 1/95. This lattice has 1965 unit entries; all the other
entries are zero. The number of unit entries corresponds to the number of

events of the point pattern of LINKED. The size of the original lattice was
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extended to 3040 x 3040 using Section 5.2.3 method to enlarge the original
lattice (component Y of the process) where m = n = 95.

The auto- and cross-spectra of the resulting lattice-lattice patterns are
presented in Figures 5.3, 5.4, 5.5, 5.6 and 5.7. The kernel intensity estimator
calculations have been carried out using wanddensity library of functions.

The discretised point pattern, component Y] of the process, auto-spectra
using BL, CL and LBL resemble the auto-spectrum of the original lattice pat-
tern. However, using KIL results in a slightly different auto-spectrum that
has most of its power concentrated at low frequencies. In fact when using
the CL the two auto-spectra are identical. This is due to the way the lattice
pattern was generated in LINKED. The fact that the auto-spectra are iden-
tical results in the co-spectrum being identical to them. The quadrature and
phase spectra are identically zero, and the squared coherency is identically
one, sce Figure 5.3.

The auto-spectrum of the discretised point pattern using FL, Figure 5.7(a),
also resembles that of the original lattice pattern for the range of frequen-
clesp=20,...,16 and ¢ = —16...,15. Outside this range the spectrum of
the discretised point pattern fluctuates around zero. The same is true for
the original lattice but the FL auto-spectrum fluctuates more wildly. The
range of frequencies presented in Figure 5.7 is restricted top =0, ..., 32 and
g = —32...,32. This is a subset of the frequency range p = 0,...,1520
and ¢ = —1520,...,1519 that can be investigated using the FL method.
The reason for only displaying the restricted subset of frequencies is that
and as mentioned above the values outside the range p = 0,...,16 and

g = -16...,15 fluctuate around zero.
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Point Pattern Binary Lattice
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(b}

Linearly Binned Lattice

x
(e)

Figure 5.2: (a) Point Pattern of LINKED; (b) to (e) discretised patterns using BL, CL,
LBL and KIL, respectively.
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The quadrature spectra that result from the BL and FL methods of dis-
cretisation fluctuate around zero. This implies that there is no phase shift
between the two components of the lattice-lattice pattern. This is confirmed
by the phase spectra being almost zero for frequencies where the squared
coherency is different from zero. The phase spectrum resulting from KIL
also fluctuates around zero but for a shorter frequency range than BL and
FL. However, the quadrature spectrum resulting from the application of LBL
resembles that of the original point-lattice process. Furthermore, the phase
spectrum implies that the phase shift between the two components is
(~1/2,-1/2).

Thus discretising the point pattern using BL, CL or L removed the
artificial phase shift between the point pattern and the lattice pattern which
arose because of the way the lattice was simulated. Using LBL did not remove
the phase shift between the two patterns. However, LBL is known to be
superior to simple binning in estimating the true distribution (see Wand and
Jones | 1995). Furthermore, LBL is computationally less expensive than FL
and unlike KIL it does not require bandwidth selectors and density functions

to be specified.
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5.3 Summary

Analyses of point-lattice patterns through discretisation of the point pattern
to form lattice-lattice patterns have been investigated. The main advantage
of such an approach is that it eliminates problems that are due to lattice
processes being observed on a grid whereas point processes are not. Several
methods to discretise the point pattern have been discussed. These include
linear binning which has been recommended by Wand and Jones (1995)
as a better alternative to simple binning. Kernel intensity estimators have
also been studied. In addition, using a fine lattice has been investigated. [t
is computationally expensive to use this method, especially when the mini-
mum distance between events is relatively small. In the next chapter we will
use the techniques discussed so far to explore the relationship between the

components of a point-lattice pattern for a real data set.
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Chapter 6

Cross-Spectral Analysis of Tree
Species in a Rain Forest in
French Guyana

In this chapter, we explore the relationship between the components of a real
point-lattice pattern using cross-spectral analysis technigues. The data set
consists of the locations of fifty-one tree species in a rain forest at Paracou in
French Guyana; altitude values of the study area are also provided. This data
set has been supplied by Dr. Michel Goulard of Le Centre INRA de Toulouse,
France, and Dr. Hélene Dessard of CIRAD-Forét, France. In Section 6.1 the
tree species data are briefly discussed. In Sections 6.2 to 6.5 cross-spectral

analyses for some species are provided.

6.1 The Data

The data set consists of locations of fifty-one groups of tree species in a plot
of land of dimensions 250m x 250m. For convenience we will use the term
species to mean a group of one or more species. In addition, altitude values

are provided on a 50 x 50 square grid with spacings of 5m between consecutive
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grid points in each direction. Altitude values, which are relatively easy to
measure, are of interest to foresters due to the information they hold about
soil characteristics, in particular, the type of drainage. The data were col-
lected at an experimental site at Paracou (5°18V, 52°53W) near Sinnamary,
French Guyana. Figure 6.1 is a map of French Guyana. This map was down-
loaded from the University of Texas library website. The website address is
http://www lib.utexas.edu and the map can be obtained by following links
to the Perry-Castaiieda Library Map collection. Figure 6.2 gives the loca-
tion of the experimental site where the current data set was collected at plot
number one. This map is an extract from a map downloaded from the
website of Silvolab Guyana which is a research group interested in studying
the ecosystem of tropical forests in French Guyana. The website address for
Silvolab Guyana is hitp://kourou.cirad.fr/silvolab. For more details about
the data set see Dessard (1996) and Forget et al. (1999).

For species two to fourteen Table 6.1 gives the species number, botanical
family, scientific name, and local names used in French Guyana and (British)
Guyana. The number of trees of each species and the status of the species
are also given. The status is a classification of the species as either an active
timber tree (a) or a potential timber tree (p). The classification was extracted
from the appendix of Hammond et al. (1996). Any missing information is
indicated as NA. Table 6.1 indicates that potential timber trees are relatively
abundant compared to active timber trees.

We do not possess detailed information for species one and species fifteen
to fifty-one. However, the number of events for species one is 1543 whereas

species fifteen to fifty-one consist of thirty-three events or less. Species one
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Figure 6.1: Map of French Guyana.
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Figure 6.2: Map of experimental site at Paracou. The current data set was collected at
plot one.
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Table 6.1: Scientific/local names of thirteen species, their number (SN), status (ST) as

active/potential and number of trees [TN).

SN | Famaly/Scientific name French Guyana ST | British Guyana TN
local name local name
2 Chrysobalanaceae Gaulette 637
Licania majuscula Bois, gaulette p Kautaballi
Licania micrantha Pali, gaulette p Marishibaili
Parinari campestris Foungouti, gaulette blanc P Burada, broad-leaved
3 Lecythidaceae Mahot noir 572
Eschweilera chartacea Mahot noir, rouge P Kakaralli, Toko
Eschweilera pedicellata Mahot noir, Baikaaki P Kakaralli, swamp wina
Eschweilera poiteaui Mahot noir, rouge P NA
4 NA Palmiers NA | NA 145
5 Burseraceae Encens 131
Protium decandrum Encens a Kurokai
Protium heptaphyllum Encens a Haiawa, Incense tree
Protium sagotianum Encens a Kurohi
6 Muyristicaceae
Iryanthera sagotiana Tosso Passa P Kirikava 130
7 Paypilionaceae
Bocoa prouacensis Boco NA | NA 100
8 Clusiacees
Symphenia globulifera Manil Marecage NA | NA 96
9 Vochysiaceae
Qualea rosea Gonfolo rose a Yakopi 84
10 | Leguminosae-Caesnipineaceae
Vouacapeua americana Wacapou a NA 81
11 | Lecythidaceae Mahot rouge 69
Eschweilera sagotiana Mahot rouge a Kakaralli, commaon black
Eschweilera subglandulosa Mahot rouge P Kakaralli, black
12 Meliaceae Carapa 61
Carapa guianesis Carapa rouge a Crabwood
Carapa procera Carapa a Crabwood
13 | Lauraceae Cedres 52
Licania cannelia Cedre carlelle a Silverballi, brown
Nectandra pisi Cedre noir a Shirua
Ocotea canaliculata Cedre canelle a Silverballi, white
Ocotea globifera Cedre apicic a NA
Ocotea guianensis Cedre a Shirua, Tokowe
Ocotea neesiana Cedre a NA
Ocotea oblonga Cedre apici a Kereti, soft
Ocotea petalanthera Cedre apici a NA
Ocotea puberla Cedre gris a Kereti
Ocotea tomentella Cedre a Baradan
Ocotea wachenheimii Cedre gris a Kereti, hard
Rhodostemonodaphne grandis | Cedre jaune a Buradiye
14 Leguminosae- Caesalpineaceae
Dicorynia guianensis Angeligue a NA 35
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consists of trees that were not identified botanically and are of least impor-
tance for the foresters.

In the next sections preliminary exploratory analyses of Species 3, 10,
11 and 12 are provided. Species 3 and 11 were chosen because they belong
to the same family. It is therefore of interest to compare Species 3 and 11
because Species 3 i3 a potential timmber tree while Species 11, according to
Table 6.1, can be either a potential or an active timber tree. We suspect
that in the current data set Species 11 contains only the subgroup that is
an active timber tree. The number of events of Species 3 is 572 while that
of Species 11 is 69. Species 10 and 12 were chosen since they are important
commercial trees (see Forget et al., 1999). Analyses of the remaining tree

species are provided in Appendix C.



Species3
Np572Events

Figure 6.3: The lattice pattern represents the altitude data; the point pattern represents
the locations of Mahot Noir (Species 3) trees.

6.2 Species 3: Mahot Noir

The point-lattice pattern presented in Figure 6.3 consists of the locations of
Mahot Noir trees within the study region (the point pattern) and the altitude
values of the study region (the lattice pattern).

A graphical representation of the auto-periodogram for the lattice pat-
tern is provided in Figure 6.4(a). Peaks are observed at frequencies (0,1),
(1,-1),(1,0), and (1,1) in decreasing order of their magnitude. Hence-
forth, when peaks/troughs are reported they will be arranged in decreas-
ing/increasing order according to their magnitudes. Collectively these fre-
quencies contribute approximately 87% of the power present in the peri-

odogram. Hence one can infer that the lattice pattern is composed of sinu-
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Figure 6.4: (a) Raw auto-periodogram of the altitude pattern; (b) significant ordinates
of (a) using Fisher’s test with adjusted variance at the 1%, 5%, and 10% levels, the value
of the ordinate indicates the percentage level of significance.

soidal waves repeating once in the WE and SN directions, diagonally at an
angle of 45° and also at an angle of 135° from the x-axis. The diagonal pat-
terns correspond to waves travelling from the south-west to the north-east
and from the south-east to the north-west of the study region. Note that
the magnitude of the pattern repeating across the SN direction is relatively
greater than the other patterns detected.

The significance of the different periodogram ordinates using the 1%,
5%, and 10% critical values of Fisher’s test (as described in Section 1.12)
is provided in Figure 6.4(b). From this figure one can conclude that all
the peaks mentioned above are significant at the 1% level. However, other

ordinates mostly across the frequency bands p = 0,1,2 and ¢ = -2,...,2
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are detected as significant at this level (see the comment in Section 2.5.1.3
about tapering).

The magnitude of the (scaled) periodogram (defined in Section 1.9.2) or-
dinates does not exceed one for most of the additional significant frequencies.
This can be seen from Figure 6.5(a) which gives a categorised representation

of the lattice auto-periodogram where the categories are defined as follows.
1. Values exceeding 100 are assigned to category 1.
2. Values between 10 and 100 are assigned to category 2.

3. Values of the lattice periodogram between 1 and 10 are assigned to

category 3.
4. Values less than 1 are set to be not available on the graph.

The importance of the value one is that under the null hypothesis of CSR
the expected value of the (scaled) periodogram is unity. Furthermore, the
total power contributed by all the frequencies with value less than one is
approximately 2.3%. Therefore, the detection of frequencies with magnitude
less than one is spurious and might be due to the repeated use of Fisher’s

test.
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Figure 6.5: (a) Altitude lattice spectrum, Figure 6.4(a), divided into three categories,
where 1 corresponds to the periodogram values greater than 100, 2 corresponds to those
between 10 and 100 and 3 corresponds to those between 1 and 10; (b) significant ordinates
of the auto-periodogram for altitude using Fisher’s test with fixed variance at the 1,5, 10%
levels.

In Whittle’s extension of Fisher’s test when testing for the significance
of the maximum ordinate, the second greatest ordinate, and so forth the
variance is adjusted according to the sample available after discarding the
maximum-significant ordinate. However, under the null hypothesis of white
noise all the periodogram ordinates contribute the same power and are equal
to the variance. Thus, one might estimate the variance from all the peri-
odogram ordinates, and use this estimate as the variance throughout the
repeated application of Fisher’s test rather than adjusting the variance for
each application of the test. Figure 6.5(b) gives the significant ordinates at
the 1%, 5%, and 10% levels using the same variance for all the ordinates

being tested. From this figure we note that the spurious ordinates are no
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Figure 6.6: (a) Raw auto-periodogram of the point pattern; (b) significant ordinates
for the point spectrum of Mahot Noir.

longer detected as significant at the levels investigated. In fact, the signifi-
cant peaks detected at the 1% level are (0, 1), (1,-1),(1,0), (1,1),(0,2) and
(2,1).

Figure 6.6(a) represents the sample spectrum of the point pattern. This
graph exhibits peaks at the frequencies (0,1) and (1,0). The former peak is
significant at the 1% level whereas the latter is significant at the 10% level,
see Figure 6.6(b). Therefore, one might conclude that Mahot Noir trees tend
to form one big cluster along the SN direction. Note that the number of
frequencies investigated is restricted by the number of events of the species.

The co-spectrum for the point-lattice pattern is presented in Figure 6.7(a).
It is almost zero everywhere except for troughs at the frequencies (0, 1), (1, —1)

and (1,0). The troughs indicate that the in-phase components of the pattern
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are negatively correlated. Therefore, the intensity of the trees is negatively
correlated with altitude with fewer trees at higher altitudes. This coincides
with the pattern visible in Figure 6.3.

Figure 6.7(b) is the graph of the quadrature spectrum. This figure has
troughs at (0,1),(1,0) and a peak at (1,0). Thus the two components are
out of phase and one expects that a phase shift exists between the two com-
ponents.

No specific information can be extracted from the full phase spectrum,
Figure 6.7(c), due to its erratic behaviour. This behaviour is a result of the
coherency spectrum, Figure 6.7(d), being almost zero except at low frequen-
cies. Figures 6.8 and 6.9 represent the profiles of the coherency spectrum
together with the corresponding upper 1% and 5% critical points of the F
distribution. These figures confirm that the coherency is zero for almost all
frequencies except for p = 0,1,2 and ¢ = 0, 1, 2 and some sparse higher fre-
quencies. However, we will focus only on the lower frequencies since both
lattice and point spectra have their power concentrated at low frequencies.

Having established the range where the point and lattice patterns are cor-
related, we investigate the phase spectrum across this range. Figures 6.10(a)
and (b) represent the profiles for the adjusted phase spectra in the WE and
SN directions, respectively, for the frequency band p = 0,1,2 and ¢ = 1,2, 3.
The profiles indicate that there is a phase shift between the two components
of the point-lattice pattern. The mean value of the slope in the WE direction
is 2.2 and in the SN direction is -0.83. Thus the point pattern is to the west
of the lattice pattern by 2.2 pixels (2.2 x 5m = 11m on the original scale)

and to its north by 0.83 pixels (0.83 x 5m = 4.15m on the original scale).
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Figure 6.7: Cross-spectra for Mahot Noir versus altitude pattern: {a) and (b) raw co-
and quadrature spectra; (¢) and (d) smoothed phase and coherency spectra using Method
A four times.
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Figure 6.8: Profile of the zero coherency test statistic spectrum for Mahot Noir versus
altitude, solid line, and the corresponding upper 1% and 5% critical points of the F
distribution, dashed and dotted line. The far left panel of the bottom row corresponds to
p = 0, the second left panel of the bottom row corresponds to p = 1, and so forth so that
the far right panel of the top row corresponds to p = 135.
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Figure 6.9: Profile of the zero coherency test statistic spectrum for Mahot Noir versus
altitude, solid line, and the corresponding upper 1% and 5% critical points of the F
distribution, dashed and dotted line, for p = 16,...,25. The far left panel of the bottom
row corresponds to p = 16.
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Figure 6.10: (a) and (b) Profiles of the adjusted phase spectra in the WE and SN
directions for the frequency band p = 0,1,2 and ¢ = 1, 2, 3, respectively.

Using the techniques of Section 3.2, the phase shift estimate is approximately
0.86 in the WE direction and -0.65 in the SN direction. These estimates were
based on using the Hamon and Hannan weights. The difference between the
two sets of estimates is attributed to the fact that the first set of estimates
is based on the smoothed and adjusted phase spectrum, whereas the second
set, is based on the unsmoothed phase spectrum. Henceforth, we will use the
Hamon and Hannan weights (see Section 3.2), unless otherwise stated. The
reason for this choice is that the frequency bands of interest within the phase
spectrum are chosen according to the zero-coherency test statistic which is
equivalent to the Hamon and Hannan weights.

For illustration puposes, we discretise the pattern of Mahot Noir using
LBL, see Figure 6.11(a), and study the cross-spectral properties of the discre-

tised pattern and altitude. The auto-periodogram of the discretised pattern is
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shown in Figure 6.11(b). The associated cross-spectra of the discretised pat-
tern and altitude (a lattice-lattice pattern) are presented in Figures 6.11(c)
to (f). These figures resemble those of the point-lattice pattern. No signif-
icant features are detected in these figures that were not detected using the
point-lattice pattern. For this reason and in order not to overload the reader
with too many figures, thereafter, we will not attempt to produce similar

analyses of discretised patterns for the other species.
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Figure 6.11: (a) Discretised pattern of Mahot Noir using LBL; (b) auto-periodogram
of the discretised pattern; (c) to (f) co-, quadrature, phase and coherency spectra for the

discretised pattern and altitude.



Species 10
Np 81 Events

Figure 6.12: Wacapou versus altitude pattern.

6.3 Species 10: Wacapou

Figure 6.12 gives the locations of the active timber tree Wacapou superim-
posed on altitude values. The auto-periodogram of the point pattern is pre-
sented in Figure 6.13(a). It possesses two peaks at (0,1) and (1,—1). These
frequencies are significant at the 1% level as indicated by Figure 6.13(b). In
addition, the frequencies (0,3) and (1,0) are detected as significant at the
1% and 5% levels, respectively. Thus Wacapou trees aggregate in one cluster
along the SN direction which in turn is formed by smaller clusters as sug-
gested by the significance of the frequency (0, 3). The trees are also clustered
diagonally along the south-west to north-east direction.

The peaks in the co-spectrum, Figure 6.14(a), occur at (0,1),(1,—1) and
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Figure 6.13: (a) raw auto-periodogram of the point pattern; (b) significant ordinates for
the point spectrum of Wacapou.

(1,0). The quadrature spectrum, Figure 6.14(b), exhibits a major peak at
(0,1) and a trough at (1, —1). Thus Wacapou trees favour high altitudes and
the two components are out of phase.

Figure 6.14(d) represents the coherency spectrum. The profile of the
zero coherency test statistic is provided in Figures 6.15 and 6.16. These
figures indicate that the coherency spectrum is significantly different from
zero for the frequencies (p = 0,q = {1,2}), (p = 1,¢ = {-2,...,2}) and
(p = 2,¢g = {-2,-1,0}). However, for most of the other frequencies the
coherency spectrum is almost zero. This explains the erratic behaviour of

the phase spectrum in Figure 6.14(c).
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Figure 6.14: Cross-spectra for Wacapou versus altitude pattern: (a) and (b) raw co-

and quadrature spectra; (¢) and (d) smoothed phase and coherency spectra using method
A four times.
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Figure 6.15: Profile of the zero coherency test statistic spectrum for Wacapou versus
altitude pattern, solid line, and the corresponding upper 1% and 5% critical points of the
F distribution, dashed and dotted line, for p = 0,... ,15. The far left panel of the bottom
row corresponds to p = 0.
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Figure 6.16: Profile of the zero coherency test statistic spectrum for Wacapou versus
altitude pattern, solid line, and the corresponding upper 1% and 5% critical points of the
F distribution, dashed and dotted line, for p = 16,... ,25. The far left panel of the bottom
row corresponds to p = 16.
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Figure 6.17: (a) and {b) Profiles of the adjusted phase spectra for Wacapou versus
altitude pattern in the WE and SN directions for the frequencies (p = 0,9 = {1,2}},

(p=1,¢g={-2,...,2 ) and {(p=2,¢ = {-2,-1,0}).

Figures 6.17(a) and (b) represent the profiles of the adjusted phase spectra
for Wacapou versus altitude pattern in the WE and SN directions for the
frequencies (p = 0,q = {1,2}), (p = 1,¢ = {~2,...,2}) and (p = 2,¢ =
{-2,-1,0}). The magnitudes of the slopes in the WE direction for the
frequencies with ¢ = —2,...,2, are approximately 0, 0.04, 0.12, 1.1, and
0.55, respectively. The slopes in the SN direction are approximately -0.28,
-1.51 and -1.14 for the frequencies with p = 0,1, 2, respectively. Thus, the
Wacapou pattern is to the west of the altitude pattern by an average of 1.81m
for low significant frequencies, and to the north of the altitude pattern with
a mean phase shift of approximately 6.6m for frequencies with p =1,2. The
estimates based on phase correlation techniques are 0.216 pixels in the WE

direction and —0.525 in the SN direction.
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Figure 6.18: (a) Mahot Rouge versus altitude pattern; (b) raw auto-periodogram of the
point pattern; (c) and (d) raw co- and quadrature spectra, (e) and (f) smoothed phase

and coherency spectra using Method A four times.

6.4 Species 11: Mahot Rouge

has peaks at (2,-21),(0,1) and (1,0).

The graph of Mahot Rouge versus altitude pattern is presented in Fig-

ure 6.18(a). The sample auto-spectrum for the point pattern, Figure 6.18(b),

at the 1% level whereas that at (1,0) is significant at the 5% level. However,
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the number of events of Mahot Rouge is 69 which hinders the possibility of
testing the significance of the peak at the frequency (2,--21). Moreover, we
are mainly interested in low frequencies since the lattice spectrum has its
power concentrated at low frequencies. Thus the point pattern resembles a
cluster process completing one cycle in both the SN and WE directions.

The troughs at (0,1) and (1,0) in the co-spectrum, Figure 6.18(¢), imply
that the trees favour low altitude values. These troughs coincide with those
of Mahot Noir versus altitude co-spectrum, Figure 6.7(c). The peak in the
quadrature spectrum, Figure 6.18(d), at (1, —1} and the troughs at (1,0) and
(0, 1) indicate that the two components are out of phase.

Despite the discontinuities in the phase spectrum, Figure 6.18(e}, a posi-
tive slope is observed along the SN direction for frequencies with low p values.
Note that the coherency spectrum, Figure 6.18(f), is close to one around these
frequencies and fluctuates around zero elsewhere.

The profile of the zero coherency test and the corresponding upper 1%
and 5% critical points of the F distribution for the frequencies p =0,...,15
and ¢ = —25,...,24 conditional on the WE frequencies are presented in
Figure 6.19. This figure indicates that for low frequencies the coherency
is significantly different from zero at the 5% significance level around (p =
{0,...,4},¢={0,1}) and (p={0,1},9 = 2).

The adjusted phase spectra in the WE and SN directions for the fre-
quencies (p = {0,...,4},¢ = {0,1}) and (p = {0,1},¢ = 2) are given in
Figure 6.20. A positive slope is detected in the WE direction for the frequen-
cies ¢ = 0,1, and its mean value is 0.21. The slope in the SN direction has

a mean value of approximately -1.41 for the frequencies p = 1,... ,4. Thus
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Figure 6.19: Profile of the zero coherency test statistic spectrum for Mahot Rouge versus
altitude pattern, solid line, and the corresponding upper 1% and 5% critical points of the

F distribution, dashed and dotted line, for p = 0,...,15. The far left panel of the bottom
row corresponds to p = 0.
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Figure 6.20: (a) and (b) Profiles of the adjusted phase spectra for Mahot Rouge versus
altitude pattern in the WE and SN directions for the frequencies (p = {0,...,4},qg =

{0,1}) and (p = {0,1},¢ = 2)

on average the Mahot Rouge pattern is to the west of the altitude pattern
by 1.05m and to its north by 7.05m. The estimates of the slopes in the WE
and SN directions based on the phase correlation techniques are 0.855 and

—1.206, respectively.
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6.5 Species 12: Carapa

The graph of Carapa versus altitude pattern is presented in Figure 6.21(a).
Peaks of the auto-periodogram of the point pattern, Figure 6.21(b), are de-
tected at (18, —12) and (1, —1). The number of Carapa trees is 61 which im-
plies that one can test the significance of the frequencies (p = {0,...,3},¢ =
{-3,...,2}). The frequency (1, —1) is the only significant peak at the 1%
level. The test was also carried out at the 10% level of significance but no
other frequency was detected as significant. Therefore, the Carapa pattern
completes 1.41 cycles in the unit square along the direction of the 135° angle
from the x-axis.

The troughs at (1,—1) and (0,1) in the co-spectrum, Figure 6.21{c),
indicate that the intensity of the trees and altitude values are negatively cor-
related. Hence Carapa trees favour relatively low altitude. The two compo-
nents are out of phase as indicated by the peaks in the quadrature spectrum,
Figure 6.21(d), at (0,1) and (1, —1). The troughs of the co-spectrum coin-
cide with the peaks of the quadrature spectrum, The phase spectrum for the
ordinates where the quadrature spectrum has its peaks and the co-spectrum
has its troughs therefore lies between —7 and -7 /2.

The phase and coherency spectra are given in Figures 6.21(e) and (f), re-
spectively. The coherency spectrum fluctuates around zero for most frequen-
cies except for frequencies with low p and ¢. However, the profile of the zero
coherency test statistic, Figure 6.22, indicates that none of these frequencies
is significant at the 1% level and only a few number of low frequencies are

significant at the 5% level. Thus the negative correlation between the two
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Figure 6.21: (a) Carapa versus altitude pattern; (b) raw point periodogram; (c) and (d)
raw co-and quadrature spectra; (e) and (f) smoothed phase and coherency spectra using

Method A four times.
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components which is detected by the co-spectrum is weak. No further anal-
ysis of the phase spectrum will be carried out due to the lack of significant

frequencies in the coherency spectrum.

6.6 Comparison to Other Studies

In this section we compare our results to those of Dessard (1996). Dessard
(1996) studied the relationship between altitude and some of the tree species
based on kernel regression of the intensity of the tree species on the grid of
altitude values. In brief, Dessard (1996) proceeds by first estimating local
intensities at the grid points of the altitude lattice using a kernel intensity es-
timator which is based on the observed locations of a species. Then assuming
that the intensity depends on the altitude data the regression coeflicient is
calculated using a weighted kernel intensity estimator, not necessarily equal
to the one used in the first step, where the weights are taken to be equal
to the estimated intensities calculated in the first step. Furthermore, this
weighted kernel is corrected for boundary effects in the same way as that of
Diggle’s (1985) correction.

Using the kernel regression approach Dessard (1996) found that the inten-
sity of Mahot Rouge decreases quite rapidly with altitude, and that Wacapou
prefers dry soils which is a characteristic of high altitude. These results agree
with the results of our spectral approach with regard to the relationships be-
tween both species and altitude. In Section 6.3 and Section 6.4 we found that
Wacapou favoured high altitudes whereas Mahot Rouge favoured relatively
low altitudes. These conclusions are mainly based on the information pro-

vided by the co-spectrum of each species and altitude. Further information
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Figure 6.22: Profile of the zero coherency test statistic spectrum for Carapa versus
altitude pattern, solid line, and the corresponding upper 1% and 5% critical points of the
F distribution, dashed and dotted line, for p = 0,...,15. The far left panel of the bottom
row corresponds to p = 0.
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about the relationship between the species and altitude has been extracted
using the other spectra. Using the phase and coherency specrta we found
that the two species are to the north-west of the altitude pattern but with
different magnitudes. However, no such information could be extracted using
the kernel regression approach. In addition, Dessard (1996) assumes that the
intensity depends on altitude in order to proceed with the analysis of the two

processes. No such assumption is needed in our approach.

6.7 Summary

In this chapter we have demonstrated the ability to explore the relationship
between the components of a real point-lattice pattern using cross-spectral
techniques. The relationships between a number of tree species and altitude
were investigated. Cross-spectral analyses revealed whether or not the tree
patterns were related to altitude. For Species 3, 10 and 11 we found that the
point pattern is to the north-west of the lattice pattern. In addition, it was
revealed that Species 3, 11, and 12 favoured relatively low altitudes whereas
Species 10 favoured high altitude. In the next chapter, we will investigate
another data set and discuss how to extend the techniques discussed so far
in order to unveil the relationship, if any, between marked point processes

and lattice processes.
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Chapter 7

Cross-Spectral Analysis of
African Storms

In this chapter, we will investigate a data set consisting of locations of
storms in the Sahel region of Africa together with elevation values of the
region. In Section 7.1 we describe the data set in more detail. In Section 7.2
marked point-lattice processes will be introduced and spectral techniques for
analysing such processes will be discussed. These techniques are extensions
of those used for point-lattice processes. Analysis of the storm data set using

spectral tools will be provided in Section 7.3.

7.1 The Data

The Sahel region of Africa lies south of the Sahara desert. The region extends
in the WE direction from the Atlantic ocean to Ethiopia and in the SN
direction from 5°N to 20°N. The storm data set was collected in order to
identify and understand the characteristics of convective storms, which are
the sources of most of the rain in this region. The need for studying storm

characteristics was highlighted by the severe droughts that devastated the
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Sahel area during the early seventies and eighties. Haile (1994) collected
spatial location and time of storm initiation, maximum size and dissipation
from meteorological satellite imagery of the Sahel region for the month of July
1989. In addition, the data set provides duration and speed of the observed
storms. Dr. Menghestab Haile of the Ethiopian Disaster Preparedness and
Prevention Commission made the storm data available for this project.
Topography is thought to be one of the parameters that affect the storm
life cycle. This assumption is mainly based on visual inspection of the storm
location and characteristics such as the storm duration and topographical
features of the region, specifically elevation from the sea surface (altitude).
The mountains in the eastern side of the Sahel region are believed to affect
storm duration thus giving rise to short- or long-lived storms. In the western
side, which consists mainly of river plains, it is thought that no such segre-
gation exists (see Mugglestone and Taylor, 1994). (The eastern side of the
Sahel region stretches from 7.5°E to 40°E while the western side stretches
between 18°W and 7.5°E.) In Mugglestone and Taylor {1994), short-lived
storms are defined to be storms that lasted between six and fifteen hours
and the long-lived storms are those that lasted more than fifteen hours.
Elevation data were downloaded from the GTOPQ30 website. These
data are derived from a global digital elevation model that is based on data
from eight sources. The sources that are listed in decreasing order of per-
centage of the global data derived from each are: Digital Terrain Elevation
Data (50%), Digital Chart of the World (29.9%), Antarctic Digital Database
(8.3%), United States Geographical Survey 1-degree digital clevation model
(6.7%), International Map of the World (3.7%), (American) Army Map Ser-
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vice (1.1%), New Zealand digital elevation model (0.2%), and Peru Map
(0.1%). The website address is http://edcwww.cr.usgs.gov/landdaac/gtopo30.
The data available from this website are in the form of 16-bit binary-signed
integer data. After downloading they were converted to a format acceptable
to S-plus.

The elevation data in this study come from two files which collectively
range from 10°S to 40°N and from 20°W to 60°E. However, in our analysis
we will investigate the study region stretching from 6.446°N to 19.937°N and
from 10.704°W to 36.787°E. Henceforth, this region will be referred to as
Region A. Elevation data in Region A range from 35m to 3398m with mean
value of 449.7m and median of 401m. Elevation in GTOPQ30 is measured
regularly at 30-arc seconds spacing which is approximately equivalent to one
kilometre. Note that the ground distance in the WE direction (longitude)
of a quadrat decreases with increasing latitude while in the SN direction it
increases. For example, the WE distance of a quadrat at 10°N is equivalent
to 914m and the SN distance equates to 922m, whereas at 20°N the WE
distance corresponds to 872m and the SN distance to 923m. The size of
the lattice corresponding to the Region A elevation data is 5700 x 1620.
Figure 7.1 is a map of elevation data for Africa where the spacing is as
before. The superimposed box defines Region A. The map was downloaded
from the website of the Africa Data Dissemination Service. The address of
the website is http://edcintl.cr.usgs.gov/adds.

Using spectral analysis we will explore the relationships between storm
characteristics and elevation. Thus we will be able to establish the validity

of the above claims regarding these relationships. However we still need to
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Figure 7.1: Elevation map of Africa from Africa Data Dissemination Service, see main
text for details. The superimposed box defines the boundaries of our study region. Note
that the high elevations correspond to bright red colours whereas low elevations correspond
to dim green colours.
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develop techniques to explore the relationships between point processes and
their characteristics and lattice processes. In an attempt to achieve this goal,

we will discuss marked point-lattice processes in the next section.

7.2 Spatial Marked Point-Lattice Processes

In this section, a brief summary of how to study properties of marked point
processes using two-dimensional spectral analysis is given. Having done so
we will extend cross-spectral analysis techniques from point-lattice processes
to marked point-lattice processes.

When spatial point processes are investigated, measurements other than
the locations of events may be recorded. Such measurements are called
marks. For example, tree heights may be measured in addition to tree loca-
tions. The joint process is referred to as a marked point process. Analysis of
such processes using correlation functions has been investigated by authors
such as Penttinen, Stoyan and Henttonen (1992) and Goulard, Pages and
Cabanettes {1995). These articles looked at the correlations between loca-
tions of trees in forest stands and marks such as height, diameter, number
of sprouts and length of crown. The analyses of the data sets carried out as-
sumed stationarity and isotropy, however, within their theoretical framework
Goulard, Pages and Cabanettes (1995) assumed only stationarity. Renshaw
(1999) used two-dimensional spectral analysis to study stationary spatial
marked point processes.

Formally a marked point process is denoted by {M(a)} where a is an
event of the point process. It will be assumed that this process is stationary

and that the marks are nonnegative. By analogy with point processes one
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can define the first-order intensity function of this process as

Mr(a) = lim {M@)} , (7.1)

|da|—0 lda]

where dM(a) is the sum of marks within a small neighbourhood of the event

a, and the second-order intensity function is defined as

E(dM(a,) dM (ay)) } , (7.2)

A ap,as) = lim
(8, ag) ]da1,|d32l—>0{ |day [|da,|

(see Cressie, 1991, chapter 8). Since the process is assumed to be stationary
then Axrpr depends on a; and a; only through their difference a; — ag. The
mark spectral density function, fyrp{w), can be defined in a similar way to
the point process spectral density function. Estimates of the mark spectral

density function are provided via

1 _
Farnr(w) = Farar(wp, wy) = N_XFM(p’ 7)F'u(p, 9). (7.3)
Here
ks pai; | gag;
Fulp,q) = ZM(GU, ag;) exp{—2mi(—2L + =2)}, (7.4)
po 4 £y
where (ay;,ay;) = a;, j = 1,..., Ny, are the events of the point pattern

observed in the study region [0, £1] x [0, £5], M (ay;, a2;) is the mark associated
with event a;, Ny is the total number of events within the study region and
(Wpywg) = (2,3—7;3, gg’r—f), (see Renshaw, 1999). The marked point process is
assumed to be corrected for its mean M = E;\f_f‘l M(ay;,a05)/Nx. As for the
point process the marked point process has no Nyquist frequency. Likewise,

the number of independent periodogram ordinates is limited by the number

of events.
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Note that the DFTs of point and lattice processes are special cases of
(7.3). The point process can be obtained by substituting one in place of the
mark, M. The lattice process is a marked point process with events occurring
at the grid points of the lattice and marks the value of the lattice process at
these events.

A model for a marked point process that exhibits CSR would have marks
that are IID random variables and are independent of the associated point
process. An example of such a process is provided by considering the com-
pound Poisson process that has 1ID marks that are positive integers and
events that form an HPP (see Cressie, 1991). Alternative models to CSR are
also given in Cressie (1991). Renshaw (1999) simulates some models in order
to study the spectral properties of marked point processes.

A spatial marked point-luttice process is a process with three compo-
nents, namely, the marks associated with the point process, the point pro-
cess itself and the lattice process. We denote such a process by Z(a) =
{M(a), Nx(a),Y(a)}. To study the second-order spectral properties of this
process we need to extend the functions defined for the point-lattice processes
from two to three components.

The spectral matrix for a spatial marked point-lattice process, Fzz, is

defined as

- [Fumlw) Fun(w) Fay(w)
Fzz(w) = Fz(w}Fz{w) = [Fyu(w) Fan(w) Fyy(w)],
Fym{w) Fyy(w) Fyy(w)

where Fz(w) = (Fy(w), Fy(w), Fy(w)), and Fap(w) = Fa(w)Fp(w) for
A, B = M,N,Y. Here F, Fy, Fy are the DFTs of the mark, point and lattice

processes, respectively. Note that the above matrix is symmetric in the sense
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that Flap(w) = Fpa(—w). Thus one needs only to study the elements of the
matrix that are on and above the diagonal. Initially the range of frequencies
investigated will depend on the size of the lattice process, as is the case for
point-lattice processes.

Asymptotic properties for marked point-lattice processes may be derived
by analogy with point-lattice processes, see Chapter 4. Defining the process

of increments for the marks process as

M(A) = fA dM (a),

where A is a subregion of R?, one can extend the results of Chapter 4 to
three components rather than two.

Figure 7.2 represents a realisation of a marked point-latiice process that
exhibits CSR. The lattice pattern is a realisation of white noise on a 32 x 32
study region. The point pattern is a realisation of an HPP. The number
of events of this pattern is 1024. The marks are a realisation of a Poisson
process with mean 5 and are independent from the point pattern.

The auto-spectra of the individual processes are presented in Figure 7.3.
As expected power is distributed across the range of frequencies for all these
spectra. None of these frequencies for the different patterns was found to be
significant at the 10% level using Fisher’s test.

Figure 7.4 represents the co-, quadrature and coherency spectra for the
point versus lattice, mark versus lattice and mark versus point patterns. All
these spectra are seen to fluctuate around zero indicating that the compo-
nents of the marked point-lattice pattern are not correlated. In the next

section we will analyse the storm data using spectral tools.
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Marked Point vs Lattice
CSR Process

Figure 7.2: A realisation of a CSR marked point-lattice process. The circles represent
the marks. The size of the circle reflects the magnitude of the mark.

Figure 7.3: Auto-spectra for the point pattern (a), lattice pattern (b) and marks pattern

(c).
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Figure 7.4: Cross-spectra for point versus lattice, first row, mark versus lattice, second
row, and mark versus point, third row. Column 1 figures (a), (d) and (g} are the co-spectra;
column 2 figures (b), (e) and (h) are the quadrature spectra; and column 3 figures (c), (f)
and (i) are coherency spectra. All the spectra were smoothed using Method A four times.
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Figure 7.5: Initiation points in Region A represented as centres of the squares together
with storm duration represented as size of squares. The size of the square reflects the
storm duration where larger sizes imply longer durations. Storm duration ranges from 4
to 44 hours.

7.3 Cross-spectral Analysis of the Storm Data

In this section, we will investigate the relationships between storm initiation
points and duration and elevation in Region A. Figure 7.5 represents initia-
tion points in Region A as centres of squares and associated storm duration
as the relative size of the squares. Storm initiation points superimposed
on elevation data of this region are presented in Figure 7.6. There are 190
events of initiation within this region and the storm duration varies between
4 and 44 hours with a mean value of 10.59 and median 8. In what follows,
using spectral analysis we will investigate the auto- and joint-properties of

elevation data, initiation points and their duration.

Since the elevation data matrix is of dimension 5700 x 1620 (see Sec-
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Figure 7.6: Elevation data of Region A together with storms that initiated in this region.
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tion 7.1) then the range of frequencies for the elevation auto-periodogram
isp=20,...,2850 and ¢ = —810,...,809. However, 84% of the power in
this periodogram is explained by the frequencies with p = 0,...,15 and
g = —16,...,15. Furthermore, using the full range of frequencies requires
heavy computations and is time-consuming. For example, to get a sum-
mary of the auto-periodogram requires approximately half an hour using the
Splus 3.4 package on a Sun machine. We will thus limit our analysis to the
shorter range.

Figure 7.7(a) is the auto-periodogram of elevation data for p=0,...,15
and ¢ = —16,...,15. Concentration of power is observed along frequen-
cies (p = {1,...,7},¢ =0), (p = 1, = {-3,...,1}) and (p = 2,¢ =
{-2,...,2}). These frequencies contribute 51% of the auto-periodogram
power with the full range of frequencies and 61% of that with the shorter
range. The dominant peaks occur at (p = {1,3,4},¢=0) and (p =2, = 1).
Figures 7.7(b} and (c¢) give the significance of elevation-periodogram ordi-
nates at the 1%, 5%, and 10% levels using Fisher’s test with adjusted and

fixed variance, respectively. Most of the above frequencies are detected as

significant at the 1% level.
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Figure 7.7: (a) Auto-periodogram of elevation data for p = 0,...,16 and ¢ =
—16,...,15; (b) and (c) significant ordinates of (a) using Fisher’s test with adjusted
and fixed variance, respectively, the values indicate significance level.

Therefore, in the WE direction elevation data are composed of several
sinusoidal patterns, but the magnitudes of the patterns repeating one-, three-
and four-times are greater than the others. Other patterns are detected in
the direction of the angles +60.39° corresponding to the frequencies (2, +1)
and —81.91° corresponding to (1, —2). Thus elevation data are generated by
a number of different sinusoidal waves, this is an indication of the complexity
of this pattern.

The auto-periodogram of initiation points is presented in Figure 7.8(a).
Peaks are observed at (p = {0,1},¢ = 1). These are the only frequen-
cies detected at the 1% level of significance within the frequency range

p=20,...,6 =[v/190/2] and ¢ = —6,...,5. Thus the pattern of initia-
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tion points repeats once in the SN direction and once in the direction of the
vector with angle 74.13°.

Figure 7.8(b) represents the auto-periodogram of the duration pattern.
Power seermns to be distributed over the different frequencies of this peri-
odogram. In fact none of the frequencies was found to be significant at the
10% level using Fisher’s test. The range of frequencies investigated using
Fisher's test is p = 0,... ,6 and ¢ = —6,... ,5. In another attempt to test
the null hypothesis of CSR of the marks, we simulated 99 realisations of a
Poisson process with mean equal to that of the mean mark and used a Monte
Carlo approach to test the null hypothesis. Approximately 40% of the auto-
periodogram ordinates, 194 out of 495, were found to be significant at the 1%
level, see Figure 7.8(c). Thus storm duration pattern is composed of many
sinusonidal waves.

Figures 7.9(a} to (c) represent the co-, quadrature and coherency spectra
for initiation versus elevation, respectively. A trough is observed in the co-
spectrum at the frequency (1, 1) and a peak at the frequency (3, 0). Thus for
patterns travelling in the direction of the 74.13° angle initiation points are
negatively correlated with elevation values. However for patterns repeating
three times in the WE direction the two components are positively correlated.
The troughs and peaks in the quadrature spectrum indicate that the two
components are out of phase.

The significant values of the zero coherency test at the 1%, 5%, and 10%
levels are given in Figure 7.9(d). Concentration of coherency is detected along
the frequencies (p = {6,7,8},¢ = —10), (p = {2,...,7},q = {—4,-3}},
(p=1{5,6,7},¢q=9}),and (p = 8,¢ = {2,...,6}). Ordinates of the adjusted
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Figure 7.8: (a) and (b) Auto-periodograms of initiation points and duration; (c) signif-
icant ordinates at the 1% level of the auto-periodogram for storm duration using Monte
Carlo test are the blacked entries.

phase spectrum in the WE direction for the above frequencies with ¢ =
—10, —4, —3,9 are shown in Figure 7.9(e). The slopes in the WE direction for
g = —10,-4,-3,9 are 2.13, 1.60, 1.01 and 0.00, respectively. Figure 7.9(f)
represents the profile of the adjusted phase spectrum in the SN direction
for p = 8; the slope for this frequency band is -0.13. Thus for waves with
g = —4,-3 the lattice pattern is to the east of the point pattern with a
mean shift of 1.3 pixels, and for p = 8 it is to the south of the point pattern.
Using the phase correlation techniques for the frequency band p=1,...,7
and ¢ = —10,...,0, the estimates of the slopes are 0.17 in the WE direction
and -0.01 in the SN direction.

Peaks and troughs are observed in both the co- and quadrature spectra

of duration versus elevation, Figures 7.10(a) and (b), respectively. However,

219



; | B
08 i b dieln e
328 5{ = - -
ed - ™|
a2 10
-
: S
_: RS [ — |
L]
0
" ws L2 = } -
o L}
CA Cuhtmne_:cfpecm o - -l
o -
i5 —
Zero-Coherency test
(d)
Adjusted Phose Specirum Adjfusted Phase Spectrum
WE direction SN direction
- a4 ]
-0
——————
L1.57 —_—
Wy=9 = =
| N N o _-3.14
AR
o We=8
Wy =3
34 ] i
-3.14
T -0
Wy =4
o B L
.28
314 — " iy =10
0 0.4
e —— ] T T T =y
i 4 5 L] e & 2 3 4 L) -]
ii'rFs!'w}wm? l"‘r-“"@-u'r

Figure 7.9: Cross-spectra of initiation points versus elevation: (a) and (b) raw co- and
quadrature spectra; (c) coherency spectrum smoothed using Method A four times; (d)
significant ordinates of the zero coherency test at the 1%, 5% and 10% levels the value
represents the significance level; (e) and (f) profiles of adjusted phase spectra in the WE
direction for (P = {6! 7, 8},? = _10)1 (p T {23“' !?}1‘1 = {_41 _3})1 (p= {‘516: 7}1‘1 =
9}), and SN direction for (p = 8,9 = {2,... ,6}).
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Figure 7.10: Cross-spectra of duration versus elevation: (a) and (b) raw co- and quadra-
ture spectra; (c) smoothed four times coherency spectrum; (d) significant ordinates of the
zero coherency test at the 1%, 5% and 10% levels, the value represents the significance
level.

only the ordinate of the coherency spectrum, Figure 7.10(c), at (15, —6) is
significant at the 1% level as indicated by Figure 7.10(d). Nine other ordi-
nates are significant at the 5% level, however no concentration of coherency is
detected. Thus despite the correlation suggested by peaks and troughs in the
co-, quadrature and amplitude spectra, the lack of concentration of coherency
indicates that duration and lattice patterns are not strongly correlated.

Figures 7.11(a) and (b) represent the co- and quadrature spectra for du-
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Figure 7.11: Cross-spectra of duration versus initiation: (a) and (b) raw co- and quadra-
ture spectra; (c) smoothed four times coherency spectrum; (d) significant ordinates of the
zero coherency test at the 1%, 5% and 10% levels, the value represents the significance
level.

ration versus initiation. Some peaks are observed at high frequencies in
both periodograms. The significant ordinates of the coherency spectrum,
Figure 7.11(c), are presented in Figure 7.11(d). Concentration of significant
ordinates of coherency at the 5% level is detected around relatively high
frequencies. Therefore duration and initiation are mainly correlated around
relatively high frequencies.

In summary storms tend to initiate to the north-west of the lattice pattern
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[Yigure 7.12: Storms that initiated in Region A classified as short- (circles), medium-
(triangles), or long-lived (crosses). The vertical dotted line at 7.5°E divides the region
into eastern and western subregions.

in Region A. However, evidence that stortn duration is correlated with global
features of elevation or the storm initiation patterns is not strong.

[n order to investigate the present data set further, we will study the
properties of storm initiation versus elevation conditional on storm duration.
In this study, storms will be classified as: short-lived if they lasted less than
six hours, medium-lived if they lasted strictly more than 6 hours and strictly
less than 15 hours, or long-lived if they lasted more than 15 hours. There
arc 67 short-lived storms, 87 medium-lived and 36 long-lived. A graphical
representation of Region A storms classified as short-, medium-, or long-lived
is provided in Figure 7.12. Conditional on the storm being short-, medium-,

long-lived Figures 7.13, 7.14 and 7.15 represent the auto-periodograms
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for initiation, co-, quadrature, amplitude, and coherency spectra, and the
zero-coherency test statistic for initiation and elevation.

Fisher’s test applied to the auto-periodogram ordinates of short-lived ini-
tiation points indicates that (0, 1) is significant at the 5% level. For medium-
lived storms significant ordinates are detected at the 1% level at {0,1) and
at the 5% level at (1,1). None of the investigated frequencies for the long-
lived storms was found to be significant at the 10% level. Thus short- and
medium-lived storms cluster in one big clump in the SN direction, in addition
medium-lived storms cluster in the direction of the vector with angle 74.13°.
However, for long-lived storms the null hypothesis of CSR cannot be rejected
based on Fisher’s test. Note that significant peaks of the auto-periodogram
for medium-lived storms coincide with those of the unclassified storms.

Troughs are observed at (1,1) in all the co-spectra of the classified storms,
but the magnitude of the medium-lived storms is the largest. Furthermore,
for medium-lived storms a peak is noticed at (3, 0) and for long-lived at (2, 1).
Thus in broad terms storms tend to initiate from relatively low land rather
than high. This can be easily seen by visual inspection of Figure 7.6. The
quadrature spectra of all three categories have peaks and troughs indicating
that storms and elevation are out of phase. The amplitude spectra indicate
that all types of storms are correlated to elevation. However, the extent of
such correlation is not strong as seen from the coherency spectra and the
zero coherency test statistic.

Concentration of significant coherency ordinates at the 5% level is de-
tected for short-lived storms and elevation at (p = {2,3,4},¢ = —4) and
(p = {11,12,13},q = ~13). The slope in the WE direction of the phase
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Figure 7.13: Spectra of initiation versus elevation for short-lived storms: (a) auto-
periodogram of initiation points; (b) and (c) raw co-, quadrature spectra; (d) and (e)
amplitude and coherency spectra smoothed using Method A four times; (f) significant

ordinates of the zero coherency test at the 1%, 5% and 10% levels, the value represents
the significance level.
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Figure 7.14: Spectra of initiation versus elevation for medium-lived storms: (a) auto-
periodogram of initiation points; (b) and (c) raw co- and quadrature spectra; (d) and (e)
amplitude and coherency spectra smoothed using Method A four times; (f) significant
ordinates of the zero coherency test at the 1%, 5% and 10% levels, the value represents
the significance level.
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Figure 7.15: Spectra of initiation versus elevation for long-lived storms: (a) auto-
periodogram of initiation points; (b) and (c) raw co- and quadrature spectra; (d) and
(e) amplitude and coherency spectra smoothed using Method A four times; (f) significant
ordinates of the zero coherency test at the 1%, 5% and 10% levels, the value represents
the significance level.
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spectrum along the first frequency band is 1.1 and along the second band
is —0.55. For medium-lived storms and elevation, concentration is detected
along (p = 8,¢ = {0,1,2}). The slope in the SN direction for this frequency
band is -0.16. Long-lived storms and elevation have concentration of co-
herency at (p = {5,...,8},¢ = 9) and (p = 6,9 = {9,10,11}); the slope
in the WE direction along the first frequency band is 1.19 and in the SN
direction along the second is -0.27. Thus in general storm initiation points
are negatively correlated with elevation irrespective of storm duration.
Next, we note that the topographical features in the western and eastern
parts of Region A are different (see Mugglestone and Taylor, 1994) and that
the differences might affect storm locations and characteristics. We will,
therefore, divide Region A into the two subregions studied by Mugglestone
and Taylor (1994) and provide separate analyses for each subregion in the

next sections.

7.3.1 Eastern Subregion

The eastern subregion extends from 7.5°E to 36.787°E. There are 126 storms
that initiated in the eastern subregion. Figure 7.16 gives the graphical repre-
sentation of auto-periodograms of elevation, initiation points, and duration
of the eastern subregion, in addition to the significant ordinates of the eleva-
tion data using Fisher’s test. In the elevation auto-periodogram peaks occur
at (2,0) and (1,1), in addition to other minor peaks around low frequencies.
These peaks are detected as significant at the 1% level using Fisher’s test.
The frequency (0, 1) is detected as significant at the 1% level in the initiation

auto-periodogram. Using Fisher’s test none of the frequencies in the duration
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Figure 7.16: Eastern subregion auto-periodograms: (a) elevation data, (c) initiation
points and (d) duration; (b) significant ordinates of (a) using Fisher’s test with adjusted
variance, the values indicate significance level.

auto-periodogram has been found to be significant at the 10% level.
Figures 7.17(a) and (b) represent the co- and quadrature spectra of ini-
tiation versus elevation in the east subregion. A peak is observed at (2,0)
in the co-spectrum implying that for patterns repeating twice in the WE
direction elevation and initiation are positively correlated. Thus storms tend

to initiate on relatively high land. However, the trough at (1,1) indicates
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that the two components are negatively correlated along the vector with an-
gle 65.25°. Note that the magnitudes of the trough and peak are inversely
proportional to the trough and peak of the initiation versus elevation co-
spectrum of the whole area. The peaks in the quadrature spectrum indicate
that the components are out of phase.

Concentration of significant coherency, Figure 7.17(c), at the 5% level is
observed in the zero coherency test statistic image, Figure 7.17(d}, along the
frequency bands (p=1,¢g={-5,...,-2}), (p=2,9={-4,-3,-2}), (p=
5,4 = {-2,-1,0}), (p = {6,7,8},¢ = {-14,3}), (p = {7.8,9},¢ = —13),
and (p = {1,2,3},¢ = —3). Figures 7.17(e) and (f) represent the profiles of
adjusted phase spectra of the above frequency bands in the WE direction for
g = —14,—13, 43 and in the SN direction for p = 1,2, 5. The slopes in the
WE direction are 1.12, 0.09, 0.61, and 0.01 for ¢ = —14,-13,-3,3, and in
the SN direction are -0.14, -0.3, and -0.58 for p = 1,2, 5, respectively, The
estimates of the corresponding slopes using phase correlation techniques are
0.285 in the WE direction and —0.143 in the SN direction.

Figures 7.18 and 7.19 represent the co-, quadrature, coherency spectra
and zero coherency test statistic for duration versus elevation and initiation
within the eastern subregion. In general, these spectra exhibit similar char-
acteristics to their equivalents for the entire region. As before it can be seen
that duration is not highly correlated with elevation or initiation.

Next, we will explore the relationship between initiation and elevation
within the eastern subregion conditional on the storm duration. Storms
initiating in the eastern subregion and classified according to their storm

duration are presented to the east of the dashed line in Figure 7.12, There are
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Figure 7.17: Cross-spectra of initiation versus elevation in the eastern subregion: (a) and
(b) raw co- and quadrature spectra; (c) coherency spectrum smoothed using Method A
four times; (d) significant ordinates of the zero coherency test at the 1%, 5% and 10%
levels, the value represents the significance level; (e) and (f) profiles of adjusted phase
spectra in the WE and SN directions for the frequency bands mentioned in the main text.
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Figure 7.18: Cross-spectra of duration versus elevation in the eastern subregion: (a) and
(b) raw co- and quadrature spectra; (c) coherency spectrum smoothed using Method A
four times; (d) significant ordinates of the zero coherency test at the 1%, 5% and 10%
levels, the value represents the significance level.
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Figure 7.19: Cross-spectra of duration versus initiation in the eastern subregion: (a) and
(b) raw co- and quadrature spectra; (c) coherency spectrum smoothed using Method A

four times; (d) significant ordinates of the zero coherency test at the 1%, 5% and 10%
levels, the value represents the significance level.
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45 short-, 57 medium-, and 24 long-lived storms within the eastern subregion.

The auto-periodograms for short-, medium-, and long-lived storm ini-
tiation points in the eastern subregion are given in sub-figures (a) of Fig-
ures 7.20, 7.21, and 7.22, respectively. All these periodograms exhibit one
significant peak at (0, 1) where the level of significance for the medium- and
long-lived storms is 5% and for short-lived storms is 1%. Note that no signif-
icant peak was detected when long-lived storms were studied for the entire
region.

The short-lived storms and elevation co-spectrum, Figure 7.20(b), has
a peak at (7,1). Note that the major trough observed in the co-spectrum
for short-lived storms at (1,1) for the entire region is not visible for this
subregion. The co-spectrum for elevation versus medium-lived storms, Fig-
ure 7.21(b), resembles the corresponding co-spectrum of the entire region.
However, the magnitudes of the peaks and troughs are inversely proportional
to those of medium-lived storms in the entire region. The co-spectrum for
long-lived storms and elevation, Figure 7.22(b), is similar to the long-lived
storms co-spectrum in Region A.

The quadrature spectra for all the duration categories presented in sub-
figures (c} of Figures 7.20, 7.21 and 7.22 exhibit major peaks and minor
troughs. This is an indication that the two components are out of phase.

The amplitude spectra, sub-figures (d) of Figures 7.20, 7.21 and 7.22, em-
phasise that the two components are correlated. Sparsely spread significant
coherency ordinates are detected at the 5% level, as seen from sub-figures (e)
and (f) of Figures 7.20, 7.21 and 7.22.

In summary, initiation points in the eastern subregion are correlated with
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Figure 7.20: Spectra of initiation versus elevation for short-lived storms in the eastern
subregion: (a) auto-periodogram of initiation points; (b) and (c) raw co- and quadrature
spectra; (d) and () amplitude and coherency spectra smoothed using Method A four
times; (f) significant ordinates of the zero coherency test at the 1%, 5% and 10% levels,
the value represents the significance level.
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Figure 7.21: Spectra of initiation versus elevation for medium-lived storms in the eastern
subregion: (a) auto-periodogram of initiation points; (b) and (c) raw co- and quadrature
spectra; (d) and (e) smoothed four times amplitude and coherency spectra; (f) significant
ordinates of the zero coherency test at the 1%, 3% and 10% levels, the value represents
the significance level.
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Figure 7.22: Spectra of initiation versus elevation for long-lived storms in the eastern
subregion: (a) auto-periodogram of initiation points; (b) and (c) raw co- and quadrature
spectra; (d) and (e) amplitude and coherency spectra smoothed using Method A four

times; (f) significant ordinates of the zero coherency test at the 1%, 5% and 10% levels,
the value represents the significance level.
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elevation data, however the nature of the correlation depends on the direc-
tion of travel of the patterns. When storms are classified by duration such

correlation is mainly observed for medium-lived storms.
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7.3.2 Western Subregion

The western subregion extends from 10.704°W to 7.5°E. The initiation points
and their durations are presented in Figure 7.12 west of the dashed line.
There are 64 events of initiation within this subregion out of which there are
12 long-lived, 30 medium-lived and 22 short-lived storms.

Figures 7.23(a) and (b) represent the auto-periodogram of elevation data
within this subregion and the significant ordinates using Fisher’s test. Peaks
are observed at (1,0) and (1, —1). These peaks are significant at the 1% level.
Other significant ordinates are detected within the frequency range with
p=0,...,5and g = -5, ... ,5. The initiation points auto-periodogram, Fig-
ure 7.23(c), possesses a peak at (0, 1) which is significant at the 1% level. As
in the entire region and the eastern subregion the duration auto-periodogram,
Figure 7.23(d), does not possess any significant ordinates at the 10% level
using Fisher’s test,

A major trough is observed in the co-spectrum for initiation versus el-
evation at (2,1). In addition, two minor peaks occur at (1,—1) and (0,4),
see Figure 7.24(a). The trough in the quadrature spectrum, Figure 7.24(b),
indicates that the two components are out of phase. The significant ordi-
nates of the coherency spectrum, Figure 7.24(c), using the zero coherency
test statistic are presented in Figure 7.24(d). No concentration of coherency
is detected for relatively low frequencies, However, concentration at the 5%
level is detected along (p = {12,13,14},¢ = 6) and (p = 13,¢ = {4,5,6}).
The slope in the WE direction for the first frequency band is -0.41 and the

slope in the SN direction along the second frequency band is -0.26. The esti-
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Figure 7.23: Western subregion auto-periodograms: (a) elevation data, (c) initiation

points and (d) duration; (b) significant ordinates of (a) using Fisher’s test with adjusted
variance, the values indicate significance level.
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mates of the slopes along the frequency band p =11,... ,14and¢=3,...,7
using the phase correlation techniques are 0.29 and —0.18 for the WE and
SN directions, respectively.

Therefore, initiation points and elevation are negatively correlated along
the vector with angle 34°. Moreover, they are positively correlated along the
vector with angle —53.45° and for the pattern repeating four times in the SN
direction. In addition, these two components are out of phase. However, the
correlations indicated by the co- and quadrature spectra at low frequencies
are not strong, since no concentration of coherency is detected around these
frequencies. Furthermore, for relatively high frequencies where coherency
is concentrated the elevation pattern is to the west of initiation points by
approximately half a pixel and to the south by one third of a pixel.

Figures 7.25 and 7.26 represent the co-, quadrature, and coherency spec-
tra in addition to the zero coherency test statistic for duration versus eleva-
tion and initiation within the western subregion, respectively, As it is the
case for the entire region and the eastern subregion, correlation between the
marks and lattice pattern is suggested by the peaks and troughs in the co-
and quadrature spectra. However, there is insufficient evidence to suggest
that such correlation is strong due to the lack of concentration of coherency
for duration versus elevation. Note here that the peaks and troughs in the
co-spectrum are mainly concentrated around frequencies with low p, whereas
the co-spectra for the entire region and the eastern subregion have theirs con-
centrated around frequencies with low g¢.

The co- and quadrature spectra for the marks and initiation exhibit a

similar structure to those of the entire region and the eastern subregion.
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Figure 7.24: Cross-spectra of initiation versus elevation in the western subregion: (a)
and (b) raw co-, quadrature spectra; (c) coherency spectrum smoothed using Method A
four times; (d) significant ordinates of the zero coherency test at the 1%, 5% and 10%
levels, the value represents the significance level.

242



4 ot wx
Co-Spectrum
(a)

Coherency Spectrum

(c)

15
10

10

I
-
., -
=
£ --
e -
- - | a—
-

0
Quadrature Spectrum
)

Zero-Coherency test

(d)

Figure 7.25: Cross-spectra of duration versus elevation in the western subregion: (a) and
(b) raw co- and quadrature spectra; (c) coherency spectrum smoothed using Method A
four times; (d) significant ordinates of the zero coherency test at the 1%, 5% and 10%

levels, the value represents the significance level.
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None of the spectra for the entire region and its subregions are characterised
by distinctive features but peaks and troughs are observed over the whole
investigated range. Concentration of coherency at the 5% level is detected
around the frequencies (p = {1,...,4},¢ = {—15,-14,-13}), (p = 6,9 =
{-4,-3,-2}), (p = 8,9 = {~2,-1,0}), and (p = {8,9,10},¢g = 0). The
mean value of the slope of the adjusted phase spectrum in the WE direction
for the first frequency band with ¢ = —15,—-14, 13 is -0.83, whereas the
mean shift in the SN direction for frequencies with p = 2,3,4 is 0.33. The
slopes in the SN direction for the frequency bands with p = 6,8 are 0.54 and
0.32, respectively. The slope in the WE direction for ¢ = 0 is 0.14.

Figures 7.27(a), 7.28(a) and 7.29(a) represent the auto-periodograms of
the short-, medium-, and long-lived storm initiation points. A significant
peak of the auto-periodogram of short-lived initiation points is detected at
(0,1) at the 5% level. This frequency is also the only significant peak at the
10% level for the medium-lived storms. Note that for long-lived storms we
were not able to use Fisher’s test since [v/12/2] = 1 where 12 is the number
of events of long-lived storms in the western subregion. However, visual
inspection of the auto-periodogram for long-lived storms does not suggest
any specific structure. In order to assess the hypothesis of CSR for this
point pattern we simulated 99 realisations of the HPP process on the western
subregion. Only 3% of these ordinates were found to be significant at the 5%
level. None of the frequencies in the range p=10,...,12 and ¢ = —4,... ,4
were found to be significant at this level.

The co- and quadrature spectra for the initiation points classified by du-

ration and the elevation surface are presented in sub-figures (b) and (c) of

244



Co-Spectrum
(a)

S i 2 Wz
Coherency Spectrum
(c)

Wy

15
-10

-5

10

Quadrature Spectrum

(b)

Zero-Coherency test

(d)

Figure 7.26: Cross-spectra of duration versus initiation in the western subregion: (a)
and (b) raw co- and quadrature spectra; (c) coherency spectrum smoothed using Method A
four times; (d) significant ordinates of the zero coherency test at the 1%, 5% and 10%

levels, the value represents the significance level.
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Figures 7.27, 7.28 and 7.29 for the short-, medium-, and long-lived storms,
respectively. The peaks and troughs in both spectra and the peaks in the
amplitude spectra, sub-figures (d), indicate that initiation points are corre-
lated with elevation. However, the sparsity of significant coherency ordinates
implies that such correlation is not strong. Coherency spectra are presented
in sub-figures (&), while the zero coherency test images are presented in sub-
figures (f). It is worth noting here that the number of events for the classified
storms does not exceed 30 events in each case.

In summary, storm initiation is correlated with elevation within the west-
ern subregion. However, the nature of this correlation varies with the direc-
tion of travel of the waves. For duration versus the elevation surface there is
no strong evidence to suggest that the global patterns in the two components
are correlated. The same holds true for duration versus initiation. Further-
more, studying the properties of initiation points versus elevation conditional

on the duration of storms has not revealed any distinctive features.

7.4 Comparison to Other Studies

In this section we compare our findings about the storm data and those
of Mugglestone and Taylor (1994). Mugglestone and Taylor {1994) used
random labelling to determine if there is any difference between the spatial
distributions of medium- and long-lived storms in the eastern and western
subregions. They found out that there is a slight difference between the
two types of storms in the eastern subregion where the medium-lived storms
are more strongly aggregated than the long-lived storms. However, they had

insufficient evidence to claim that such a link exists in the western subregion.
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Figure 7.27: Spectra of initiation versus elevation for short-lived storms in the western
subregion:(a) auto-periodogram of initiation points; (b) and (c) raw co- and quadrature
spectra; (d) and (e) amplitude and coherency spectra smoothed using Method A four
times; (f) significant ordinates of the zero coherency test at the 1%, 5% and 10% levels,
the value represents the significance level.
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Figure 7.28: Spectra of initiation versus elevation for medium-lived storms in the western
subregion:(a) auto-periodogram of initiation points; (b) and (c) raw co- and quadrature
spectra; (d) and (e) amplitude and coherency spectra smoothed using Method A four

times; (f) significant ordinates of the zero coherency test at the 1%, 5% and 10% levels,
the value represents the significance level.
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Figure 7.29: Spectra of initiation versus elevation for long-lived storms in the western
subregion:(a) auto-periodogram of initiation points; (b) and (c¢) raw co- and quadrature
spectra; (d) and (e) amplitude and coherency spectra smoothed using Method A four

times; (f) significant ordinates of the zero coherency test at the 1%, 5% and 10% levels,
the value represents the significance level.
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They also reported that visnal comparison of the maps of storm initiation
points and elevation suggests that there is a link between the storm duration
and the proximity of mountains to the points where the storms initiate.
However, formal confirmation of such a link could not be established using
random labelling. Our analysis suggests that for the data set at hand there
is insufficient evidence to support the claim that storm duration is in general
related to the elevation data, except for medium-lived storms in the eastern
subregion where there is some evidence that such a link exists. Nevertheless,
storm initiation was found to be correlated with elevation. Further studies
can be carried out to see if such relationships hold for similar data and to
investigate if there is a link between storm duration and other topographical

features.

7.5 Summary

Using cross-spectral analysis techniques for processes with two and three
components, we explored the relationship between elevation data, storm ini-
tiation points and their duration within the Sahel region of Africa. The
analysis of this data set was carried out using several scenarios.

First, the data set was studied within the entire region. It was shown
that initiation points and elevation data are correlated, however the type of
correlation is dependent on the direction of travel of the main waves under-
lying the processes. Furthermore, evidence of correlation between duration
and either elevation or initiation was not strong.

Second, conditional on duration being classified as short-, medium-, or

long-lived, the properties of initiation points and elevation were explored.
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The spectra between initiation and elevation for the different categories ex-
hibited similar features, mainly within the co-spectrum, but the magnitudes
of these features varied from one category to another. Again it was not
evident that correlation between initiation points and elevation differed ac-
cording to storm duration.

Third, the above two approaches were used to study the properties of
two subsets of the data. The two subsets were derived by splitting Region A
into eastern and western subregions. Initiation points in the eastern sub-
region were found to be correlated with elevation data. However, in the
western subregion correlation between these two components was to a lesser
extent. Furthermore, there was insufficient evidence to suggest duration and
the other two components were correlated within the subregions. Classify-
ing the storms by duration in the eastern subregion revealed that correlation
between initiation and elevation differed between the duration categories. Vi-
sual inspection of the different spectra revealed that the correlation between
the medium-lived storms and elevation was relatively stronger than for the
other duration categories. However, no such phenomenon was detected in

the western subregion.
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Chapter 8

Conclusions and Directions for
Further Research

In this chapter, we summarise the main results of this study and propose

directions for further research in this area.

8.1 Conclusions

In this section, we recap the major contributions of this study. In general,
we have established that two-dimensional spectral analysis techniques can be
used to explore the relationship between the components of a hybrid process
consisting of a spatial point process and a lattice process. Thus, the basis
for nonparametric analysis of such processes was laid down. In addition, we
have derived asymptotic distributions of the spectral density matrix of the
hybrid process. These distributions are analogous to results from studies of
one-dimensional processes. We have also provided analyses of two real data

sets. In more detail, this thesis contains the following achievements.

e The potential of cross-spectral estimates to unveil the nature of corre-

lation between a two-dimensional point process and a lattice process

252



was demonstrated using simulated examples.

Models that extend two-dimensional linked and balanced doubly stochas-
tic point processes introduced by Diggle and Milne (1983) to the case
of linked and balanced point-lattice processes were provided. In addi-
tion, for simulated examples of these models we have shown that the

spectral estimates were in agreement with the theoretical results.

A method to adjust the phase spectrum for jumps that are due to the
constraint of the phase belonging to the interval (-7, 7) was provided.
The importance of these adjustments for extracting information about
the phase shift between the two components of the hybrid process was

manifested through simulated examples.

Techniques to calculate slopes of the phase spectrum locally were sug-

gested. The need for these techniques arises mainly for two reasons:

1. in some situations, the two components are only related at a subset

of the frequencies investigated; and

2. the phase spectrum is not necessarily linear in all cases.

For non-zero frequencies, the asymptotic distribution of the cross-spectral
matrix was established to be a complex Wishart distribution of dimen-
sion two with one degree of freedom. For zero frequencies, the distri-
bution was established to be a Wishart distribution of dimension two
with one degree of freedom. In addition, the cross-periodogram statis-

tic was shown to be an unbiased estimator of the cross-spectral statistic
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and cross-spectral estimates at different frequencies were shown to be

asymptotically independent of each other.

Confidence intervals were obtained for the auto-, co-, quadrature and

phase spectra using the asymptotic properties.

A test for zero coherency was discussed. The test statistic followed
an F distribution. The motivation for applying the test is to deter-
mine formally the range of frequencies where the two components are

correlated.

Several methods for discretising point patterns to form lattice patterns
were considered, and the joint properties of the resulting lattice-lattice
patterns were studied. We examined the extent to which such an ap-
proach eliminates problems that can be attributed to lattice patterns
being observed on grid points whereas point patterns being observed

anywhere in the study region.

We established spectral tools for analysing hybrid processes inclading

marked point processes.

For the trees of the rain forest of French Guyana, we found that Species 3,
10 and 11 were to the north-west of the altitude pattern. In addi-
tion, Species 3, 11, and 12 favoured relatively low altitudes, whereas

Species 10 favoured high altitude.

In analysing the storm data of the Sahel region of Africa, we considered

several scenarios. The main findings in each case are listed below.
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— For the entire region, we showed that initiation points and ele-
vation data were correlated. However, the nature of correlation
depended on the direction of travel of the main waves underlying
the two components. Furthermore, evidence of correlation be-

tween duration and either elevation or initiation was not strong.

— The relationships between initiation points and elevation were ex-
plored conditional on duration being classified as short-, medium-,
or long-lived. Similar features were observed in the cross-spectra
of initiation and elevation for the different duration categories.

This similarity was mainly manifested in the co-spectrum.

— The study region was divided into eastern and western subregions,
and the relationships between initiation points, their durations,
and elevation were studied using the previous scenarios. In the
eastern subregion, initiation points were found to be correlated
with elevation data, whereas in the western subregion this cor-
relation was not as strong. Again, correlation between duration
and the other two components was not evident within the subre-
gions. Analyses of storm initiation and elevation conditional on
the classified duration revealed that the extent of correlation be-
tween medium-lived storms and elevation was relatively stronger
than for the other duration categories. No such phenomenon was

observed in the western subregion.
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8.2 Future Work

This thesis has not exhausted all the possible methods one can use to study
the relationship between a spatial point process and a lattice process. In

what follows, we list some suggestions for extending this study.

e Throughout this thesis analysis of hybrid processes has been based
on second-order cumulant functions. As an immediate extension one
can consider studying the properties of hybrid processes using third-
and higher-order cumulants and their Fourler transforms, This ap-
proach might be particularly useful for the hybrid process consisting of
a marked spatial point process and a lattice process because it would

enable us to study quantities such as
Cum{dMx(a),dNx(a),Ya},

where My and Ny represent the cumulative mark process and cu-
mulative number of events of the point process X, and Y is the lattice
process. The importance of third- and higher-order cumulant functions
is due mainly to the fact that for Gaussian processes cumulants that are
of order greater than two vanish (see Brillinger, 1994). This is relevant
to our case because under the null hypothesis of CSR it was found that
the individual DFTs of point and lattice processes were Gaussian. In
addition, studying higher-order spectra would enable the detection of
processes that have their first- and second-order equivalent to those of a
completely spatially random process but are not themselves completely

spatially random.
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e Spectral analysis techniques are based on transformations of the process
using Fourier functions. As an alternative approach one might investi-
gate the joint properties of the (marked) point processes and lattice pro-
cesses using wavelets. Wavelets are transformations of a process com-
posed of translations and scalings of a single function called the mother
function (see Nason and Silverman, 1994). In time series analysis
wavelets offer a more efficient representation for non-smooth and/or dis-
continuous functions than do Fourier transforms, although for smooth

functions the converse is true (see Nason and Silverman, 1994).

e In this study, when the joint properties of marked spatial point pro-
cesses and lattice processes were examined the mark process was as-
sumed to possess one component. An obvious extension would be to
consider several components of this process. For example, the marks
process for the Sahel storms may consist of the storm speed in addition

to the storm duration.

e Further studies to investigate the possibility of an equivalence between
bandwidth selectors for kernel density and intensity estimators for the
one- and two-dimensional cases using plug-in methods could be carried
out, see Chapter 5 for more details. This equivalence might be based
on the equivalence between bandwidth selectors for this intensity esti-
mator and kernel density for the one-dimensional case using the LSCV

criterion proved by Diggle and Marron (1988).

e In connection with the study of the storms data set, it would be of

interest to study the joint spectral properties of storm tracks and the
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elevation data. The storm tracks are defined as the line segments join-
ing the points where the storms initiated, reached their maximum size
and dissipated, see Figure 8.1. In Figure 8.1 the dots represent ini-
tiation points, the triangles represent the positions where the storms
reached their maximum size, and the crosses represent the positions
where the storms dissipated. Thus one might consider an extension of

Bartlett’s (1967) work on the spectral analysis of line segments.

Both data sets that were used in this study are extracts from a larger
data base. An interesting extension would be to carry out similar
analyses on the other parts of the data and compare and contrast results

with the findings of this study.
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Appendix A

Mathematical Tools

A.1 Useful Identities

The following are a set of well known trigonometric relations. Let p; and p,

be two integers such that 0 < py, p» < [N/2], then

0 ifOSPl#I@S[N/Q];

al 2mpit 2mp,t
Zcos( ]51 )cos( ;;2 ) = <N/2 if0<p =p < N/J2,
t=1 N if p =p, = (0 or N/2if N is even.)

(0 if 0 < p; # pa < [N/2],

al 2t 2 pat
Zsin( ;Tl )sin( j@z ) = ¢ N/2 f0<p =p < N/J2,
t=1 0 if pr =p2 = (0or N/2if N is even.)

isin 2t cos 2mpat = {0 for all
- N N - pl:pz-

A.2 Delta Functions

The following are some basic functions that are needed for the proof of
theorems included in previous chapters. The definitions were taken from
Brillinger (1981, chapter 2} and are reproduced here bhecause we found it

difficult to obtain a copy of Brillinger (1981).
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Kronecker delta

5{a}:{1 if =0

0 otherwise.

Kronecker comb

1 ifa=0( mod2nw)
& joned
nia} {0 otherwise.

Dirac delta function
d(ar), —o0 < @ < o0,
with the property

| restayda= 1)
for all functions f(c) continuous at 0.

Dirac comb

nle) = Z 8(ce — 2mj), for — o0 < @ < 00,

j=—o0

with the property

oo

| amtayia = Y seom)

=00

for all suitable functions f{a).

A.3 Relevant Distributions

(A1)

(A.3)

(A.6)

In this section, we provide definitions of the complex normal multivariate

distribution and the complex Wishart distribution.
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The Complex Normal Distribution Let Ni(x,X) denotes a & vector—
valued normal distribution with mean g and covariance matrix £. Let
X be a k complex vector—valued variate, then X is said to be a complex
k vector-valued normal variate denoted by NC(u, X)), if
[ReX} ~ Ny (Re,u,l [ReE —ImZ])
ImX Imyg,?2 [ImE ReX
From the above definition, one can conclude that

E(X — )X~ 7] = £ and that E[(X — u)(X — p)T] = 0.

The Complex Wishart Distribution If X,...,X,,; are independent
NE(0, %) variates, then the k x k matrix-valued random variable W =
Do XJRT is said to have a complex Wishart distribution of dimen-
sion k and degrees of freedom m, and is written as W(m, ). This
distribution was introduced by Goodman (1963), it is an extension of
the Wishart distribution. Now, if we write W = |[|[W g + iW ]|,
where K, T in the subscript denote the real part and the imaginary
part, respectively. The joint distribution of the distinct elements of the
matrix W is called a complex Wishart distribution. The probability

density function of the joint distribution is given by
fw(V) = |V]3(E) exp{~tr(Z7'V)}
where,
k-1
IHE) = gkl gm H T(m — j),
j=0

and |V| denotes the determinant of the matrix V. In addition, I' is the
gamma function. The density fw(V') is defined over the domain where

V' is Hermitian positive semi-definite.
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A.4 Linear and Space Invariant Operators

An important class of operators consists of those that are linear and space
invariant (see Brillinger, 1970). Let 8 be an operator whose domain, D, is

a process X (a),a € R%. The operation is linear if
B{b1 X1 + b X5](a) = bB[X;](a) + 6,B[X,](a),

where by, by are constants and X, X, are in I

The operation is space invariant, if
B{T* X}(a) = B[X](a + u),

where T¥ X (a) = X{a + u).
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Appendix B

Cumulants

B.1 Definition and Properties

It is well known that the characteristic function, W(¢), of a given distribution
determines the distribution uniquely. In addition, knowing the distribution
function enables us to calculate the moments of all orders of the given distri-
bution by using the Taylor expansion of the function, if such an expansion
exist.

Therefore, if we are interested in determining the joint distribution of
products of random variables, as it is the case here, then it is suflicient to
establish the characteristic function of the product. However, in most cases,
it is algebraically difficult to do so. Such a problem can be simplified by
using the log transform, which maps products to sums.

Hence, instead of calculating the characteristic function, one determines
its log transform, log ¥(t), known as the cumulant generating function (see
Kendall and Stuart, 1963, chapter 3). Since the log transform is a one to
one transformation then the cumulant generating function also determines

the distribution of a given random variable uniquely.
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Next following the notation in Brillinger (1981, chapter 2), cumulants are

defined by analogy to the moments of a distribution.

Definition B.1.1 Let (Y1,...,Y;) be an r wvariate random wvariable with
E|Y;|" < oo for j=1,...,r, where the Y; are real or complex and

EY = [ydF(y). Ther**-order joint cumulant, Cum(Yy,...,Y;), of (Y1,..., ¥})
is given by the coefficient of i"t,---t, in the Taylor series expansion of

log(Eexpi ;.. Yjt;) about the origin.

However, authors such as Brillinger (1981) and Kendall and Stuart (1963)
give the above definition as a theorem after defining the cumulant function

of several variables as below.

Definition B.1.2 Let (Y1,...,Y;} be as above, then

Cum(Yy, ..., =Y (-1 p- ) E]]v).. . ®]][v), (B

JEV F€Vp
where the summation extends over oll partitions (vi,...,v,),p=1,...,1,
of (1,...,7).
A special case occurs when ¥; =Y, j = 1,... 7. The definition gives then

the cumulant of order r of a univariate random variable.

Note that for r = 1,2, 3 Definition B.1.2 implies that
Cum{Y} = E{Y},
Cum{Yy, Y2} = E{Y 1 Yo} — E{Y1}E{Y>},
Cum{¥;, Vs, Yi} = E{¥1 Vy¥y} — E{Y; Y3 E{Ys} — E{Y; Y }E{Y,} -
E{YaY3)E{Vi} + E{Y; }E{Y; }E{Y; ).
Next, we list some properties of cumulant functions.
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1. Cum(a;Yy,...,a,Y;) =a;---a,Cum(Y),... ,Y,) for ap,... ,a, constants.
2. The function Cum(Y7,...,Y;) is symmetric in its arguments.

3. If any group of the Y’s is independent of the remaining Y's, then

Cum(Yy,....Y,) =0.

4. For the random variable (Z,Y1,...,Y;),

Cum(Y1 + Z1,Ys,...,Y;) = Cum(\, Y2, ..., Y7) + Cum(Z, Yy, ..., Y7).

For y constant and r = 2,3,...

o

Cum(}/l + i, }/25 e yY'T) = Cum(}/h }/21 v 11/;‘)

6. If the random variables (Yy,...,Y;) and (Z,,... , Z,.) are independent

then,

CUIH(K + Zl:--- ,Y;« + Zr) = Cum(YI,... ,Y;-) +C111’1’1(Zl,... ,Zr).

7. Cum(Y) = E(Y").
8. Cum(Y,Y) = Var(Y).

9. Cum(Y, Z) = Cov(Y, Z).

B.2 Important Lemma

In this section, we supply a lemma that enables us to determine the cumulants
for a random variable in a systematic manner. This lemma is due to Leonov

and Shiryaev (1959) for real random variables but was extended by Brillinger
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and Rosenblatt (1967) to the complex case. First, we introduce some relevant

definitions.

Definition B.2.1 Consider a (not necessarily rectangular) two way table

(1,1) (1, k1)
(2’:1) ' (2’;]62) (B.2)
(1) ... (Jk))

and a partition of its elements into disjoint sets { P, , Py , ..., Py } two

sets of the partition P, and P, are said to hook if there exist (ji, ) €

Py, and (j3, ja) € Py, such that j; = js.

Definition B.2.2 Two sets Py and Py are said to communicate if there
exists a sequence of sets Py = Py, Py, ..., P, = Py such that B, and P

i+l

hook for each j.

Definition B.2.3 A partition is said to be indecomposable if all its seils

commaunicate.

Result 1 If the rows of the above table are denoted by Ry, ..., R; then
{ P, ..., P, }isindecomposable if and only if there exists no sets Py, ... | F;

n

(n < m) and rows R;,,... ,R;, (p < J) with
IDQ'IU...U.PE'R:Rj,‘lU...UJR:,.‘;Li

Lemma B.2.1 Given an array ||You|l,n=1,... . Knandm=1,...,J of
random variables consider the J complex random variables

Km
Zm = H Yin-

n=1
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The joint J*-order cumulant Cum{z,... ,2;} is given by

Y ¢, ...C, (B.3)

where C, = Cum{Yy,,... Y, } when v = (a1,... ,a,) the a’s being pairs
of integers taken from the above table and the summation exrtends over all

indecomnposable partitions of the above table.

Result 2 For a Normal variable X, it can be easily shown that cumulants
of order greater than two vanish (see Kendall and Stuart, 1963, chapter 5).
Hence, to show that a variable is normally distributed it is sufficient to show
that the cumulants of order greater than two vanish. This is so because the

Normal distribution is determined by its moments.
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Appendix C

Tree Species (Continued)

In this appendix we provide exploratory cross-spectral analyses for Species 2,
4,...,9,13 and 14 that are listed in Table 6.1. In addition, the joint prop-

erties of species that belong to the same family are studied.

C.1 Species 2: Gaulette

Figure C.1(a} is the graph of Gaulette versus altitude pattern. Figure C.1(b)
has two peaks at the frequencies (0,1) and (1,—1). This indicates that
Gaulette resembles a cluster process repeating once in the SN direction and
along the direction of the 135° angle. These peaks are significant at the 5%
and 10% level, respectively.

Henceforth, we will only report significant features of the species studied,
obvious interpretations will be omitted. However, for completeness we will
provide all the essential figures associated with each species.

The co-spectrum, Figure C.1(c), has peaks at (0,1) and (1, —1). The
quadrature spectrum, Figure C.1(d), has troughs at (1, 1), (0,1), and a peak

at (1,0). The phase and coherency spectra are given in Figures C.1{(e) and
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Figure C.1: (a) Gaulette versus altitude pattern; (b) raw auto-periodogram of the point

pattern; (c) and {d} raw co- and quadrature spectra; (¢) and (f} smoothed phase and
coherency spectra using Method A four times.

270



(), respectively.

Figure C.2 is the profile of the zero coherency test for Gaulette versus
altitude pattern for p = 0,...,15. Figures C.3(a) and (b) represent the
adjusted phase spectra in the WE/SN directions for the frequencies where
concentration of significant ordinates was observed in the zero coherency
test. Note that coherency is concentrated along the frequencies (p = 1,9 =
{-2,...,2}) and (¢ = 2,p = {0,... ,4}). The slope in the SN direction for
the frequency band p = 1is -0.12, and the slope in the WE direction for the
frequency band ¢ = 2 is -0.11. Thus Gaulette is to the east of the altitude

data by 0.6m and to its north by 0.55m.
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Figure C.2: Profile of the zero coherency test statistic spectrum for Gaulette versus
altitude pattern for p = (..., 15, solid line, and the correspending upper 5/1% critical
point of the F distribution, dotted/dashed 2ifi2.
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Figure C.3: (a) and (b) Profile of the adjusted phase spectrum (Gaulette versus al-
titude pattern) in the WE and SN directions for the frequencies p = 0,1,2,4 and
g=-3 -2 —1,1,2.

C.2 Species 4: Palmiers

The locations of Palmiers are presented in Figure C.4(a) superimposed on
altitude values. The raw auto-periodogram of the point pattern, Fig-
ure C.4(b), has peaks at (4,1) and (1, —1). The former frequency was found
to be the only significant frequency at the 5% level among the frequencies
investigated.

Figure C.4(c) is the co-spectrum, and it possesses a trough at (1, —1) and
a peak at (1,0). The quadrature spectrum has peaks at (1,—1), (0,1) and
a trough at (1,1), see Figure C.4(d). The phase and coherency spectra are

represented in Figures C.4(e) and (f), respectively.
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Figure C.4: (a) Palmiers versus altitude pattern: (b) raw auto-periodogram of the point

pattern; (c) and (d) raw co- and quadrature spectra; (e) and (f) smoothed phase and
coherency spectra using Method A four times.
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The profile of the zero coherency test for p = 0,...,15, is provided in
Figure C.5. From this figure we note that the coherency is significantly
different from zero, at the 5% level, for (¢ = 4,p = {0,1,2}). The slope
along this frequency band is 0.67. Thus Palmiers lie to the west of the

altitude pattern by 3.35m.
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Figure C.5: Profile of the zero coherency test statistic spectrum for Palmiers versus
altitude pattern for p = 0,...,15.
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C.3 Species 5: Encens

Figure C.6(a) gives the locations of Encens together with altitude values.
The sample point spectra, Figure C.6(b), has peaks at (1, 0), (20, —-11), (0, 2)
and (0,1). The peak at (1,0) is significant at the 5% level. However, given
that the number of events is 131, the frequency range is restricted so that
the significance of the frequency (20, —11) cannot be assessed.

A peak is observed at (0,1) in the co-spectrum, Figure C.6(c), and a
trough is observed at (1, —1). The quadrature spectrum, Figure C.6(d), has
a major trough at (1,0). Figures C.6(e) and (f) represent the phase and
coherency spectra, respectively. The coherency is significantly different from
zero at the 5% level for the frequency band (p = {0, ... ,4},¢ = 3). The slope
of the adjusted phase spectra in the SN direction for this frequency band is
-1.24,
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Figure C.6: (a) Encens versus altitude pattern; (b) raw auto-periodogram of the point
pattern; (c) and (d) raw co- and quadrature spectra; (e) and (f) smoothed phase and
coherency spectra using Method A four times.

278



Coherency Test Species 5

20 10 0 10 20 20 10 0 10 20

SN.freq

Figure C.7: Profile of the zero coherency test statistic spectrum for Encens versus
altitude pattern for p=0,...,15.
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C.4 Species 6: Tosso Passa

The point pattern of Tosso Passa is presented in Figure C.8(a} together with
altitude values of the study region. The auto-periodogram of the point
pattern, Figure C.8(b), has peaks at (17,15) and (1, —2). However, the null
hypothesis of CSR was not rejected at the 10% significance level.

The co-spectrum, Figure C.8(c), possesses major troughs at (0, 1), (1, —1)
and a minor peak at (1,0). The quadrature spectrum, Figure C.8(d), exhibits
troughs at (1,0), (0,1), and peaks at (1,—1), (0,2). The detection of these
peaks and troughs, despite failing to reject the null hypothesis of CSR of
the point pattern, might be attributed to the simple structure of the lattice
pattern. The phase and coherency spectra are provided in Figures C.8(e)
and (f), respectively. The profile in Figure C.9 reveals that there is no con-
centration of coherency. Thus Tosso Passa is not (highly) correlated with

altitude data.
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Figure C.8: (a) Tosso Passa versus altitude pattern; (b) raw auto-periodogram of the
point pattern; (c) and (d) raw co- and quadrature spectra; (e) and (f) smoothed phase

and coherency spectra using Method A four times.
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Figure C.9: Profile of the zero coherency test statistic spectrum for {Tosso Passa) versus
altitude pattern for p=0,... ,15.
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C.5 Species 7: Boco

Figure C.10(a) gives the locations of Boco superimposed on altitude values.
Figure C.10(b) represents the auto-periodogram of the point pattern. This
periodogram exhibits peaks at (1, 1) and (9, —13). The peak at (1,—1) is
significant at the 1% level.

The co-spectrum has peaks at (1, —1), (1, 1) and (0, 1), see Figure C.10(c).
Figure C.10(d} represents the quadrature spectrum which exhibits a trough
at (0,1) and two peaks at (1, —1) and (1,0).

The phase and coherency spectra are presented in Figures C.10(e) and
(f), respectively. Concentration of non-zero coherency, around relatively low
frequencies, is observed along the frequency band {(p = 2,¢ = {-2,...,2}),
see Figure C.11. The slope of the adjusted phase spectra in the SN direction

for this frequency band is 0.52.
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Figure C.10: (a) Boco versus altitude pattern; (b) raw auto-periodogram of the point

pattern; (c) and (d) raw co- and quadrature spectra; (e) and (f) smoothed phase and
coherency spectra using Method A four times.
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Figure C.11: Profile of the zero coherency test statistic spectrum for Boco versus altitude
pattern for p = 0,...,15.
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C.6 Species 8: Manil Marecage

The pattern of the locations of Manil Marecage superimposed on altitude is
presented in Figure C.12{a). Figure C.12(b) is the auto-periodogram for
the point pattern. The peak at (1,0) is the only significant low frequency at
the 5% level.

Figure C.12(c) represents the co-spectrum which possesses troughs at
(1,0) and (0, —1). The quadrature spectrum, Figure C.12(d), exhibits a ma-
jor peak at (0, 1) and two other minor peaks at (1, —1) and (1, 1). The graphs
of the phase and coherency spectra are given in Figures C.12(e} and (f), re-
spectively. The profile of the zero coherency test in Figure C.13 indicates

that the correlation detected above is not strong.
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Figure C.12: (a) Manil Marecage versus altitude pattern; (b) raw auto-periodogram of

the point pattern; (c) and (d) raw co- and quadrature spectra; (e) and (f) smoothed phase
and coherency spectra using Method A four times.

287



oo
@
@
o
D
=%
o
@
@
|_
)
)
-
m
—
©
-g i - 15
O
- - 10

20 <10 0 10 20 20 10 9 10 20

SN.freq

Figure C.13: Profile of the zero coherency test statistic spectrum for Manil Marecage
versus altitude pattern for p = 0,...,15.
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C.7 Species 9: Gonfolo Rose

Gonfolo Rose versus altitude pattern is provided in Figure C.14{a). The
auto-periodogram for the point pattern, Figure C.14(b), exhibits peaks at
(1,1) and (13,23). The former peak is significant at the 1% level. The
significance of the latter peak cannot be assessed since the number of events
in the point pattern 84 implies that we can only investigate the frequency
band (p = {0,...,4},¢ ={—4,... ,3}).

Figure C.14 (c) is the co-spectrum of the point-lattice pattern. It pos-
sesses peaks at (0,1), (1,1} and (1,0). The quadrature spectrum, Figure C.14(d),
has a peak at (0,1) and troughs at (1,0}, (1, —1) and (1,1). The spectra of
phase and coherency are presented in Figures C.14(e) and (f), respectively.
Figure C.15 represents the profile of the zero coherency test. Note that at
the 5% significance level coherency is concentrated around the frequencies
(p = 2,9 = {-1,0,1}) in the SN direction and (p = {2,3},¢ = —1) in the
WE direction. Calculating the slope of the adjusted phase spectrum in the
SN direction for the frequency band (p = 2,¢ = {—1,0,1}) yields -1.52. The
slope in the WE direction for the frequency band {p = {2,3},¢ = —1) is
0.12.

289



Species 9
Np 84 Events

8
i
Z 4
2
> -
i}
Point Sample Spectrion
0 10 20 a0 40 50 (h)
(&)
80
i
40
Z 20 4
0 zo
20 50
2
5§
t 15 w7 ® 2%
i o ) {1 . L
<% W W o, L0 12
Co-Spectrum ’ v W
fe) Quadrature Spectrum
(d)
!
08
0.6
Z o4

0.2
0

o W
Coherency Spectrum
Phase Spectrum n
fe)

Figure C.14: (a) Gonfolo Rose versus altitude pattern; (b) raw auto-periodogram of the

point pattern; (c) and (d) raw co- and quadrature spectra; (e) and (f) smoothed phase
and coherency spectra using Method A four times.
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Figure C.15: Profile of the zero coherency test statistic spectrum for Gonfolo Rose
versus altitiwde pattern for p=0,... ,15.
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C.8 Species 13: Cedres

The locations of the point pattern formed by the Cedres are presented in Fig-
ure C.16(a}. The auto-periodogram for the point pattern, Figure C.16(b),
has a major peak at (1, 1). This peak is significant at the 1% level, moreover
the frequency (3,0) is significant at the 5% level. Peaks are detected at (1, 1)
and (0,1) in the co-spectrum, Figure C.16(¢). The quadrature spectrum,
Figure C.16(d), exhibits a major trough at (1, ~1) and two minor troughs at
(1,0) and (0,1).

The graphs of phase and coherency spectra are provided in Figures C.16(e)
and (f), respectively. Figure C.17, the profile of the zero coherency test for
this species versus altitude pattern, indicates that the coherency is different

from zero for couple of sparse low frequencies.
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Figure C.16: (a) Cedres versus altitude pattern; (b) raw auto-periodogram of the point
pattern; (c) and (d) raw co- and quadrature spectra; (e) and (f) smoothed phase and

coherency spectra using Method A four times.
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Figure C.17: Profile of the zero coherency test statistic spectrum for Cedres versus
altitude pattern for p = 0,...,15.
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C.9 Species 14: Angelique

The locations of Angelique are presented in Figure C.18(a). Figure C.18(b)
gives the graph of the auto-periodogram of the point pattern. Peaks are
detected at (1, —-2), (2,0),(1,2),(0,1) and (0, 2). The first two of these peaks
are significant at the 1% level and the fourth at the 5% level.

The co-spectrum, Figure C.18(c¢), has peaks at (1,0), (0, 1) and a trough
at (0,2). The quadrature spectrum, Figure C.18(d), has a major trough at
(0,1) and a minor peak at (1,0).

The phase and coherency specira are presented in Figures C.18(f) and
(f), respectively. Concentration of coherency is detected along the frequen-
cies {p = {1,2},¢ = {-10,...,-3}) and (p = {0,1,2},¢ = 3), see Fig-
ure C.19. The slope of the adjusted phase spectrum in the WE direction for
the frequency band with ¢ = 3 is 0.25, and the slopes of the adjusted phase
spectrum in the SN direction for the frequency bands with p = 1,2 are 0.11

and 0.27, respectively.
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Figure C.18: (a) Angelique versus altitude pattern; (b) raw auto-periodogram of the

point pattern; (c) and (d) raw co- and quadrature spectra; (e) and (f) smoothed phase
and coherency spectra using Method A four times.
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[Figure C.19: Profile of the zero coherency test statistic spectrum for Angelique versus
altitude pattern for p=0,... ,15.
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Figure C.20: The joint pattern of Species 3 and 11 together with altitude.

C.10 Species 3 and 11: Lecythidaceae

In this section, Species 3 and 11 from the Lecythidaceae family are joined
to form one species, and the cross-spectral analysis of the resulting point-
lattice pattern is investigated. The joint pattern for the tree species and
the altitude data is presented in Figure C.20.

The auto-periodogram for the joint point pattern is presented in Fig-
ure C.21(a). The peaks in this periodogram are detected at (0,1) and
(1,0). The co-spectrum, Figure C.21(b), exhibits major troughs at (0,1)
and (1, —1). The quadrature spectrum, Figure C.21(c), exhibits a trough at
(0,1), and a peak at (1,0). The phase and coherency spectra are presented

in Figures C.21(d) and (e), respectively.
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Figure C.21: (a) raw auto-periodogram of the point pattern of the joint pattern for

Species 3 and 11, (b) and (c) raw co- and quadrature spectra; (d) and {(e) smoothed phase
and coherency spectra using method A four times.
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The profile of the zero coherency test statistic, Figure C.22, indicates
that there is concentration of significant ordinates at the 1% level at the
frequencies (p = 0,¢ = {1,2,3}), (p = l,¢ = {-1,...,3}) and (p =
2,q = {~1,...,2}). Figures C.23(a) and (b) represent the profiles of the
adjusted phase spectra in the WE direction and SN direction for the previ-
ously mentioned frequencies, respectively. The slopes in the WE direction
forq=-1,...,3 are 0.29, 0.92, 1.61, 1.58 and 1.14, respectively. The slopes

in the SN direction for p = 0,1, 2 are -0.53, -0.9 and -0.37, respectively.
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Figure C.22: Profile of the zero coherency test statistic spectrum for Species 3 and 11
versus altitude pattern for p=10,...,15.
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Figure C.23: (a) and (b) Profile of the adjusted phase spectrum for Species 3 and 11
versus altitude pattern in the WE and SN directions for the frequencies p = 0,1, 2, and
g=-1,...,3.

C.11 Species 10 and 14:
Leguminosae-Caesalpineaceae

Figure C.24 represents the point pattern formed by Species 10 and 14 to-
gether with altitude data. The sample point pattern is presented in Fig-
ure C.25(a). Peaks are detected at {0,1), (1,—1) and (1, 0).

The co-spectrum, Figure C.25(b), also exhibits peaks at the above fre-
quencies. The quadrature spectrum, Figure C.25(c), exhibits a major trough
at (1,—1) and a peak at (0,1). Figures C.25(d) and (e) represent the phase
and coherency spectra. Figure C.26 represents the profile of the zero co-

herency test statistic. It indicates that coherency is concentrated around
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Figure C.24: The joint pattern for Species 10 and 14, in addition to altitude.
the frequencies (p = 1,¢ = {-5,...,2}) and (p = 2,¢ = {—4,...,0}). The

slopes of the adjusted phase spectrum in the SN direction for p = 1,2 are

-3.1 and -4.3, respectively.
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Species 10 and 14; (b) and (c) raw co- and quadrature spectra; (d) and (e} smoothed
phase and coherency spectra using Method A four times.
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Figure C.26: Profile of the zero coherency test statistic spectrum for Species 10 and 14
versus altitude pattern for p=0,...,15.
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