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Abstract 

In this study, we explore the relat,ionship between the components of a 

hybrid process consist,ing of a spatial point process arid a lattice process using 

two-dimensional spectral t,echniques. Simulated spatial point-lattice patterns 

are used to demonstrate how the different cross-spectral statistics can reveal 

correlation between the two components. A method to adjust for jumps 

that normally occur in the cross-spectral phase statistic is then proposed. 

Such adjustment is needed to enable us to calculate the slope of the phase 

spectrum which measures the shift between the two components. Several 

methods to calculate the slope are investigated. Asymptotic properties of the 

cross-spectral statistics are derived and their confidence intervals estimated. 

.4 test that the components are independent is described. 

In a study region, lattice processes are observed at  regular grids whereas 

point, processes can be observed anywhere. In order to account for discrepan- 

cies t,hat. might a,rise due to this, methods to discretise the point pattern are 

suggested. Cross-spectral techniques are then applied t,o analyse the joirit 

process of the ciiscretised point pattern and the lattice pattern. 

Finally, we apply the techniques suggested above to study the joint prop- 

erties of two data sets. The first consists of altitude data of a region in a 

rain forest in French Guyana together with the locations of a number of tree 

species in that region. The second set consists of altitude data of the Sahel 

region of Africa t,ogether with location of storms and some of their charac- 

t,erist,ics. In order to incorporat,e the storm characteristics in the analysis, 

cross-spectral tools used to analyse two components are extended to three 

components. 
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Preface 

The relationship between a spatial point process and a lattice process is 

explored in this study using t,wo-dimensional cross-spectral techniques. 

In Chapter 1, we review techniques used to study the individual processes. 

First- and second-order properties in the spatial and frequency domain for 

both processes are studied. Estimates and distributional properties of the 

auto-spectral functions, which represent the frequency domain statistics, are 

discussed. The estimate of the auto-spectrum, the periodogram, is known 

not to bc consistent. To overcome this undesirable property smoothing tech- 

niques are used. Completely spatially random models and possible alterna- 

tives arc examined. A test for complete spatial randomness based on the 

maximum periodogram ordinate is also reviewed. A number of simulated 

examples are provided. 

A hj-brid proccss consisting of two components, a spatial point process 

and a lattice process, is introduced in Chapter 2.  We refer to this hybrid 

process as a spatial point-lattice process. Second-order properties in the spa- 

tial and frequency domains are proposed for this hybrid process. By analogy 

with multivariate time series, see Priest,ley (1981a), and spatial bivariate 

point, processes, see Mugglestone and Renshaw (1996b), estimates in the frc- 

qucncy domain, known as cross-spectra, are suggested. These estimates are 

based on the discrete Fourier transforms of both components. A completely 

spatially random point-lattice process is then introduced. Methods to simu- 

late associated spatial point-lattice processes are also given. Cross-spectral 
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tecliriiques are then applied to investigate the relationships between the two 

components of simulated examples. 

Several statistics are usually investigated under the flag of cross-spectral 

analysis. A statistic that is of interest is the slope of the phase spectrum 

which measures the magnitude and direction of the shift (if it exists) between 

the two components. However, in most cases the phase spectrum contains 

several jumps due to the restriction that its values should belong to the in- 

terval ( - T ,  n ) .  A method which extends the one-dimensional adjustment for 

the phase spectrum of multivariate time series is provided in Chapter 3. Fur- 

thermore, methods to calculate the slope of the phase spectrum are supplied. 

These techniques are then applied to find the slopes of the phase spectra for 

sonic of the  examples of Chapter 2 .  

Asymptotic properties of t,he spectral estimates are derived in Chapter 4. 

In addition, confidence intervals for these estimates are established. A test for 

the independence between the two components is given. The test is based on 

the coherency spectrum and extends the zero coherency test of multivariate 

time series. Corifidence intervals and the zero test for some of the examples 

in  Chapter 2 are also calculated. 

In Chapter 5, we investigate a number of methods to discretise the point 

pattern. This discretisation is suggested in order to account for artefacts that 

might arise because lattice processes are observed at  regular grids whereas 

events of point processes eau be observed at any location in a region. Cross- 

spectral techniques are then used to study the correlation between the dis- 

cretised point pattern and the lattice pattern. This approach is then used 

for some of the examples of' Chapter 2. 

.. 
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Chapters 6 and 7 use the suggested cross-spectral techniques to explore 

the relationships between the componenk of t,wo data sets. The first data set, 

the subject of Chapter 6, consists of altitude data of a region in a rain forest 

in French Guyana together with the locations of a number of tree species 

in t,hat region. In this chapter, we study in detail the relationship between 

the altitude data and four of the species. The analyses for the other species 

versus altitude are provided in Appendix D. The second data set, which is 

presented in Chapter 7, consists of altitude data of the Sahel region of Africa 

together wit.h the locations of storms and some of their characteristics. To 

incorporate the st,orm charact,eristics in our study we extend cross-spectral 

techniques of two components to three components. 

General conclusions and suggestions for further research in this area are 

supplied in Chapter 8. Some appendices are also supplied. 

The compuhtions for this thesis were carried out using predominantly 

my own computer code written for the Splus statistical package and some 

locally availablc libraries mmspatial and wanddensity. 

... 
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Chapter 1 

Point and Lattice Processes: A 
Summary 

In this chapter, we give a summary of' point and lattice processes and their 

properties. In Section 1.1, a brief introduction to point and lattice processes 

is given. Spat,ial domain properties of these processes are discussed in Sec- 

tions 1.2 and 1.3, while frequency domain properties are examined in Section 

1.4. The special case of isotropy is reviewed in Section 1.5. The spectral es- 

tiIriat,es for point and lattice processes and their distributional properties are 

studied in Sections 1.6 and 1.7. Smoothing techniques for spectral estimates 

are investigakd in Section 1.8. Models for point and lattice processes are 

discussed in Sections 1.9, 1.10 and 1.11. A formal test based on maximum 

periodogram ordinates is reviewed in Section 1.12. Examples to illustrate 

the use of spectral estimates are provided in Section 1.13. 

1.1 Spatial Data: Introduction 

111 this section, we review basic definitions and terminology used for spatial 

point and latt,ice processes. 



A spatial point pattern is a set of locations in the two-dimensional space 

within a given region, where events have occurred of particular interest to the 

researcher, for example locations of oak trees at  Sherwood forest. We refer 

to these locations as events and to the region of interest as the study region. 

The process that generates the point pattern is known as the point process. 

Several methods are used t o  analyse the spread of events in the study region, 

including the following. 

Distance methods are based oil summaries of distances between either 

a pair of events or an event and an arbitrary point in the study region. 

These distances can be used to detect clustering or inhibition of a point 

pattern. They are discussed by marly authors such as Ripley (1981, 

chapter S), Diggle (1953, chapter 5) and Upton and Fingleton (1995, 

chapter 2 ) .  

Two-dimensional spectral methods measure spatial periodicities in the 

data. They have been discussed by, for example, Bartlett (1964), 

Ripley (1981), Renshaw and Ford (1983) and Mugglestone and Ren- 

shaw (1996b). These methods are extensions of one-dimensional spec- 

tral methods for point processes (see Bartlett, 1963; Brillinger, 1972; 

Brillinger, 1981). 

.A spatrul lattice puttern is a set of quantitative measurements recorded on 

a regular lattice, for example measurements of soil fertility for a given area 

taken at regular spacings in an agricultural study. In general, these patterns 

arise in planned agricultural trials and in satellite imaging. The process that 

ge1ierat)cs a latticc patkrri is called a lattice process. Analysis of a lattice 

n 





lattice pattern represents the altitude within a subregion of the Grampian 

region of Scotland. The point pattern represents the occurrence of red deer 

within a given grid square. This data set is an extract from data collected 

by the Red Deer Commission. It has been analysed by Buckland and Elston 

(1993) and Augustin, Mugglestone and Buckland (1996). So point patterns 

arise if interest is in locations of events. However, lattice patterns relate to 

measurements made at grid sites. 

1.2 First- and Second-Order Properties in the 
Spatial Domain 

Fundamental functions that describe first- and second-order properties of 

point and lattice processes in the spatial domain are reviewed in this section. 

Consider a point process, say X .  The realisation of X is a set of locations 

of events within a study region. The study region is usually denoted by 

Cl. In most cases, 12 is assumed to be a rectangular region [O,e, ]  x [O,!,] ,  

arid in  this study it is assumed that C, and e, are integers. The number of 

events in a region R is denoted by N x ( R ) .  For brevity N,y(R) will usually 

be written as N x .  The locations of events within R will be denoted by 

a. I -  - ( a l j ,  for j = 1,.  . . , N,y. Not,e tha,t vectors will be assumed to be 

row vectors. Furthermore, the process A’ is assumed to  be orderly, that is 

only one event is allowed at any location. The first-order intensity function 

for this process is defined as (see Diggle, 1983), 

Here dNx(a)  = Nx(a+ da) - Nx(a) is the number of events within a small 
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neighbourhood of point a, and Ida( denotes the area of this neighbourhood 

following the notation of Bartlett (1964). Note here that we will subscript 

functions summarising the point process by N rather than by X since first- 

and sPmiid-ordi’r properties are derived in terms of the number of events. 

The auto-covarzance function is defined as 

= A N N ( a 1 , a z )  - A N ( a l ) A d a 2 )  (a1 # a2;al,az E (1.2) 

The function ANN is known a,s the second-order intensity function. Since the 

process is orderly we have Pr[dNx(a) > I] + 0 as Ida/ + 0. Therefore, as 

Ida1 --t 0, E((dNx(a)}’) = Pr[dNx(a) = 11 = E{dNx(a)} = AN(a)Idal, see 

(1.1). Bartlett (1964) includes this term in the complete covariance densitg 

function, .(al, a,), defined as 

where b ( z )  denotes the Dirac delta function, see Section A.2. 

Now consider a lattice process Y = {Yb, for b E Pg”}, where Yb represents 

a measurement made at b. Usually b is taken to belong to  a subset of Zz, 

and measurements made at Yb = Y(bl,b2) are usually associated with the grid 

square [ b l , b l  + 11 x [b,, bz + 11. The term quadrat will usually be used to 

denotc a particular grid square. The first-order moment of a lattice process 

is summarised by the mean p y  = E[Y]. The auto-covariance function of 

a lattice process is given by Yyy(bl, b,) = cov (Yb,,Yb2), In what follows, 

lattiw processes will be corrected for their means. 

5 



1.3 Stationarity 

In general, a process is stationary if all probability statements about the 

process within a finite region 61 C R2 are invariant under translations of that 

region. Stationarity is a fundamental assumption for deriving theoretical 

properties in the frequency domain. Often this assumption is relaxed and 

a weaker requirement is allowed. A process is said to be weakly stationary 

if both the original and translated processes possess the same moments up 

to order k (see Priestley, 1981a). In what follows, second-order s tat ionari ty  

will be assumed, unless ot,herwise stated. For brevity, we will use the term 

stationarity to indicate second-order stationarity. 

For a point process, stationarity implies that the intensity function, AN(a), 

is constant throughout the region and the auto-covariance function depends 

on al and a2 only through their difference, c = al -a2. Therefore, (1.2) and 

(1.3) reduce to the following equations, respectively, 

Statioriarity for a lattice process Y implies that 

E[Y] = py, a constant for all b, 

Var(Yb) = u&, a constant for all b, 

and C o ~ ( y b + ~ , Y b )  = yyy(c).  

However, the assumption that the lattice process is corrected for its mean 

implies that py = 0. Helice, yyy(c) = E[yb+,yb]. 

6 



1.4 Spectral Density Function 

The spectral densi ty  f u n c t i o n  (or spectrum) for a stationary spatial point 

process is defined as the Fourier transform of the complete auto-covariance 

function (see Bartlett, 1964; Mugglestone and Renshaw, 1996a; Mugglestone 

and Rcnshaw, 1996b). Hence, the auto-spectral density function for process 

X at frequency w is given by 

f"(W) = 1 KNN(C)  exp{-iwcT)dc 

= AN + J'yNp,(c) exp{-iwcT}dc for w 6 RZ, (1.5) 

where i = a and xT denotes the transpose of z. The inverse of (1.5) is 

givrn by 

1 
KNN(C)  = - J f p , N ( w )  exp{iwcT}dw 

(2.)* 

Similarly, for a stationary lattice process Y the auto-spectral density func- 

tion is defined by 

(1.6) 
C h y Y Y ( h )  exp{-iwhT} if h E Z', 

f u u ( w )  = J ~ ~ ~ ( h ) e x p { - i w h ~ } d h  if h E Et'. 

It is worth remarking here that the normalised spectral density function 

f vv(w)dw/u? ,  whcre U$ is the variance of the process Y ,  can be interpreted 

as the average of the proportion of the total power  contributed by components 

with frequencies between w and w + dw by analogy with time series analysis 

(ser Priestley, 1981a, chapter 4).  

1.5 Isotropy 

A process is said to be isotropic if the statistical properties of the process 

are invariant under rotations. For stationary and isotropic processes the 
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covariance function depends only on the scalar dishnce between a, and a2, 

namely Ital - a2(( = ( /cl(  = = t. Therefore, the spectral density 

function of a stationary isotropic point process reduces to 

where w = d m  and J o ( z )  = (271)-'S_"irexp{-zzsinu}du. is an un- 

modified Bessel function of the first kind of order zero. Similarly, for a 

stationary isotropic lattice process the spectral function is given by 

1.6 Estimation of Spectral Functions 

1.6.1 Auto-periodogram of a Point Pattern 

Let X = { (a l J ,  a Z j ) ;  j = 1, .  . . , Nx.} denote the set of events within a rect- 

angular study region R = [O;  e,] x [0, e,]. An estimate for the auto-spectral 

funct,ion, the uuto-periodogrurn, is given in terms of the discrete Fourier trans- 

form (DFT) of the co-ordinaks of the point process as 

where w N  = ( W ~ , W ~ ) ~  = (27rp/Nx, 27rqlNx) and p = 0, zkl, k2,. . . ; q = 

0. fl, 1 2 . .  . . . Although in principle F N N ( W N )  can be calculated for all W N  E 
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R2, it is evaluated only at the frequencies (up, u V ) N  defined above, by analogy 

with time series analysis (see Priestley, 1981a, chapter 6). The range of 

frequencies is usually limited by the data analysed. 

If X is a homogeneous Poisson process, see Section 1.9.1 for definition, 

then the bias B ( w N )  of the estimate FNN(WN) is given by Mugglestone (1990) 

i ts  

l 2  B ( W N )  = 2e1e2xk [ . - .  2 
sin( +) sin(%) 

& 2 

This result is an extension of the one-dimensional case which was given by 

Bartlett (1963). A detailed derivation for the one-dimensional case is given 

by Cox and Lewis (1968). Computing the bias term gives 

for wN or one of its components a non-zero multiple of 27r, 
Zt1!2Xg for W N  + 0, (I‘ < 2ele2X& otherwise. 

B ( w N )  = 

Hence, the bias is maximum near zero frequencies. For processes other 

than the Poisson process the bias does not usually have an explicit representa- 

tion such as (1.9). However, it is possible to show that the bias is maximum 

for W N  = 0 (see Cox and Lewis, 1968, chapter 5). To eliminate the bias 

near zero, Bartlet,t (1964) suggests that the co-ordinates be standardised by 

replacing uI3 and aZ3 by ui3 = Nxul , / l l anda~ ,  = Nxaz,/e2. Also, if the 

periodogram values are not standardised they will start to repeat after NX 
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rows and/or columns. Using the above standardisation (1.8) reduces to 

N x  

F , ~ ; N P ,  (11 = C exp{-2.rri(pa;j + ( ~ a ; ~ ) )  
j=1 

j= l  

where (uTj,uzJ) = (%, 2) and w = (wp,wq) E ( * %  , e2 ). Moreover, the 

DFTs of the standardised and original processes are related as follows, 

” 

FN(P> 4) = exP{-2.rri(Pulj/el+ 4 U 2 j / & ) l  
j=1 

= &&x 

Therefore, 

where (wp,wy) = (?,2) and ( w p , , w q , ) ~  = (- Nxel  Zd!x Nxez ) .  Therefore, 

(up, U,) = (U,,, w,,)~. Hence, Bartlett’s standardisation not only eliminates 

the bias near zero but rescalcs the periodogram as well. 



1.6.2 Auto-periodogram of a Lattice Pattern 

For a lattice pattern, Y = {Y(b,,b2), (61 = 0 , .  . . ,e1 - 1; 6 2  = 0, .  . . , Cz - I)}, 

corrected for its mean, the auto-spectral function can be estimated in terms 

of the DFT of t>he process Y by FYY(W)  F Y Y ( W ~ , W ~ )  = F~(p,q)p~(p,q), 

where 

with p = 0 , .  . . , e ,  - 1; q = 0 , .  . . , e2 - 1 and (wP,w,,) defined as before. 

Since qblrb3) is evaluated at integer values only then the highest resolv- 

able frequency, the Nyquist frequency, occurs when p = [e, - 1]/2 and q = 

[e, - 1]/2; here [cl is the greatest integer less than or equal to c. The 

Nyquist frequency arises since we cannot distinguish between exp{ -i(w,bl + 
U & ) }  arid exp{-l([wP + 2kr]b l  + [a, + 2kn]bz)} for integer values (61, b z ) .  

Hence, frequencies out,side t,he range 1 = (-n,r) x (-T,T) are aliased to 

those inside 1. If the dimensions of the study region are highly compos- 

ite then (1.11) can be estimated efficiently using the fast Fourier transform 

(FFT), see Brigham (1988, chapters 8 and 11) for more details. 

The periodograni is estimated in terms of the DFT of the process it- 

self rather than its auto-covariance function. However, it  can he established 

that t,he two procedures are equivalent. The equivalence in the time series 

case is established by Priestley (1981a, chapter 6). In fact, calculating the 

periodogram directly from the DFT of the lattice process minimises diffi- 

culties such as round-off errors that might arise when computing the peri- 

odogram from the auto-covariance function. The latter approach would re- 

11 



quire calculating the auto-covariance function first and then taking its DFT 

(see Renshaw and Ford, 1983). 

1.6.3 Symmetry of Periodograms 

All the periodograms that have been studied exhibit a kind of symrnet,ry. For 

both point and lattice processes, we have 

where s = N or Y .  Moreover, for a lattice process 

F ~ ~ ( u ~ , - , , u , )  = F ~ ~ ( u ~ , u e ~ - ~ ) ,  thus, a suitable form in which to out- 

put, the lattice periodogram is a matrix with p = 0 , .  . . , [ e , / 2 ]  and q = 

-[!,/2], . . . , [ ( e ,  - 1)/2] (see Renshaw and Ford, 1983). 

Therefore, one of the frequencies, say p ,  needs only to vary over posi- 

tive values, whereas the other, q ,  varies over both negative and positive val- 

ues. In what follows, periodograms are usually evaluated at, the frequencies 

(U,, U,) = ( 2 ~ p / ! , ,  2nq/e2) for p = 0 , .  . . , [e,/2] and q = - [ ! , / 2 ] ,  . . . , [ ( e ,  - 
11/21, 

1.7 Distributional Properties of Auto-Spectral 
Estimates 

In this section, we summarise the distributional properties for the auto- 

spectral estimates. Sampling properties of point spectra have been studied 

by Bartlett (1964) and Mugglestone (1990), whereas those of lattice spectra 

have been studied by Grenander and Rosenblatt (1957) and Ripley (1981). 
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These results are mainly extensions of the one-dimensional cases. The one- 

dimensional sampling properties of point spectra have been studied by Cox 

and Lewis (1968) and Brillinger (1972), whereas those of time series have 

been studied by Priestley (1981a, chapter 6). Note that the results given 

below hold asymptotically, that is as e , ,  e, and IVx + 00. 
For a stationary point process, X ,  it can be shown that the real,  AN(^, q ) ,  

and imaginary, BN(p,  q ) ,  parts of the DFT of X (defined in (1.8)) are asymp- 

totically distribut.ed as N ( 0 ,  j”(p, q ) / 2 )  for ( p ,  q )  # (0,o).  However, for 

( p ,  q )  = (0,O) we have BN(O, 0) s 0 and AN(O, 0) N N(AN,  f ~ , ~ ( O , 0 ) / 2 ) .  

Here N ( p ,  0’) denotes the normal distribution with mean p and variance U* .  

For a stationary lattice process, Y ,  A y ( p , q )  is distributed as 

where 

( P  = 0 ,  q = -W) 
( P  = e1/2, 4 = 0 )  

if el is odd and e,  is even, 
if e ,  is even and e, is odd, 

if t ,  and e, are odd. 
(1.13) 

Here 4 denotes the empty set. The functions AY and fry  are as defined in 

(1.11) and (1.6), respectively. Furthermore, By has the same distribution as 

Ay except for (wp,wq)  E A in which case By = 0 

In addition, it can he showii that A,(p,q) and A,(p’,q‘) for s = N or I’ 

and ( p :  q )  # (p‘, q‘) are asymptotically independent, and that they are asymp- 

totically independent from B,(p, q )  using orthogonality properties presented 
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in Appendix A. Similarly, B,(p, q )  and B,(p‘, q‘) are asymptotically inde- 

pendent. Therefore, the auto-periodograms for X and Y are, respectively, 

asymptotically distributed as follows. 

w X~ + q x ;  if p = q z 0, 
(1.14) 

otherwise, 

if p = q = 0, 
if (%%) E 4 (1.15) 

where is the Chi-squared distribution with n degrees of freedom. Further- 

more, F,,(w,, wq) and F,,(wL, U$) are asymptotically independent. Thus, for 

almost all frequencies (U,, up), E{F,, (wp, wq)} N fsb(wp, w,) and 

\’ar{Fss(q,, up)} = f,”((w,,wq). So although F,,(w,, wq) is approximately an 

unbiased estimator of fss(wp,uq), it is not a consistent estimator since the 

h i i t  of Var{FAs(w,,wq)} is not zero as e,,!, --t cc when s = Y, and as 

Nx i cc when s = N (see Ripley, 1981, chapter 5). Therefore, F,,(w,,w,) 

must be smoothed so that consistency is achieved. This is discussed further 

in Section 1.8 

1.8 Smoothing Techniques 

Several techniques for smoothing the periodogram are discussed in the liter- 

ature. Most are given for the one-dimensional case but can be easily adapted 

for the two-dimensional case. These techniques can be divided into the fol- 

lowing two categories 

Techniques based on smoothing the covariance function, using lag win- 

dows, then calculating the periodogram 
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Techniques based on calculating the periodogram first, usually using 

the FFT and then averaging the periodogram ordinates to obtain a 

smoothed periodogram. This technique is usually known as smoothing 

the periodogram. 

Chatfield (1981, chapter 7) discusses the comparative merits of three estima- 

tion procedures one of which is based on smoothing the periodogram and the 

ot,hers OII transforming the covariance function. He concludes that with the 

advent of high speed computers and the rediscovery of the FFT smoothing 

the periodogram is being favoured. Moreover, the smoothed periodogram 

has superior theoretical properties to the periodogram calculated using lag 

windows. Discussions of time series smoothing techniques are also found in 

Priestley (1981a, chapter 6) and Diggle (1990, chapter 4). Bartlett (1964) 

suggests, for the case of spatial point patt,ern periodograms, the use of either 

uniform or quadratic weighting for the individual periodogram values. 

In what follows, two techniques for smoothing the different spectral es- 

timates arc discussed. Both are based on smoothing the periodogram ordi- 

nates. The first technique is a modification of the weighted moving average 

technique discussed by Diggle (1990, chapter 4). It has been used by Muggle- 

stone and Renshaw (1996b) for smoothing the spectral estimates of spatial 

point patterns with one and two components. 

Let F* denote either the periodogram F” or F y y .  Assume that F* is 

evaluated for p = Pi,. . . , P2 and q = Q1,,  . . , Q2. Let F be the smoothed 

periodogram where the ordinates of F* and F satisfy the following relation- 
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ship 

(1.16) 

where W ( t , i I j  = W(-2,+1) ,  W(t,j j  = W(1,t)r W(1.J) > - 0 for ( 2 , ~ )  # 0, w(o,oj > 0, 

w ( % , ~ )  2 q z + k , l j ,  w ( ~ , ~ )  2 U J ( , , ~ + ~ )  for I; an integer, and 

Er=-u ' u (~ ,~ )  = 1. Ideally the values of U and U should be chosen to  

attain consistency of the spectral estimate and to keep bias to a minimum. 

In this study, a special case of the weighted moving average technique will 

he used and will be referred to as Method A .  In detail, Met,hod A works as 

follows. 

1. Assume that a periodogram, sap F*, is to be smoothed such that ordi- 

nates are smoothed up to k rows and columns away. 

2. Let U = 1 and U = 1 in (1.16) 

3. Calcu1at)e the periodogram F derived from F* by substituting the fol- 

lowing values for w ( ~ , ~ )  in (1.16): 

1/6 

1/4 

for p # (PI or Pz) and 

for p = (PI or P.)  and 
4 # (&I or Q z )  [Case 11, 

4 = (QI or Q 2 )  [Case 21, 
w(o,oj =2 x / 1/5 otherwise [Case 31, 

W ( 0 , i l )  = y ? d , o )  = q o , o j / 2 ,  

'III(,,~) =O otherwise. 

Case 1 corresponds to a typical ordinate, Case 2 corresponds to a corner 

ordinate and Case 3 corresponds to an edge ordinate (see Figure 1.2 for 
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0 1  2 3 4 5 6 7 8  

WX 

Figure 1.2: A typical periodogram with an illustration of how Method A for smoothing 
works. For each periodogram ordinate, the ordinates involved in the smoothing depend on 
whether t,he ordinate is a corner, edge or typical ordinate. The shaded region represents 
frequencies that are not usually reported. The values at the other frequencies are masked 
to  clarify the figure. 

an illustration). In each case, t,he ordinate being smoothed is weighted 

twice as much as its nearest neighbours that are involved in the smooth- 

ing. 

4. Set F* = 3, 

5. Repeat steps 3 and 4 k - 1 times. 

This transformation is similar t,o that of using a Gaussian kernel with 

bandwidt,h equal to the number of repetitions (see Mugglestone and Renshaw, 

1996b). .An alternative version of Method A uses an enlarged periodogram 

F" rather than F* in step 1. The enlarged periodogram is obtained by 

estimating the periodogram at frequencies outside the range we are interested 

in. This allows equal weights to be used for the range of frequencies we are 
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interested in. 

The second technique, Method B, involves subdividing the data into s, x sy 

disjoint subregions. Each subregion is of the form (a&, (a+l)R,) x (bR,, (b+ 

l)R,) for a = 0, . . . , s ,  - 1 and b = 0 , .  . . , sy - 1 where R, = ! , /s ,  and R, = 

t 2 / , y 7 , .  For each R, x R, subregion the periodogram is then computed. After 

that the periodograrn of the entire data set is derived as the average of the 

periodograms of t,he subregions. In  detail, Method B is as follows. 

Subdivide region into s, x sy disjoint subregions of equal dimensions 

R, x R, where R, and R, are defined above. 

In thc case of a point pattern, transform the point pattern such that 

each subregion is of the form (0, R5) x (0 ,  Ry). 

R xRy . Calculate F*(%;, for a = 1,. . . , s Z ; j  = l , . .  . , sur  where F*(%:, 1s R x R  

the auto-periodogram of the R, x R, subregion. 

Calculate F ( p ,  q )  = Cs;, E,”., F*(%:) R x R ,  ( p ,  q )  for the required range 

of frequencies. 

Method B is an extension of the one-dimensional smoothing technique dis- 

cussed by Brilliriger (1981) and Rigas (1996). Further smoothing can be 

achieved by applying Method A to the output of Method B. 

Figure 1.3 represents a lattice pattern. This pattern is a realisation of a 

cosiue wave on a 32 x 32 lattice that repeats twice in the west-east (WE) 

direction and six times in the south-north (SE) direction plus added noise. 

The noise is generated from the standard normal distribution. 
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Method B; 

a (b) is obtained by smoothing the outcome of (a) using Method A twice; 

a (e) is the result, of suhdividing the study region into 4 x 4 rectangular 

subregions of equal dimension and t,heri applying Method B; 

a (d) is the outcome of smoothing ( e )  using Method A twice. 

The peak frequency in Figure 1.5(a) occurs at  (1 ,3)  = (2/2,6/2), whereas 

the dominant peak in Figure 1.5(c) is in the neighbourhood of the frequency 

(1/2,3/2) = (2/4,6/4). Both of these peaks correspond to the frequency 

(2,6) on the original scale. It can be shown, with the aid of some algebra, 

that F ( p ,  q )  = F*(s,p, syq). In addition, the frequency ranges in Figure 1.5 

are shorter than the range in Figure 1.4. Since the length of the sides of the 

subregions used in generating the periodograms of Figures 1.5(a) and (b) is 

OIIF half of those of the original region, and it is one quarter of those of the 

original region for the periodograms in Figures 1.5(c) and (d). 
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1.9 Complete Spatial Randomness 

In this section, we introduce the notion of complete spatial randomness 

(CSR) for spatial point processes and lattice processes. In addition, the 

theoretical and sampling properties for such processes are described. A spa- 

tial process is said to exhibit CSR if it does not possess any structure. Hence, 

CSR serves as the null hypothesis for testing if a spatial process has no struc- 

ture against the alternative hypothesis that it exhibits some structure. 

1.9.1 The Homogeneous Poisson Process 

X stochastic model for a completely spatially random point process is the 

spatial homogeneous Poisson process (HPP) (see, for example, Diggle, 1983, 

chapter 4). A point process is said to be an HPP if, given Nx(R) = n, the 

events form an independent random sample from the uniform distribution 

on R. .4lternatively, a process is said to be an HPP if, for any finite region 

12, Nx(i2) follows a Poisson distribution with mean XplRl for some Xp > 0. 

Tliercfore, for any two disjoint regions 01, a*, Nx(Rt,) and Nx(R2) are inde- 

pendent. Hence, an HPP is stationary and isotropic (see, for example, Diggle, 

1983; Mugglestone and Renshaw, 1996a). Thus, the first- and second-order 

properties introduced in Section 1.2 reduce to: XN(a) = X p ,  X"(al, az) = 

X;,y" = 0 and f " ( ~ )  = Xp. In practice, X p  is estimated by the ob- 

served intensity, Nx/(RI. However as mentioned before, the co-ordinates of 

t,hc point pattern are standardised before calculating the Fourier transform, 

hence, IRI = 1 and Xp = Nx. 

Furthermore, E{F"(w)} zz X p  = NX implies that the periodogram is 



constant for all frequencies under CSR. The term flat is usually used in this 

case. Hence, departures from flatness in periodogram plots would indicate 

that the process exhibits some structure. In what follows, F” is scaled by 

dividing by N x ,  unless otherwise stated. Therefore, IE{FNN} % 1 for an 

HPP. 

An HPP in the rectangular region f2 = [0, !,]x[O, e,] ,  with a pre-determined 

number of events, can be simulated as follows (see Lewis and Shelder, 1979). 

1. Let n, be the pre-determined number of events. 

2. Generate X 1 ,  X z ,  . . . ,A’;, as independent, uniformly distributed ran- 

dom numbers on [0, !,]. 

3.  Generate k;, Yz, . . . ,I;;, as independent, uniformly distributed random 

numbers on [0, e,]. 

4.  Return (XI, Y,), ( X 2 ,  Y2), . . . , (X;,, Y,) as the co-ordinates of the two- 

dimensional HPP in the rectangle. 

Figure 1.6(a) is a realisation of an HPP with 500 events on a 32 x 32 

rectangular region. Its sample spectra are calculated for the range of fre- 

quencies p = 0,. . . ,16 and q = -16,. . . ,15  as recommended by Muggle- 

stone and Renshaw (1996a). Figure 1.6(b) is the graph of the unsmoothed 

periodogram; whereas Figure 1.6(c) is the smoothed spectrum using Method 

A four times. The smoot,hed periodogram using Method B, where the orig- 

inal region is divided into 2 x 2 subregions of equal dimension, is given in 

Figure 1.6(d). Note here that the frequency range is not reduced despite the 

subdivision of the original region. This is due to the fact that point patterns 
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H P P  

Figure 1.6: (a) A realisation of an HPP; (b) the unsmoothed periodogram of (a); (c) 
smoothed periodogram using hlcthod A four times; and (d) smoothed periodogram using 
hfethod B where the study region is subdivided into 2 x 2 subregions. 
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do riot have a Nyquist frequency as it is tlie case for lattice patterns. As 

expected, the sample spectra of the HPP exhibit no structure. In fact, when 

smoothed the periodogram becomes almost flat and oscillates around one as 

in Figure 1.6(c). 

1.9.2 White Noise 

A lat.t,ice process, {lib}, is said to exhibit CSR if its components are identi- 

cally and independently distributed (IID). Usually the distribution is taken 

to be the normal distribution with zero mean and variance &,,. Such a pro- 

cess is usually known as Gaussian white noise. In this case, it can be shown 

that f,,,,(wp,wq) = D $ ~  for (w,,wq) # 0. Hence, the spectrum of a Gaus- 

sian process is flat. Therefore, U$,, can be estimated by the average value 

of the periodogram ordinates. However, ordinates w E {0, A}, where A is 

as defined in Section 1.7, must be excluded from the average since their 

sampling properties differ from the remaining periodogram ordinates. In 

addition, ordinates F,,y(up, w q )  for p E (0, [f1/2] if el is even} should be ex- 

cluded for q < 0 because they are repeats of ordinates with q > 0. Thus, 

e;.,, = 71-I E, E, F y y ( w p , w q )  where summation is over p = 0 , .  . . , [!,/2] 

and q = -[!,/2], , . . , [(e ,  - 1)/2] but excluding the above ordinates and n is 

the number of ordinates used in the summation. Therefore, the periodogram 

of a Gaussian process, can be scaled by 6$y to have an expected value of 

one. In examples to follow, lattice periodograms will be scaled by +&, unless 

otherwise stated. Thus, departure from flatness will indicate that the pro- 

cess is not Gaussian white noise. Note that the asymptotic results for lattice 

processes, reported in Section 1.7, hold exactly for white noise. Priestley 
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(1981a, chapter 6) gives a detailed derivation of the distributional properties 

for the one-dimensional white noise. 

.4 rralisation of a Gaussian white noise process with mean 10 and standard 

deviation 2 on a 32 x 32 lattice is given in Figure 1.7(a). The unsmoothed pe- 

riotiogram for t,he lattice pattern is presented in Figure 1.7(b). The smoothed 

periodogram using Method A four times is given in Figure 1.7(c). Fig- 

ure 1.7(d) represents the smoothed periodogram using Method B after sub- 

dividing the region into 2 x 2 subregions. The spectral estimates do not 

exhibit ariy particular structure. In addition, the smoothed spectra fluctuate 

around the value one as we would expect for white noise. 

1.10 Models for Point Processes 

.4 number of alternatives to CSR for point processes are discussed briefly in 

this srction. Mugglestone (1990, chapter 4) gives a more detailed description 

of possible alternatives to an HPP and their spectral estimates and provides 

a number of references. 

1.10.1 Modified Thomas Cluster Process 

A modified Thomas cluster process (MTCP) is an isotropic alternative to 

CSR whwe evcnts exhibit a form of aggregation. An MTCP is encountered 

when parent events distributed as an HPP, with intensity Xp, give rise to 

offspring. The number of offspring per parent is generated by a Poisson 

process with mean p,  The distribution of offspring relative to their parents 

follows a symmetric Gaussian distribution, h(a), with variance c?, that is 

h(a) = (2ru2)-I exp{-aaT/(202)}. Note that only the offspring are retained 
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Figure 1.7: (a) A realisation of a white noise process; (b) the unsinoothed periodogram of 
(a); (c) smoothed periodogram using Method A four times; and (d) smoothed periodogram 
using Method B where the study region is subdivided into 2 x 2. 
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in  the final pattern. 

The first- and second-order intensity functions of MTCP are given by: 

XC = Xpp and A,C(t) = A& + Xpp’(4~~’)~~exp{-t’ / (4~’)},  f o r t  > 0. 

Hence, t,lic spectral density function is given by 

An LITCP is simulated as follows. 

1. The n p  parents are determined as a realisation of an HPP, using the 

simulation method of Section 1.9.1. 

2. A sample {no} of size n p  is generated from the Poisson process with 

mean p. The number of offspring per parent is given by nok for k = 

1, .  . . , np. 

3. The co-ordinates of the offspring are determined by displacing those 

of their parents by the vectors ( e l j k ,  e z j k ) ,  j = 1,. . . ,no,  and k = 

1 , .  . . , n p .  Here the { t } ’ ~  are IID variables from the normal distribution 

with zero mean and variance U’. 

1.10.2 Inhibition Processes 

Inhibition processes are alternatives to processes that exhibit CSR in which 

events are regularly spaced. Two types of regularity can be distinguished. 

One type occurs when events are placed deterministically at  a minimum 

distance from each other, for example, on the intersection points of a regular 

grid. The other type occurs when random events are constrained not to lie 

within a minimum distance of each other. An example of the latter type of 
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inhibition models is given by the simple sequential inhibition process (SSIP). 

This model is characterised by its dynamic nature (see below). To simulate 

an SSIP proceed as follows. 

1. Generate the first event uniformly on the given region, R. 

2. Generate a second event uniformly on 62.  Retain the second event only 

if its distance from the first event is greater than a minimum distance, 

d.  

3. Generate a third event, and retairi this event only if it does not lie 

within distance 6 from t,lie previously retained events. 

4. Repeat the procedure of generating and retaining events until the re- 

quired number of events is generated. 

SSIPs are usually parametrised by their packing intensity, 7 = X7r6*/4 where 

X is the intensity of the process. The packing intensity represents the pro- 

portion of the plane covered by non-overlapping discs of diameter 6 (see, for 

example, Digglc, 1983). SSIPs are easily generated, however, their theoretical 

statistical properties are intractable. Hence, sirnulation studies are needed 

to investigate their properties. 

1.10.3 Doubly Stochastic Poisson Processes 

A common feature of the previous two models is the assumption that the 

iutensity of the point process is identical throughout the study region. A 

doubly stochastic Poisson process (DSPP), or Cox process, arises when the 

intensity of a Poisson process varies within the study region. Specifically, 
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we talk of a point process driven by the intensity process {n(a)} where 

ll is a continuous stochastic process. The intensity process is usually as- 

sunied to  be a second-order stationary process. In this case, conditional on 

n we have E(dNx(a)) = E(ll(a))ldal = AIlldal and E(dNx(a)dNx(a’)) = 

E(n(a)II(a’))jdailda’I = (A; + yn(a - a‘))ldal/da’/. Here An is the expected 

value of the process II and yn is its auto-covariance function. Therefore, the 

auto-covariance function of the point process is given by 

Thus, the complete covariance function of the process is 

The spectral density function of the point process is 

f ” ( W )  = 1 X;”(”) exp( -iwvT)dv = A n  + 1 -y”(V) exp( - i W V T } d V .  

Bartlett (1964) has shown that the characteristic function of such a pro- 

cess is equivalent to that of an MTCP if n(a) = s h(a - s )dM(s)  where M 

is another Poisson process and h is a bivariate distribution function. Despite 

tlic formal equivalence between MTCPs and DSPPs they play different roles. 

An MTCP rcflects the belief that events of the point process tend to form 

clusters. A DSPP indicates that the point process is heterogeneous, in the 
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sense that the point process has a variable intensity as opposed to a constant 

intensity. 

In this section, different models for point processes were introduced. 

These models serve as a benchmark when analysing real data sets. In ad- 

dition, they are used in simulations of hybrid processes t,hat arc discussed 

in the next chapter. Models for lattice processes are introduced in the next 

section 

1.11 Models for Lattice Processes 

Two major approaches arc used to model lattice processes. One is based 

on the simultaneous specification of the lattice process and the other on 

conditioning. Cressie (1991, chapter 6) gives a detailed survey of these models 

with special attention to conditionally specified models. Simultaneous and 

conditional spatial autoregressive Gaussian (SARG and CARG) models are 

also discussed by Ripley (1981, chapter 5).  Following Ripley's approach 

S.4RG and CARG models are defined by matrices S and C, respectively. 

The diagonals of both matrices are assumed to be identically zero. 

Let the lattice process Y = { q b , , b 2 ) ,  ( b ,  = 0 , .  . . , t1-1; b2 = 0 , .  . . , !~-1)} 

be indexed by k = 0 , .  . . , - 1 where I ' jb l ,ba)  = Y k  and k = bl + t l b 2 .  A 

SARG model is defined by Yk = p k  + CL Skl(x  - pl) + t k  where ck  are IID 

normal variables with zero mean and variance U'; ( I - S )  is non-singular and I 

is the identity matrix. It can be shown that Y - N ( p ,  D * ( I - S ) - ' ( I - S ~ ) - ' )  

where Y = (6,. . . , and ,U = (PO,. . . , / l ~ , e ~ - ~ ) ~ .  

A CARG model arises if the conditional distribution at a site given all 

the other sites is Gaussian. Then, Y - N ( p , u 2 ( 1 -  C)- ' ) ,  @(YkII(,k # 1 )  = 
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pk + c, Ckl(x  - p c l )  and Var(Yklx, k # 1 )  = U* where ( I  - C) is symmetric 

and strictly positive definite (see, for details, Cressie, 1991). Ripley gives a 

number of schemes to construct such models. We mention here two particular 

examples. 

The first example is generat,ed by setting S k ,  to be non-zero only if sites 

k arid 2 are nearest neighbours and by setting p = 0. This results in 

Bartlett (1975, chapter 2) shows that the spectral density function of the 

model in (1.17) is proportional to [l - 2,$cos(w,) - 2/33cos(wq)]-* for the 

case where = p2 and 03 = /?4. 

The second example is generated by setting the entries of C to be non-zero 

only for nearest neighbours. This yields the following model 

Bartlet,t (1975, chapter 2) has also shown that the spectral density function of 

(1.18) is proportional to [ 1 - 2 ~ c o s ( w , ) - 2 p ’ c o s ( w , ) ] ~ ’  where 8 = i(,&+fil) 
and ,O’ = i(p, + p 4 )  

.4 different type of model is provided via 

n 

qL. , , b2 )  E Y b  Z Al cos(ulbT + 41) + tb. (1.19) 
1=1 

Here Al, WI and n are constants; {&} are IID uniform on ( -T ,T )  and in- 

dependent from t where E is defined as before. It is easily proved, using 

orthogonality relations presented in Appendix A, that the spectral density 
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function for such processes is discrete with non-zero positive values at the 

ordinates wl ,  1 = 1, .  . . , n. Models generated by (1.19) are usually studied 

duc to their simplicity and to demonstrate the potential of spectral analysis. 

1.12 Test for CSR based on the Maximum 
Periodogram Ordinate 

In this section, a formal test of CSR for both point processes and lattice 

processes is described. It is an adaptation of the test introduced by Fisher 

(1929) which is based on the maximum periodogram ordinate of a time series. 

The test dcveloped hy Fisher (1929) is summarised as follows. Consider 

the time series { X , }  for t = 1, .  . . , N and suppose that this series can be 

modelled as 

J 

Xt = CAj cos(u,t + d j )  + e t ,  (1.20) 
j=l 

where J ,  Aj, w j ,  j = 1, .  . . , J are constants arid the { d j }  are IID uniform 

variables on ( - T , T ) .  The { e t }  are IID N ( 0 , u 2 )  and are independent of the 

{4,,>. 
Fisher (1929) derived the exact distribution for the maximum periodogram 

ordinate (for the case N odd) based on the statistic 

which is known as Fisher's g-statistic. Here, the {Fp}'s are the periodogram 

ordimtes associated with the time series {X;}, and { p } ' s  are integers that 

index frequencies where the periodogram is evaluated. Under the null hy- 

pothesis that the time series is Gaussian white noise (that is it contains no 
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harmonics or equivalently all the Ai's are zero) Fisher (1929) found that 

where n = [ N / 2 ] .  

However, under the null hypothesis the periodogram ordinates when stan- 

dardised by u2/2 can be seen to be independently distributed as xg (see 

Priestley, 1981a, chapter 6). Therefore, for any t non-negative 

Since a xi is equivalent to an exponential distribution with mean two. In 

practice, the variance is usually unknown but under the null hypothesis 

E(F,) = U'. Thus, an unbiased estimate of the variance is given by 

where 71 is as above. If one can ignore sampling fluctuations as the sample 

size increases then asymptotically 

Therefore, 

Pr(2ng > t )  N 1 - (1 - exp{-t/2})n. (1.22) 

The right hand side of (1.22) is approximately equal to the first term of 

Fisher's test. 

To test for the null hypothesis against the alternative hypothesis that the 

process contains a sinusoidal component (that is one of the Aj's is not zero) 
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the following steps are carried out. Let a (0 < cy < 1) be the chosen level of 

significance, choose z,  such that Pr (212.g > 2,) = cy then compare 2ng with 

z, .  If 2ng > z ,  conclude that the series contains a harmonic component. 

If the first periodogram ordinate is found to be significant then Whittle 

(1952) suggests that Fisher’s test can he used to test the second maximum 

periodogram ordinate. This is done by removing the maximum ordinate 

then procceding as before. The same procedure is repeated until no more 

significant ordinates are detected. 

Fisher’s test ran be adapted to the lattice process case. This is achieved by 

extending (1.20) to two dimensions and noting that under the null hypothesis 

of CSR the standardised periodogram ordinates have similar distributions to 

those in the one-dimensional case, see Section 1.7. 

Next, Mugglestone and Renshaw (2000) note the similarity between the 

distribution of the periodogram ordinates under the null hypotheses of Gaus- 

sian white noise and of an HPP, see Section 1.7. Thus, (1.21) can be used to 

test for the maximum periodogram ordinate of a spatial point pattern, since 

2F”/X - x; and X = Nx, see Section 1.9.1. Here X is the intensity of the 

process and N x  is the nuniber of events of the pattern. Thus e2 is replaced 

by Nx in (1.21). In addition, Mugglestorie and Rerishaw (2000) remark that 

conditional on the intensity of t,he point process the test based on (1.22) is 

exact under t,he null hypothesis of CSR. They also note that a two-tailed test 

is required for point processes, since periodograms for cluster processes tend 

to have high values at low frequencies whereas inhibition processes tend to 

have low values at  low frequencies. 
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1.13 Interpretation of Sample Auto-Spectra 

In this section, we will give a brief interpretation of what spectral functions 

measure. In general, the ( p ,  q)fh element of the periodograrn represents the 

extent to which the covariarice of the pattern is explained by the cosine wave 

cos(27r(palj/tl + qaZj/!!Z)), where el and e2 are the dimensions of the study 

region. Geometrically, this frequency det,ermines a vector that is perpendic- 

ular to  the waves (see R a p e r ,  1971, chapter 9). This vector which is drawn 

from the origin is defined by its angle from the x-axis, 8 = tan-' (g) , and 

its length, k = J($ + ($  
1.13.1 Point Spectrum 

In the case of point processes, possible uses of the auto-periodogram are 

to detect departures from CSR, to explore whether certain features exist in 

the dath, arid to  identify what possible processes might have generated the 

study pattern. Thus, the sample spectrum provides a guide to determine the 

underlying point process. As mentioned in Section 1.9.1, for a point process 

t,hat exhibits CSR the auto-periodogram is flat. A peak at low frequencies 

indicates that the process resembles an aggregated point process. However, a 

peak at  high frequencies iiidicates that the process is an inhibited process. For 

a detailed discussion of these issues see Mugglestone and Renshaw (1996a). 

Figure 1.8 represents realisations of two point processes and their sample 

spectra. The point pattern in Figure 1.8(a) is generated from an MTCP on 

a 32 x 32 rectangular region. The parameters used to generate this point 

pattern are: np = 100,p = 8, and U = 0.5, where n p  is the number of 
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parents, p (labelled as nc on graph) is the mean number of children per 

parent, and o (labelled as sd on graph) is the parameter that controls the 

displacement of children with respect to their parents. Both the raw and 

smoothed periodograms are characterised by a concentration of power at low 

frequencies, see Figures 1.8(b) and (e). 

Figure 1.8(d) represents the point pattern of an SSIP generated on the 

uuit square with 100 events and a minimum distance 0.08. Thus, the packing 

intensity for this process is a,pproximately 0.5. The sample spectra for this 

point process, Figures 1.8(e) and ( f ) ,  exhibit low values for low frequencies 

and high values for high frequencies. 

Using the two-sided test of Section 1.12, the significance of the peaks 

detected in Figure 1.8 is given in Figures 1.9(a) and (b) for the clustered 

and inhibited patterns, respectively. In Figure 1.9 the absolute value of 

each pixel represents whether the corresponding periodogram ordinate was 

found t,o be significant at  the level indicated. The levels considered here are 

I%, 5% and 10%. The sigil represents whether the significant values were 

detected in the upper or lower tails of the maximum periodogram ordinate 

distribut,ion mit,h the positive sign corresponding to  the upper tail. For the 

clustered pattern all t,he significant peaks were detected in the upper tail, 

whereas for the inhibition pattern they were detected in the lower tail. For 

relatively low frequencies the clustered pattern exhibits significant values at  

the 1% level, whereas the inhibited pattern exhibits significant values at the 

10% level. 

Note here that the range of frequencies in the realisation of the SSIP has 

been reduced to a smaller range than the typical range for point patterns 
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Figure 1.8: (a) A realisation of an MTCP, (b) and (c) unsmoothed and smoothed 
periodograms of (a); (d) a realisation of an SSIP, (e) and ( f )  unsmoothed and smoothed 
periodograms of (d). 
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significant ordinate at  the 1% level. Note that this frequency is the only 

dominant peak in the periodogram. Hence, one concludes that the lattice 

process repeats twice in the WE direction and six times in the SN direction. 

1.14 Summary 

In this chapter, the basic notions and properties of spatial point processes 

and lattice processes in the spectral domain were described. The asymptotic 

distributional properties of the sample spectral estimate, the periodogram, 

were discussed. The periodogram was shown to be an unbiased estimator 

of the spectral density function but not a consistent one. Thus, smoothing 

techniques had to be used to attain consistency. 

Having established t,he necessary tools for spectral analysis, models for 

CSR and possible alternatives were reviewed. For some of these models the 

theoretical spectral density functions were reported. In addition, algorithms 

for simulating such models were provided. 

A formal test for detecting departures from CSR was then discussed. 

This test is based on the maximum periodogram ordinate. Examples were 

also provided to illustrate the potential of spectral estimates as a tool for 

exploratory analysis of spatial patterns. 

In the following chapter, a hybrid process consisting of a point process 

and a lattice process will be introduced. Spectral analysis techniques will be 

used to detect patterns for such hybrid processes. 
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Chapter 2 

Point-Lat t ice Processes: 
Definitions and Spectral 
Estimates 

In the previous chapter, point and lattice processes were studied as indi- 

vidual processes. In this chapter, a hybrid of the two processes, termed 

a point-lattice process, is introduced. Point-lattice processes are defined in 

Section 2.1. In Section 2 . 2 ,  we discuss propert,ies of point-lattice processes 

both in the spatial domain and in the frequency domain. Cross-spectral es- 

timat,es for these processes are introduced in Section 2.3.  In Section 2.4 the 

notion of CSR for point-lattice process is considered. Methods for simulating 

point-lattice processes and simulated examples are provided in Section 2.5. 

2.1 Point-Lattice Processes 

.4 spatial point-lattice process is a process with two components: a point 

process, X ,  arid a lattice process, Y. A realisation of a spatial point--lattice 

process is called a spatial point- lattice pattern. The region where the point 

pattern is observed usually coincides with the rectangular region where the 
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lattice measurements are recorded. Examples of such processes include mea- 

surements made on a regular grid in a study region, such as planned agricul- 

tural t,rials, together with events occurring in the same region, such as the 

growth of a certain species. 

To study point-lattice processes we need to explore relationships between 

their components. Analyses of such spatial processes have been carried out 

mainly in the parametric domain by considering the lattice process as an 

explanatory variable in the model used for occurrence of events (see, for 

example, Buckland and Elston, 1993; Augustin, Mugglestone and Buckland, 

1996). In this st,udy, a non-parametric approach based on two-dimensional 

cross-spectral analysis will be used. However, spectral analysis can be used 

t,o identify parameters in a given model. 

The cross-spectral analysis approach used in this study is analogous to 

the analysis carried out by Mugglestone and Renshaw (1996b) to investigate 

properties of a bivariate point process (a process with two components where 

each component is a point, process). Two-dimensional cross-spectral analysis 

for point-lattice processes i s  an extension of the cross-spectral analysis used 

for one-dimensional hybrid processes: a one-dimensional hybrid process is 

a process with two components where one component is a one-dimensional 

point process and the other is a time series (see Rigas, 1983; Brillinger, 1994). 

Examples of point-lattice patterns are given in Figure 2.1. Figure 2.l(a) 

represents occurrence of deer together with altitude within a subregion of the 

Grampian region of Scotland. Figure 2.l(b) represents occurrence of the tree 

species Iryuntheru sagotiana together with altitude within a tropical forest 

of French Guyana. The latter data set was supplied by Michel Goulard of 
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to study the relationship between the two components we define the cross- 

covariance function of a point-lattice process as 

for b,b’ E R2. 

TY,v(b‘, b) by definition. 

Similarly, we can define yyN(b’,b), where YNY(brb‘) = 

2.2.2 Stationarity 

As discussed in Chapter 1, stationarity is a fundamental assumption for de- 

riving theoretical properties in the frequency domain. In what follows, we will 

define second-order stationarity for point-lattice processes. A point-lattice 

process is said to be stationary if both component processes are individually 

and jointly stationary. Hence, (2.1) reduces to 

? ~ ~ ( b , b ’ )  = - b‘) = y N Y ( a )  

since Y is corrected for its mean. Furthermore, stationarity implies that 

Y N Y ( 4  = Y Y N ( - a ) .  

2.2.3 The Cross-Spectral Density Function 

The cross-spectral density funct,ion (or spectrum) for a stationary spatial 

point-lattice process is defined as the Fourier transform of the cross-covariance 

function, by analogy with point and lattice processes. In principle, for a 

45 



point-lattice process two cross-spectra f ~ y  and f y ~  should be used to in- 

vestigate the correlation between the two components. However, in the case 

of stationarity it is sufficient to consider only one cross-spectrum, say f N y .  

The function f ~ y  at frequency w = (wZ,  U,) is defined by 

f ~ Y ( u )  = (2X)'gNY(w) = yNy(a) exp{-iwaT}da. (2.3) I 
The function ~JNY is defined in (2.3) because some authors use it as the cross- 

spectral function rat,her than f ~ y .  Moreover, gNy will be used in Chapter 4 

to derive asyniptot,ic properties of the cross-spectral function. The function 

f , , ~ ,  can be defined by analogy with f ~ y .  Further, f y ~ ( w )  = ~ N Y ( - w )  

since yN,-(a) = yyN(-a) for a stationary point-lattice process. In general, 

yNY(a) # TNy(-a).  Thus, fNy will usually be a complex number. 

By analogy with bivariate time series analysis, fivy is decomposed into 

its real and imaginary parts as follows 

fNy(w) = yNy(a) exp{-iwa'}da I 
= .f TNy(a) cos{waT}da - i yNy(a) sin{waT}da 

(2.4) 

.f 
3 cNY(w) - i q N Y ( w ) ,  

see Jenkins and Donald (1968, chapters 8 and 9), Rayner (1971, chapters 8 

and 9), Priestley (1981b, chapter 9), Chatfield (1981, chapter 8), and Diggle 

(1990, chapter 8). The function c ~ y ( w )  is known as the co-spectrum and 

9 ~ y ( w )  is known as the gUadTUtUTe spectrum. Alternatively, fNY can be 

represented in terms of its amplitude ( Y N ~  (known as the amplitude spectrum) 

and phase $,VI, (known as the phase ~ p e c t r ~ ~ i ) .  Hence, from (2.4) 

fNY(W)  = d-iexp { 2 tan-'(-9Nu(w)/cNy(w))} 

QNY(W) e x p { i h y ( w ) l .  (2.5) 
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In addition to the above spectra, the squared coherency and gain spectra are 

defiued by aiialogy with bivariate time series respectively as: 

It can be sliow~i that the squared coherency spectrum satisfies the inequality 

0 5 UNY(W) 5 1 by using the Cauchy-Schwartz inequality, for any two 

processes Y and Z we have [E(YZ)] '  5 [E(Y)]'[E(Z)]'  

2.2.4 Isotropy 

For a stationary, isotropic (isotropy being defined in t,he same sense as 

isotropic point and lattice processes) point-lattice process the spectrum de- 

fined in (2.3) reduces to 

f N Y ( W )  = f N Y ( W )  = 277 t y N Y ( t ) J o ( t w ) d t ,  LW 
where w = d m  and Jo(z) is an un-modified Brssel function of the first 

kirid of order zero, defined in Section 1.5. In this case, f ~ y ( w )  is a real 

nuruber which irnplies that 

2.3 Estimation of Cross-Spectral Functions 

Consider a point-lattice pattern with components X and Y observed on a 

study region [0, el] x [ 0 , 4 ]  where X denotes the point pattern and Y denotes 
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the lattice pattern. It is also assumed that Y is corrected for its mean. 

Define the class-periodogrum of the pattern as F ~ y ( p ,  q )  = F N ( ~ ,  q ) F y ( p ,  q )  

where FN(prq) and Fy(p ,q )  are as defined in (1.10) and (l.ll), respectively. 

Therefore, 

xliere C N y  and QNY are estimates of the CO- and quadrature spectra defined 

in (2.4), respectively. Similarly, estimates of the amplitude ( A N Y ) ,  phase 

squared coherency (TNy), and gain ( E N I Y ,  2 ~ 1 ~ )  spectra defined in 

Section 2 . 2 . 3  can be derived by substituting the estimates of the CO- and 

quadrature spectra in (2.5) to (2.8). If the raw estimates of the CO- and 

quadrature spectra are substituted in (2.6) then T N Y  will be equal to  one 

at all frequencies. Therefore, to  obtain a useful estimate for the squared 

coherency one or more of the auto-, CO- and quadrature spectra must he 

smoothed (see, for example, Priestley, 1981b). 
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2.3.1 Symmetry 

The estimates of the cross-spectral funct,ions are symmetric in the following 

sense: 

Therefore, one of the frequencies, say p ,  is needed only to vary over positive 

values and the other, say q, varies over both negative and positive values, 

as in the one-component case. In what follows, both the auto- and cross- 

periodograms arc evaluated at the frequencies ( w p ,  U,) where p = 0, . . . , [t1/2] 

arid q = -[!2/2], . . . , [(e, - 1)/2]. It is worth noting here that wp and w, will 

be used interchangeably, similarly up and wZI. 

2.3.2 Smoothing and Scaling 

IL was mentioned above that we need to smooth the cross-periodograms to 

obtain a meaningful estimate for the squared coherency spectrum. In exam- 

ples to follow the auto-, CO- and quadrature periodograms will be smoothed 

according to one of t,he techniqucs discussed in Section 1.8. On substituting 

these estimates in (2.5) to (2.8) the smoothed estimates of amplitude, phase, 

squared coherency, and gain periodograms are obtained. 

Furthermore, in Chapter 1 we mentioned that the point and lattice pe- 

riodograms are scaled such that in the case of CSR the expected values 

of the estimated auto-spectra are equal to one. The cross-spectra esti- 

mates will be scaled similarly. The scaled CO- and quadrature spectra are 

49 



defined as E = C N Y / d m  and = Qp~yJd-. Calculating 

the amplitude and gain spectra after scaling the CO- and quadrature peri- 

odograms yields 2 = A N y / d m ,  5~11, = Z N ~ Y / ~ - ,  and G Y [ N  = 

EYJN/,/-. However, the phase and squared coherency are not affected 

by scaling because the same scaling factor appears in the numerator and de- 

nominator of the formulae defining these spectra. 

0 - 

2.3.3 Interpretation of Sample Cross-Spectra 

In this section, a brief description of what the different cross spectra measure 

is given. The following terminology is in accordance with Priestley (1981b, 

chapter 9) and is based on the result that stationary processes possess spec- 

tral representations. 

The co-spectrum, C,,, represents the covariance between the coefficients 

of the in-phase components of the two patterns. The quadrature spectrum, 

Q N y ,  represents the covariance between the coefficients of the out-of-phase 

cornponeuts. The amplitude spectrum measures the relative value of the 

power at  the frequency w in the components X and Y .  The squared co- 

herency spectrum measures the square of the linear correlation between the 

components of the point-lattice process at frequency W .  Moreover, the closer 

the square root of this value is to unity the stronger the relationship between 

the two processes is at frequency W .  Gain spectra are used mainly when one 

suspects there is a causal relationship between the components of a point- 

lattice process. So Z N l y ( u )  represents the regression coefficient at  frequency 

w in the linear regression of Nx on Y .  An equivalent interpretation holds for 

Z y p ( w ) .  The phase spectrum represents the mean value of the phase shift 
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between the components X arid Y at frequency w ,  in the sense described 

by Priestley (1981b), assuming that the phase and amplitude of the spectral 

representations for each process are independent random variables. 

To demonstrate explicitly what the phase spectrum measures a lattice- 

lattice process is considered. A lattice-lattice process is a process in which the 

two components are lattice processes; more details are provided in Chapter 5. 

Suppose that one of the components is a linear transformation of the other 

component with a shift and added noise, denoted by say Yb = U X b - d  + Eb 

where d is the shift between the two processes. It can be proved that the 

phase spectrum for this model is a linear function of frequency and that its 

slope in a specified direction is the magnitude of the shift in that direction. 

Figure 2.2(a) is the lattice pattern, X ,  of Figure 1.3. Figure 2.2(b) is 

the lattice pattern X shifted to the east by d = (d , ,d2)  = ( 1 , O ) .  Denote the 

shifted process by Y .  Figures 2.2(c), (d), and (e) represent the estimated CO-, 

quadrature, and amplitude spectra, respectively, of the lattice-lattice pattern 

presented in Figures 2.2(a,) and (b). The co-spectrum exhibits a positive peak 

at  t,hr frequency (2,6) indicating that the in-phase components are positively 

correlated. The quadrature spectrum exhibits a trough at  this frequency; this 

indicates that, the components are out of phase. The amplitude spectrum 

has also a peak at  this frequency, thus, confirming that the two processes 

are correlated. However, whether they are positively or negatively correlated 

cannot be detected from the amplitude spectrum; one needs to refer to the 

co-spectrum. 

Figure 2.2(f)  is the estimated phase spectrum. From this graph one can 

deduce that the phase spectrum is a linear function of frequency. Further- 
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more, one can deduce that the two patterns are in phase in the SN direction 

and that there exists a phase shift in the WE direction. The value of this 

phase shift can be calculated from the slope of Figure 2.2(f). For example, 

for the bandwidth q = 0, p = 1, . . . , 15 the periodogram values increase from 

=n to %T arid since U, = up = 27rp/!l then dl = -E+ = 1. Therefore, 

we can deduce empirically from the phase spectrum that the second lattice, 

Y ,  is to the east of the first, X, by one unit. 

(937--62)n 
62 

32 

Figures 2.2(g), (h), and (i) represent the estimated squared coherency and 

gain spectra. These estimates fluctuate around one implying that the two 

processes are linearly correlated at  all frequencies. Since the two components 

are linear trarisformations of each other then the gain spectra and the squared 

coherency must be identically equal to one. 
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2.4 CSR for a Point-Lattice Process 

As in the case of a single component a model that would serve as a null 

hypothesis for point-lattice processes is needed. Therefore, CSR for a point- 

lattice process has to be specified. A stochastic model that serves this pur- 

pose is given by the point-lattice process where the two components are 

independent and component X is an HPP whilst component Y is Gaus- 

sian whit,e noise. Thus, YNY = 0 where Y N Y  is defined in (2.2). Therefore, 

f N Y ( w )  = O for all W .  Consequently, cNY(w) = 0 ,  Q N Y ( w )  = 0, C Y N Y ( W )  = 

0, ~ N Y ( W )  = 0, < N I Y ( W )  = 0, and < Y ~ N ( w )  = 0. 

It might seem that $ N ~ ( w )  is indeterminate but it can be shown that it 

is uniformly distributed over the range (-7r/2,7r/2) (see Jenkins and Donald, 

1968, chapter 8). The above results hold for any point-lattice process where 

t,he two components are not correlated. Hence, departures from flatness 

in any of the cross-spectral periodogranis except for the phase spectrum 

indicate that the two components are correlated. It is worth noting that the 

phase spectrum is defined (mod 27r). However, @ N Y ( W )  is usually taken to 

belong to the interval ( - 7 r , 7 r ) .  Restricting @ N ~ ( w )  to this interval leads to 

discontinuities in the phase spectrum. 

Figure 2.3 is a realisation of a point-lattice pattern with two independent 

components X and Y ;  X is the realisation of an HPP given in Figure 1.6 and 

Y is the realisation of a white noise process given in Figure 1.7. This pattern 

will be referred to as CSRPLE. Figures 2.4 and 2.5 represent the smoothed 

est,i~nat,es of the aut,o- and cross-spectra of CSRPLE using Method A four 

and eight times, respectively. The auto-spectra are relatively flat and close 
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Figure 2.4: Estimated auto- arid cross-spectra for CSRPLE. Estimates are smoothed 
using Method A four times. 
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Figure 2.5: Estimated auto- arid cross-spectra for CSRPLE. Estimates are smoothed 
using Met,hod A eight times. 
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2.5 Simulating a Point-Lattice Process 

In this section, methods t,o simulate point-lattice processes with associated 

components are introduced. These methods can be divided into two cate- 

gories. One is based on simulating the lattice pattern first while the second 

is based ou simulating the point pattern first. Potential applications of the 

first ca,t,egory can be found in forestry. For example, altitude data that are 

recorded on a lattice might affect the growth of a particular tree species. 

Examples of the second category might be found in agriculture, such as the 

composition of soil nutrients, which can be observed on a regular grid, being 

altered due to the presencc of a certain type of vegetation. 

For each simulation method an artificial point-lattice example is provided. 

These examples illustrate how cross-spectral estimates can be used to study 

thc relat,ionship between the two components of a point-lattice pattern. In 

some of these examples association between the two components is limited 

to a couple of frequencies, whereas in the rest of the examples association is 

sprcad across a wider range of frequencies. These two types of association 

mirror relationships present in real point-lattice patterns. 

2.5.1 Simulating a Point-Lattice Process I 

In this section, we propose three methods for simulating a point pattern given 

a realisation of a lattice process. Two of these methods are based 011 thresh- 

olding the lattice pattern. The first method reflects the belief that the point 

process is thought to have originated from an HPP, but depending on thresh- 

olded values of t,he latt,ice pattern only a subset of the events is ret,ained. For 
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example, seeds spread homogeneously across an agricultural field may not 

all grow due to variability in soil nutrients. Here seeds are potential events 

of a point pattern and soil nutrient measurements form a lattice pattern. 

The second method reflects piecewise homogeneity of the point pattern in 

which the piecewise intcnsity function is obtained by thresholding the lattice 

pattern. In the third method points are thinned according to an intensity 

function that depends on the lattice pattern. 

2.5.1.1 Thresholding 

In this section, the two methods that are based on thresholding the lattice 

pattern are discussed. Given the lattice pattern, the first method which will 

be referred to as THRESA generates the point pattern as follows. 

1. Generate an HPP and let K be the number of events of this pattern. 

2. Retain a point if the value of the lattice quadrat the point belongs to 

is within a pre-determined range. 

3. Let R denote the total number of events retained. If the number of 

events is pre-specified, say N x ,  then set K = Nx - R and repeat steps 

1 and 2 until the required number of events is attained. Otherwise, 

stop. 

Assuming that the lattice pattern is given, the second method involves 

the following st,eps to generate a point pattern. This method will be referred 

to as THRESB. Let k’ be the lattice pattern and let 
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for b1 = 0:. . . , e l  - 1 and b2 = 0 , .  . . , e 2  - 1, be the quadrats determined by 

this lattice. Then the point pattern, X ,  is generated as follows. 

1. Let [A,] denote the matrix generated by tliresholding the lattice pat- 

tern Y. For example, one can set entries of AN to be equal to cor- 

responding entries of the lattice pattern if the lattice entry exceeds a 

given value and set to zero otherwise. Note here that Y is assumed to 

he non-negat,ive. 

2 .  Grnrratr another matrix, [Nx], where individual entries Nx(b1, bz)  are 

sampled from a Poisson process with mean A N ( b 1 ,  b z ) .  

3. In each quadrat, Ab, generat,e an HPP in which the number of events 

is given by Nx (bl  , b,). 

Next, we simulate two artificial examples using THRESA and THRESHB, 

respectively, and study their properties using spectral analysis. 

2.5.1.2 Example 1: THRESACOS 

111 this example, the point and lattice components have simple structures, 

hence, the association between the two is bound to be simple. Figure 2.6 

represents a realisation of a point-lattice process and its spectral estimates 

are provided in Figure 2.7. The lattice pattern, Y, was generated by setting 

where e, = e2 = 64,p = 5, q = 4, bl = a , .  . . , e ,  - 1, b2 = 0 , .  . . ,e, - I ,  and 

c ( b , , b 2 )  are IID random variables from the standard normal distribution. The 

niinirriiim of this realisation was then subtracted to ensure that the lattice 
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direction of the vector with angle 8 to mean that the waves are perpendicular 

to the vector which determines an angle 8 with the axis in the WE direction. 

Using Fisher’s test the peak at (5 ,4)  was found to be the only significant 

peak at the 1%, 5%, and 10% significance levels. 

The peak at  (5,4) in the point auto-periodogram indicates that the pat- 

tern resembles a cluster process. Indeed, events are clustered at large values 

of the lattice pattern. Furthermore, there is a minor peak at (10,8) which 

can be attributed to the fact that the clusters exhibit a pattern of regu- 

larity. This arises because events belonging to different clusters cannot lie 

within a minimal distance from each other by construction of the pattern. 

These two dominant peaks were found to be the only significant ordinates 

at  the 1%, 5%, and 10% significance levels using Fisher’s test for point pro- 

cesses. Better insight about the individual components of the point-lattice 

pattern can be gained by looking at the polar spectra for these processes (see 

Mugglestone, 1990). However, we are interested mainly in the interaction be- 

tween the two coniponents of the point-lattice process rather than studying 

each individually. 

Fignres 2.7(c) and (d) are the raw estimates of the CO- and quadrature 

spectra, respectively. Both spectra exhibit a peak at  the frequency (5,4) .  The 

peak in the co-spectrnm implies that events tend to occur at  large values 

of the lattice pat,tern. Furthermore, the two patterns are out-of-phase as 

indicated by the peak in the quadrature spectrum. This is expected since 

the point pattern component peaks/troughs do not coincide exactly with 

those of the lattice pattern, the point pattern is associated with the upper 

quartile of the lattice pattern. 
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Figure 2.7(e) represents the smoothed amplitude spectrum. Again, the 

peak emphasises the correlation between the two components of the pattern. 

Figure 2.7(f) is the smoothed phase spectrum. The phase spectrum contains 

a number of discontinuities which can be attributed to the fact that the phase 

spectrum is constrained to the interval ( -T ,  T ) .  

The squared coherency spectrum, Figure 2.7(g), exhibits a peak in the 

neighbourhood of the freqnency (5 ,4) .  Hence, the two components are lin- 

early correlated at this frequency. The gain spectrum of the point pattern 

given the lattice pattern presented in Figure 2.7(h) has power at  most fre- 

quencies with a mean of 0.8693 and a median of 0.8309. In contrast, the 

gain spectrum of the lat,tice pattern given the point pattern presented in 

Figure 2.7(i) has its power concentrated at  a peak around the frequency 

(5,4)  and is alrriost zero elsewhere. Thus, given the lattice process, Y ,  one 

can make inferences about the behaviour of the point process, X ,  for most 

frequencies. This can be attributed simply to the way the point process was 

simulated conditionally on the values of the lattice pattern. On the other 

hand, given the point process inferences about the lattice process can be 

ma,& only around the frequency (5 ,4) .  
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Figure 2.7: Spectra for THRESACOS (Figure 2.6). (a) and (b) Raw auto-periodograms; 
(c) and (d) raw CO- and quadrature spectra; (e) to (i) smoothed amplitude, phase, squared 
coherency and gain spectra using Method A four times. 
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it,self randomly chosen from integers less than a thousand. The reason for 

not retaining all the events is that in the real examples discussed later the 

number of events does not usually exceed 1000 events. 

Figures 2.9(a), (b), (c), and (d) represent the raw auto-spectra for the 

point and lattice components, and the raw CO- and quadrature spectra, re- 

spectively. These spectra exhibit concentration of power at  low frequencies. 

The smoothed amplitude spectrum, Figure 2.9(e), exhibits the same struc- 

ture as the above spectra. 

Furthermore, the lattice spectrum exhibits concentration of power around 

t,he lines w, = 0 and wy = 0. This feature usually occurs in image analysis 

when image discontinuities are produced by wrap-round of the image do- 

main. Tapering is then used to remove the artificial vertical and horizontal 

stripes that occur in the spectra as those in Figure 2.9(b) (for more details see 

Glasbey and Mardia, 2000; Glasbey and Horgan, 1995; Robinson, 1983). Fig- 

ure 2.10 gives the significant ordinates of the lattice and point periodogranis 

at  the 1%, 596, and 10% siguificance levels using Fisher’s test. 

The negative Concentration of power at low frequency magnitudes in 

the co-spectrum implies that the two components are negatively correlated. 

Thus, cvents tend to occur at low lattice values. The quadrature spectrum 

has negative concentration of power around frequencies with small magni- 

tudes. Therefore, there is a phase shift between the two components. 

The phase spectrum, Figure 2.9(f), reveals a negative slope in the WE 

direction despite the existence of discontinuities at some frequencies. The 

squared coherency spectrum, Figure 2.9(g), has the same power distribution 

as most of the above spectra. The values for the squared coherency spectrum 
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are relatively high for frequencies with small magnitudes. For the frequency 

band with p = 0 , .  . . ,7  and Q = -7 , .  . . ,7 ,  the mean and median values of 

the square root, of the squared coherency spectrum are 0.8378 and 0.8468, 

respectively. Similar behaviour is demonstrated by the gain spectrum pre- 

sented in Figure 2.9(i). However, the gain spectrum of Figure 2.9(h) has its 

peaks at high frequencies. 

In summary, the two components are negatively correlated and out of 

phase. In addition, there is some evidence that the two processes are linearly 

correlated at  low frequencies as seen from the squared coherency spectrum. 

2.5.1.4 Thinning 

Another method to generate a point pattern given the lattice pattern is 

discussed in this section. This method which will be termed THIN uses 

t,tie techniques of thinning a point process introduced by Lewis and Shelder 

(1979) to generate a non-homogeneous Poisson process. The idea of thin- 

nirig was also used by Ogata (1981) who provided a number of algorithms 

to simulate one-dimensional point processes specified by their conditional 

intensities. The intensity of the point pattern generated by THIN depends 

on the lattice pattern as it is the case for THRESB. However, generation of 

events in THRESB is completely determiried by the lattice pattern but this 

is not, true of events generated using THIN. The steps involved in generating 

a point pattern using THIN are as follows. 

1. Define the intensity function, {A(a)}, of the point pattern to be a 

function of the lattice pattern. For example, A(a) can be defined as 

A(a) = $1 = Y(I~,],[~~I) or as an average of lattice values of neighbour- 
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Figure 2.9: Spectra for THRESBMA (Figure 2.8). (a) and (b) Raw auto-periodograms; 
(r) and (d) raw co- and quadrature spectra; (e) to (i) smoothed amplitude, phase, squared 
coherency and gain spectra using Method A four times. 
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number of offspring for each parent was obtained from a Poisson process 

with mean equal to the quadrat value the parent belonged to. After that the 

co-ordinates of the offspring were calculated by displacing the co-ordinates of 

their parents by a random variable from the normal distribution N(O,O.064). 

Finally, offspring outside the study region were excluded from the pattern. 

Note that parents were also excluded from the pattern. The resulting point 

process had 4367 offspring. The point process was then thinned using steps 

3 and 4 of THIN. The intensity at, a particular location was calculated as 

li(bl,bz) x i p ,  where ip = 500/(32 x 64) N 0.244 is the intensity of the pattern 

formed by the parcnt,s. The number of offspring retained was 2682. 

Figurc 2.12(a) is the point pattern sample spectrum. Peaks are detected 

at  frequencies (5 ,4) ,  (24,3), and (24,5). Figure 2.13(a) gives the significant 

periodograrri ordinates using Fisher's test. The peaks in the lattice pat- 

tern sample spectrum, Figure 2.12(b), occur at (5,4) and (2,3). Note that 

thr magnitude at (5,4) is greater than that at  (2 ,3)  in agreement with the 

magnitudes of the cosine components that were used to generate the lattice 

process. 

The eo-spectrum, Figure 2.12(c), reveals that the in-phase components 

of the point-lattice process are positively correlated at the two frequencies 

(5,4)  and (2,3). Similarly, t,he quadrature spectrum, Figure 2.12(d), implies 

that the out-of-phase components are positively correlated at  the same fre- 

quencies. Hence, there is a phase shift between the two components. The 

correlation between the two components is emphasised by the peak in the 

amplitude spectrum, Figure 2.12(e). No general trend, however, can be de- 

t,ected in the phase spectrum, Figure 2.12(f). 
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The squared coherency and gain spectra, Figures 2.12(g) and (i), exhibit 

a peak in the neighbourhood of the frequency (5,4). However, the other gain 

spectrum, Figure 2.12(h), has a peak in the neighbourhood of the frequency 

(-16,31). Note that the squared coherency is almost zero elsewhere. This 

can result in an erratic behaviour in the phase spectrum. In Chapter 4, it 

will be shown that the variance of the phase spectrum is dependent on the 

inverse of the squared coherency spectrum. 

Next, methods to simulate the lattice process given the point process are 

discussed. 
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Figure 2.12: Spectra for THINCOS (Figure 2.11).  (a) and (b) Raw auto-periodograms; 
( c )  and (d) raw co-and quadrature spectra; (e) to (i) smoothed amplitude, phase, squared 
coherency and gain spectra using Method A four times. 
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Section 1.10 in which hfTCPs and DSPPs are mathematically equivalent. 

The first- and second-order properties of the DSPP are given in Section 1.10. 

The first- and second-order properties of the lattice process are derived below. 

First, let us standardise the span of the integral for the lattice process in 

(2.10). From (2.10) we have 

Yb = 1;" 1:'' n('u1, vz)dvzdvl, 

where v = (q, v2) and b = (b l ,  b). Let U ,  = U ,  - bl and u2 = u2 - b2 then 
1 

y b  = 1' 1 n(u1 + b l ,  + bZ)du*duI = Lo n(u + b)du. (2.11) 

Thus, E[yb] = J,, En(u + b)du = SA, Xndu = An where IEn(u) = An and 

U = ('fLI,U:!). Also, 

n(u + b)du lo n(u' + b'jdu'] 

1 = IE [lo lo n(u + b)n(u' + b')dudu' 

E[II(u + b)n(u' + b')] dudu' 
= L o L  

[A; + yn(u + b - (U' + b'))] dudu', 
= s,,L 

where IE[n(b)n(b')] = A;+yn(b-b'), see Section 1.10 for more details. The 

second-order properties of the point-lattice process in the spatial domain are 

summarised by 

IE{n(b)n(u + b')}duldbl 
= s,, 
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Further, 

Therefore, ~ ~ ~ ( v )  = SA, yn(v - u)du, setting b - b' = v. Thus, the cross- 

spectral density function is equal to 

fNY(w) = L2 YNY(V) exp{-iwvT}dv 

yn(v - U) exp{ -iuvT}dudv 
= LL 

where a = v - U. However, 

I 
= J,' Jc exp{-i(w,ul+ wy,u2)}du2dul 

(s) (T) for w, # 0; wy # 0, 

for U, # 0; wy = 0, 
for w, = O;wy # 0, 
for w, = 0; wy = 0, 

-iw, 

-iw, 

for w, # 0; wy # 0, 
for w, # 0; wy = 0, 
for w, = 0; wy # 0, 
for w, = 0; wy = 0. 

sin(w,/2) sin(w,/2) 

~ e - - 
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i W "  / 2 l i W v  /21 for w, # 0; wy # 0, 
for w, # 0; wy = 0, 
for w, = 0; wy # 0, 

(2.14) 

for w, = 0; wy = 0 

In addition, the spectral density function of the lattice process is 

for w, = 0; wy = 0. I1  

It is worth noting from (2.14) that the phase spectrum is 

-w, - wy 
'$"Y(W) = > 

since fNN(w)  is real because it is an auto-spectral density function. Hence, 

thc slope in each direction of the phase spectrum is equal to -1/2. One can 

correct for this phase shift, which is an artefact arising from the construction 

of the process, by multiplying the cross-spectrum by e'(-). This is equiv- 

alent to translating the co-ordinates of the point process by (-1/2, -1/2). 

However, translating the point process co-ordinates is bound to create bound- 

ary problems when considering realisations within a study region which is 

why we niutliply by e'(+). 

U +w 

v i+v 

To sirnulate a DSPLP we note the equivalence between MTCPs and a 

class of DSPPs ment,ioned in Section 1.10 and that E(dNx(&,)) = Xnl&l = 

XII = E(&). Thus, one can simulate the point pattern component as an 

MTCP as discussed in Section 1.10. The lattice pattern is then generated 
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by assigning to each grid point of the lattice the number of events enclosed 

wit,hin the quadrat associated with that grid point. The resulting lattice will 

be termed a count latt,ice and will be defined formally in Chapter 5. Noise 

can be added t,o the lattice pattern. 

Having established the properties of (2.10) one car1 easily generalise this 

model. One possibility is to assume that the point process is driven by the 

process II, and the lattice process is driven by ll, such that II, = aIIz 

where a > 0. Note 

that, setting cy = 1 in the above results in a DSPLP. Another possibility is 

t,o assume that II, + 112 = c; such processes are termed balanced DSPLPs. 

These generalisations can be viewed as extensions of linked and balanced 

bivariate Cox point processes as defined by Diggle and Milne (1983). The 

cross-spectral density functions for the last two models are defined by 

These processes will be termed as linked DSPLPs. 

for w, # 0;  wy # 0, 
for w, # 0; wy = 0,  
for w, = 0; wy # 0, 
for U ,  = O;w, = 0, 

sin(w,/2) s in(wai2)  

i( * 
f,v.v(w) = Ice- 2 ' ( f i v , v ( ~ )  - An) x 

where IC = cy for a linked process and IC = -1 for a balanced process. 

Next. we provide three artificial examples. The first of these examples is 

a realisat,ion of a linked DSPLP. The second example is a modification of the 

first one, and the third is a realisation of a balanced DSPLP. 
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the point pattern. The total number of events of the point pattern is 1965. 

Theoretical auto- and cross-spectra for this example are given in Fig- 

ure 2.15 arid the corresponding estimates are provided in Figure 2.16. 

These graphs indicate that the empirical results are in agreement with the 

theoretical results. 

The estimated auto-, CO-, and amplitude spectra are characterised by 

concentration of power for relatively low frequencies. The peaks in the esti- 

mated eo-spectrum indicate that the two coniponerits are positively related. 

The peaks and troughs in the estimated quadrature spectrum indicate the 

existence of a phase shift between the two patterns. The estimated phase 

spectrum is linear and the mean of its slopes in the WE direction is ap- 

proximately -0.5, and in the SN direction is approximately -0.5 as expected. 

The values of the squared coherency spectrum are close to one across most 

frequencies. Thus, the two components are strongly related for most frequen- 

cies. 
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Figure 2.15: Theoretical spectra for the pattern in Figure 2.14 (LINKED): (a) and 
(ti) aubspec t ra ;  (c) and (d) CO- and quadrat,ure spectra; (e) to (i) amplitude, phase, 
coherency and gain spectra. 
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Figure 2.16: Estimated spectra for LINKED (Figure 2.14). (a) and (b) Raw auto- 
spectra; (c) and (d) raw CO- and quadrature spectra; (e) to (i) smoothed amplitude, phase, 
coherency and gain spectra smoothed using Method A four times. 
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that we have corrected for the -1/2 shift as discussed in Sect,ion 2.5.2. The 

co-spectrum, Figure 2.18(c), is dominated by troughs rat,her than peaks indi- 

cating that, the shifted lattice process is negatively correlated with t,he point 

pattern. The troughs and peaks in the quadrature spectrum, Figure 2.18(d), 

indicate that the two processes are out of phase. The squared coherency, 

Figure 2.18(e), still exhibits power at  most frequencies, but it is not as close 

to one as the prcvious example. This is due to the added noise. 

The most interesting feature of this example is the phase spectrum, Fig- 

ure 2.18(f). The phase spectrum is seen to be constant across the WE di- 

rection despite some discontinuities that are due to the (-T, T) constraint. 

In the SN direction the phase spectrum decreases linearly as the 'jy compo- 

nent of the frequency increases. Calculating slopes in the SN direction across 

bands that contain no discontinuities results in approxinlately -3. Thus, em- 

pirically one can deduce that the lattice process is to the south of the point 

pattern by 3 pixels. 

In principle, one can remove the phase shift, to reveal the exact relation- 

ship between the two components. In Figure 2.19 we represent the cross- 

spectra after multiplying the cross-spectrum by ei(0wz-3w~) where (0, -3) is 

the detected phase shift. The CO-, amplitude and squared coherency spectra 

in this figure resemble those of LINKED. However, the phase and quadrature 

spectra are almost zero everywhere. 
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Figure 2.18: Spectra for LINKEDSHIFTED (Figure 2.17). (a) Raw lattice periodogram; 
(b) smoothed amplitude spectrum; (c) and (d) raw CO- and quadrature spectra; (e) and 
(f)  smoothed squared coherency and phase spectra using Method A four times. 
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i 

Figure 2.19: Cross-spectra after correcting for the phase shift detected in Figure 2.18(f): 
(a) raw co-spectrum; (h) to (e) smoothed quadrature, phase, squared coherency and am- 
plitude spectra using Method A four times. 
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3. Thin one of the processes, say X ,  by retaining events if they are within 

a distance 6 from the parent events. Thin the other process, say Y, 

by excluding event,s that are within 6 from the parent events, in this 

exarriple 6 = 1. The two processes are, therefore, negatively correlated. 

The above steps generate a bivariate, balanced Cox point, process, for 

more details see Mugglestone (1990). 

4. Transform one of the processes, say Y ,  to a count lattice process, 

The auto- and cross-spectra of the pattern in Figure 2.20 are presented in 

Figure 2.21. The auto-spectra resemble those for LINKED. The co-spectrum 

indicates that the two processes are negatively correlated. The quadrature 

spectrum indicates that there is a phase shift between the two components. 

However, the magnitude of this phase shift, cannot be determined from the 

phase spectrum without further adjustments. Techniques of how to adjust 

the phase spectrum are discussed in Chapter 3. The values of the squared 

coherency are close to one for low frequencies and are close to zero for high 

frequcncies. 
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Figure 2.21: (a) and (b) Raw auto- 
pcriodograms; (c) and (d) raw CO- and quadrature spectra; (e) to  (i) smoothed amplitude, 
phase, squared coherency and gain spectra using Method A four times. 

Spectra for BALANCED (Figure 2.20). 
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2.6 Summary 

In this chapter, spectral analysis for spatial point-lattice processes was intro- 

duccd. Different cross-spectral estimates were presented. Several methods 

to simulate associated point-lattice processes were provided. In addition, 

theoretical cross-spectra of linked and balanced DSPLPs were derived. Arti- 

ficial examples were generated in order to demonstrate the potential of cross- 

spectral estimates as exploratory tools to analyse the correlation between a 

two-dimensional point process and a lattice process. For these examples not 

only we were able to determine whether the two components were positively-, 

negatively-, or un-correlated but we were able to determine if they were out 

of phase. In some cases, we were able to calculate the magnitude of the phase 

shift. The exaniples demonstrated that when the two components were re- 

lated but where the power in the auto-spectra was concentrated at  a couple 

of frequencies, the CO- and quadrature spectra exhibited simple structure. 

In this case, the phase spectrum was usually unstable, mainly because the 

squared coherency was close to one only at  a couple of frequencies rather 

than across the whole range of frequencies. However, when the power in the 

auto-spectra was distributed across a range of frequencies the phase spec- 

trum behaved in a less erratic manner. Furthermore, the constraint on the 

phase spectrum to lie in the interval ( - T ,  T )  sometimes resulted in a number 

of discontinuities. Thus, one needs to adjust the phase spectrum. This issue 

will be discussed in the next chapter together with methods of computing 

the slopes of the phase spectrum. 
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Chapter 3 

The Phase Spectrum: Practical 
Considerat ions 

In the previous chapter, we saw that the phase spectrum usually contains a 

number of discontinuities. Thus, in most cases it is difficult to interpret the 

phase spectrum as it stands. In this chapter, we will introduce two techniques 

t,o estimate the slope of the phase spectrum. In Section 3.1 we introduce a 

technique which adjusts the phase spectrum in order to calculate its slope, 

while in Section 3.2 we present a second technique that does not require such 

an adjustment. 

3.1 Adjusting the Phase Spectrum 

In the one-dimensional case and for a bivariate time series where one series is 

a linear shift of another the phase spectrum is theoretically a linear function 

of the frequency (sce Priestley, 1981b, chapter 9). In addition, the slope of 

the phase spectrum represents the shift between the two series. However, 

due to the ( - T ,  T) restriction the phase spectrum might contain a number 

of dicontinuities, such as t,hose encountered in the two-dimensional case, and 
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hence it is difficult to calculate the slope. In an ideal situation, the phase 

spectrum, ~ N Y ( w ) ,  should be plotted on a cylinder so t,hat -7r coincides 

with 7r, but this is not practical (see Priestley, 1981b). Hence as suggested 

by Priest,lcy (1981b), one should plot for each w three values, one in each of 

the following ranges (-37r, -T), (-7r, T ) ,  (T, 37r) and then join the matching 

entries. 

In the two-dimensional case, this adjustment might be done for each 

ordin& of t,he frequency U .  This reduc.es t,he problem basically t,o applying 

a one-dimensional adjustment. For example, adjusting the phase spectrum 

in the WE direction will require applying the one-dimensional adjustment 

across the raiige of frequencies in the WE direction for every frequency in 

the SN direction. However, we do riot have to restrict ourselves to the ranges 

suggested above. More ranges can be used to attain a coherent graph. The 

ranges to be used have length 27r and are of the form (-7r + 2 k ~ ,  7r+2k7r) for 

k = 0, fl, . . . . For the examples to be presented the total number of ranges 

using the modified procedure does not exceed five. 

To illustrate how the automated version works for the one-dimensional 

case, a typical example of a one-dimensional phase spectrum, {SF}, is rep- 

resented by circles in Figure 3.1. Plots of {S,} f 27r are represented by the 

rhombuses and crossed rhombuses in Figure 3.1. Whereas it is easy to spot 

the matching entries by eye, an automated version where the ranges are re- 

stricted toonly ( - ~ T , - T ) , ( - T , T ) ,  and ( 7 r , 3 ~ )  willrequire32x(!g-2)+3~2 

operations, Here e g  is the length of the {e,} vector. This automated ver- 

sion also requires that the three vectors which hold the original data and 

the transformed data are retained throughout the computation. However, 
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Figure 3.2:  (a) and (b) adjusted phase spectra in the WE and SN directions for LINKED; 
(c) and (d) histograms of the slopes corresponding to (a) and (b), respectively. 

phase spectrum of LINKED in both directions results in t,he same spectrum 

because the original phase spectrum contained only one discontinuity in each 

direction. The slopes in each direction are approximately -0.5 as expected 

(see Figures 3.2(c) and (d)).  
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Figure 3.3: (a) and (b) adjusted phase spectra for THRESACOS, Figure 2.7(f), in the 
WE direction and in the SN direction; (c) and (d) histograms of the slopes corresponding 
to (a) and (b), respectively. 

Next, the adjusted phase spectra for the example THRESACOS of Sec- 

tion 2.5.1.2 are represented in Figures 3.3(a) arid (b). The histograms of the 

slopes for these spectra are given in Figures 3.3(c) and (d). The histograms 

indicate that the majority of slopes lie between (-1 ,O) .  The range of slopes 

in the SN direction is (-2.10,3.85) with mean -0.38 and median -0.51. In 

the WE direction the range of slopes is (-2.82,1.73) with mean -0.36 and 

median -0.46; the minimum is attained at frequency q = 1. This extreme 

value is due to the non-linear behaviour of the adjusted phase spectrum in 

the WE direction along this frequency. It can be seen from Figure 3.4 that 
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Figurc 3.4: Profile of adjusted phase spectrum in the WE direction for THRESACOS, 
Figure 3.3(a), along the SN frequencies q = - 4 , .  . . ,4 .  The far left panel of the bottom 
row corresponds to q = -4, the second left panel of the bottom row corresponds to q = -3, 
and so forth such that the far right panel of the top row corresponds to q = 4. The dots 
are the original data, whereas the line is a linear model fitted to the data. 

a linear fit t,o the adjusted phase spectrum in the WE direction along the 

frequency bands q = -4, . . . ,4 is poor. 
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In fact, for the panels of Figure 3.4 with q = 0 and q = 1 a jump of 

approximately -2n is observed around the WE frequency of 0.6. This jump 

might be an undesirable outcome of the correction method due to its point 

by point approach, thus care should be taken when using it. If the jump 

is removed then a decreasing linear trend might reasonably fit the points in 

these two panels. 

Another problem associated with the adjustment procedure is computa- 

tional efficiency since the number of adjustments required is of the same order 

as the dimensions of the study region. Therefore, a method to calculate the 

slope of the phase spectrum without adjusting it would be desirable. In the 

next section such a method is presented. 
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3.2 Phase Correlation Methods 

In this section we look at  alternative methods to est,imate the phase shift 

between a point process and a lattice process. If the phase spectrum, a, of 

a point-lattice process is a linear function of the frequency, namely @(w)  = 

wdT + K where d is the phase shift and K is a constant, then d can be 

est,imated by: 

(3.1) 

where is a given set of weights, and and are the dimensions of the 

study region. 

Glasbey and Mardia (2000) derive (3.1) in an attempt to minimise the 

mean-square-difference between images (a matching criterion) within the 

framework of image warping. In doing so, they arrive at a set of weights 

which is given by the amplitude values, A ( p ,  4 ) ,  of the cross-spectrum; the 

associated criterion is known as the covariance criterion. However, they point 

out that these weights can be modified to obtain a range of matching crite- 

ria. For example, setting ,& G 1 for all p and 4 gives the phase correlation 

criterion of Kuglin and Hines (1975). This criterion can be viewed as the 

correlation after transforming the patterns (images) so that the auto-spectra 

are flat, see Glasbey and Horgan (1995, chapter 3 ) .  Berman et al. (1994) 

introduce a closely related method to the above, which is Fourier based and 

accounts for aliasing, in order to estimate band-to-band misregistrations of 

images wit,hin the framework of remote sensing. 

Further, Glasbey and Mardia (2000) introduce a new approach by as- 
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suming that the elements of the phase spectrum are independent von Mises 

variates with concentration parameters equal to the weights, and term this 

criterion the Fourier-von Mises similarity measure. This assumption is based 

on asymtpotic propert,ies similar to those derived in Chapter 4 (see Glasbey 

and Mardia (2000) for more details). Equation (3.1) is then replaced by the 

log-likelihood: 

where 1, ( K )  is the modified Bessel function of the first kind and order zero. 

Glasbey and Mardia (2000) use weights that are modelled by the log-linear 

function: 

DP,q = exp (PO + PI Iwp,q/ + Pz Iwp,q/2 + P3 1% ( 4 P >  4 ) ) )  , (3.3) 

with parameters (PbPlr P21~3)r = ( w p , w q )  = ( , t2 ),  and = 

d n .  Both the phase correlation and the covariance criteria are special 

cases of (3.2). Using (3.2) one can also derive the variance of d l , d z  . Note 

that the density function of the von Mises distribution with mean p and 

concentration K ,  VM (p ,  K ) ,  is given by 

(- -) 

where 0 5 4 < 27r, K 2 0 ,0  5 p < 27r, and Io ( K )  is as above. If K = 0 then 

(3.4) reduces to the circular uniform distribution. 

Equation (3.1) extends the one-dimensional spectral estimation of time 

delay between bivariate time series introduced by Hanion and Hannan (1974) 
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who derived asymptotic optimal weights. The two-dimensional version of 

such weights is given by setting &,jp,q = W. m q )  These weights are thus 

inversely proportional to the variance of the phase spectrum (see Section 4.1 

for derivation). In addition to the simple delay modelled by (3.1) Hamon and 

Haririan (1974) consider other models for the phase spectrum with several 

parameters. However, if the ratio is small, Hannan and Thomson 

(1988) suggest estimating the phase shift by maximising the one-dimensional 

version of 

Based on the simulations they carried out they found that (3 .5 )  performed 

better than (3.1) in cases where the ratio is small. Chan et al. (1978) 

use a weighted least squares approach to estimate the phase shift (time delay) 

bebeen  one-dimensional signals. 

The above approaches are closely related to the analysis of circular data. 

Fisher and Lee (1992) propose regression models for circular data on linear 

explanatory variables, which generalise the models given by Gould (1969) 

and Johnson and bf'ehrly (1978). In particular, Johnson and Welirly (1978) 

derive a method of obtaining angular-linear distributions when the marginal 

distributions are completely specified. Further, Fisher and Lee (1983) define 

a correlation coefficient between angular variates. 

Equation (3.1) can be computed efficiently for all integer values using the 

Fast Fourier Transform, arid then an iterative method, such as the Newton- 

to  a finer resolution. For Raphsou method, can be used to determine 
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this reason we will focus on (3.1) to compute the phase shifts for the examples 

of Chapter 2. The estimates of the phase shifts and their standard deviations 

are presented in Table 3.1. In Table 3.1 the amplitude weights correspond 

THHESACOS 

Table 3.1: Estimat,es for t,he phase shifts of the examples presented in Chapter 2. 
1 Examole 1 Arnnlitude Weivhts I Urritv Weiehts 

Estimate s.d. Estimate S.d. - 
di 1 d2 di I dz di I dz di 1 d 2  

- 
-0.461 -0.512 0.027 0.029 -0.479 -0.469 0.025 0.025 

THRESBhIA 

THINCOS 

LINKED 

LINKEDSHIFTED 

2.552 -4.641 0.053 0.125 2.684 -3.961 0.066 0.069 

-0.066 0.098 0.029 0.035 -0.053 0.102 0.031 0.042 

-0.485 -0.558 0.022 0.021 -0.465 -0.606 0.026 0.026 

-0.005 -3.047 0.013 0.012 -0.026 -3.043 0.024 0.024 

BALANCED 

THRESACOS 

LINKED 

-0.221 -5.122 0.047 0.033 -0.303 -5.003 0.070 0.047 

LINKEDSHIFTED 

to the weights used in the covariance criterion, the unity weights correspond 

t,o the weight,s used in the phase correlation criterion, and the HH weights 

correspond to the asympt,otic weights derived in Hamon and Hannaxi (1974). 

N o k  that the results for LINKED are similar to the estimates derived in the 

previous section. For the examples THRESACOS, THRESBMA, THINCOS, 

and BALANCED where t,he coherency is concentrated at  low frequencies, 

weights which are band limited will be favourable. In the next chapter, 

UT will discuss a method to determine the range of frequencies where the 

coherency is non-zero. Then one can use the above methods for the band 

-0.011 -3.043 0.018 0.018 
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limited frequencies in order to determine the phase shift. Nevertheless, the 

main advantage of using t,he above methods in comparison to those presented 

in the previous section is that there is no need to do separate computations 

and adjustments for each direction. In addition, the bias introduced by 

smoothing the phase spectrum is avoided. 

3.3 Summary 

A tecliniquc for adjusting the phase spectrum to remove discontinuities due 

to the ( - T ,  T )  restriction was introduced in this chapter. Using the adjusted 

phase spectarurn slopes in both the WE and SN directions were calculated. In 

some cases, however, we have seen that this adjustment was inadequate due 

to the point by point approach of this method. Thus, methods that estimate 

the phase shift between the components of a point-lattice process without 

the need to adjust the phase spectrum were discussed. In the next chapter, 

asymptotic properties of the cross-spectral estimates will be derived. 
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Chapter 4 

Asymptotic Properties of 
Cross-Spectral Estimates 

In this chapter, the asymptotic distributions of cross-spectral estimates for 

point-lattice processes are derived. These distributions are studied in Sec- 

tion 4.1. Confidence intervals for the cross-spectral estimates based on the 

asymptotic results are provided in Section 4.2 and a formal test of zero co- 

herency is discussed. In Section 4.3, confidence intervals are derived for some 

of the examples of Chapter 2 and the test of zero coherency is applied to the 

coherency spectra of all the examples of Chapter 2. 

4.1 Distributional Properties of Cross-Spectral 
Estimates 

In this section, we will discuss the asymptotic properties of the cross-spectral 

estimates of point-lattice processes. The distributions that will be derived are 

extensions of t,liose developed by Brillinger (1969) for an r vector-valued time 

series, Brillinger (1970) for an T vector-valued p-dimensional series, Brillinger 

(1972) for r vector-valued interval functions, and Rigas (1983) for a hybrid of 
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a one-dimmsinnal point process and a time series. Priestley (1981b, chapter 

9) also studied the distributions of multivariate time series. 

Let Z(a) = {Nx(a), Y,} be a hybrid process consisting of the process 

of the number of events, Nx, of a two-dimensional point process, X ,  and a 

lattice process, Y, for a E R', see Section 1.2 for more details. For mathe- 

niatical convenience we assume that the lattice process is defined for a E R2. 

Henceforth, we will drop the dependence of N on X in order to simplify 

notation. A number of assumptions and definitions about the hybrid process 

will follow. 

The point and lattice processes satisfy the assumptions of Chapter 1. In 

addit,ion, the hybrid process is assumed to be strictly stationary, that is the 

process {N(a+c),  Y,,,} has the sanie probability distribution as {N(a), Y,} 

for any a, c E R'. Define the second-order moment between the components 

of Z(a) as 

where a = (al ,  a2) and da = dalda2. The cross-covariance function defined in 

Section 2.2 is equivalent to  the limit of p ~ y  as da  + 0. The cross-cumudant 

function is defined by 

Cum{dN(a + c ) , z }  = Cov{dN(a + c), Yc} = YNY(a)da, (4.2) 

wherc denotes the complex conjugate of 2. The cross-covariance function 

satisfies the condition JuJ  ) ~ ~ ~ ( u ) ) d u  < CQ. Note that the lattice process 

is assumed to take both complex and real values for reasons of completeness 

only. More details about the curnulant function are provided in Appendix B. 

104 



The hybrid process is also assumed to possess moments of all orders and 

to satisfy 

for b l , .  , . , bk = (Y or N ) ;  IC = 1 , 2 , .  . . , and U('), . . . ,u('"-'),t E R2. Note 

that 1111 = = v ' m ,  where U = (.,U) and that the process dZ is 

defined as 

d N ( u )  i f j  = N ,  
Y,du i f j  = U ,  

dZj(u) = 

(see Brillinger, 1970; Brillinger, 1972). Equation (4.3) is a form of a miz- 

ing condition. The mixing condition implies that the process of increments 

{N(A),Y(A)},  where N(A) = J'dN(a),Y(A) = J,Y,da and A is a 

subregion of It2, has the property that values of the process that are well 

separated in space become independent. 

Next, we define the !&order curnzllant spectral density function as 
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for U ( ' ) ,  , . . , U(') E R2, where E:=, w ( j )  = 0, and the other variables are as 

defined before. Note that the function g N Y  defined in (2.3) is a special case 

of (4.4) where k = 2 , bl = N, and b2 = Y. The cross-periodogram statistic is 

defined by 

for w E R', where fl = [0, !I] x [0 ,  (21, In1 = e,  x e,, 

F is known as the finite Fourier transform of the process. The DFTs defined 

in Section 1.6 are the estimates of (4.6) and (4.7) for a realisation of a point- 

lattice process. In practice to avoid bias near w = 0, we use the modified 

cross-periodogram statistic 

and A ( w )  = J, exp{ -zwaT}da. 

K'ext. we state a property that describes the asymptotic behaviour of 

the curnulant function of several finite Fourier transforms. This property is 

required to establish the distribution of finite Fourier transforms and some 

properties of the cross-periodogram. The proof of this and other properties 

will be provided in Section 4.1.1. Let Z(a), a E R2, be a hybrid process 
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satisfying (4.31, then as e,,!, t cc we have 

for w( ' ) ,  . . . , ~ ( ~ 1  E R2, where L = Inax(!,,!,). Thus asymptotically the 

cumulant function of finite Fourier transforms of k components tend to a 

niultiple of the !&order curnulant spectrum. 

Using this property, one can prove that for any two frequencies (say 

# 0 for j ,  k = 1 , 2 )  as !I, !2 + 03 the 

Fourier transforms Fz(w(3)) are asymptotically independent and distributed 

and U(')  such that w ( J )  ?L 

as 

(4.12) 

Here N," denotes the bivariate complex normal distribution, see Section A.3. 

If w = 0 then &(U) is asymptotically Nz(0,  (2n)21nlgzz(0)) and iudepen- 

dently from the above. Furthermore, if u(j) for j = 1, . . . , n are chosen such 

tha,t w ( j )  + w as e , , ! ,  -+ 00 then @z(w(j l)  are asymptotically independent 

0, (2n)210/gzz(w)) for U # 0 ,  i" J%(O, ( (2~) ' j f l jg~(O))  for = 0, 

variates. Therefore, for most frequencies the rneari-corrected finite Fourier 

transforms of the hybrid process are asymptotically distributed as bivariate 

complex normal variables with mean zero and covariance matrix a niultiple of 
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the second-order cumulant spectral matrix. In addition, they are independent 

for different frequencies. 

As an immediate consequence of this result and the definition of the 

(complex) Wisha,rt distribution given in Section A.3, it can be shown that 

for the periodogram defined by (at frequency (U)) 

-T 
Gzz = (27r)-'Fzz = (27r) 

GYN GYY 

we have asymptotically that: 

W,"(L gzz(w)) if w # 0, 
W,(l,gzz(O)) if w = 0. 

Gzz(U) - 
Here, W," denotes the complex Wishart distribution defined in Section A.3 

of dimension two and one degree of freedom, W2 denotes the Wishart distri- 

bution of dimension two and one degree of freedom. Furthermore, 

-T 
G i j ( w )  = (2.)-'Ptj(w) E ( 2 7 1 ) - 2 ( ~ 2 / - 1 ~ ~ ( w ) P ~ ( ~ )  for i , j  = Y, N .  

Therefore, the periodogram ordinates are distributed as independent (com- 

plex) Wishart variates with one degree of freedom and covariance matrix the 

spect,ral density. The distributional properties of the auto-spectra provided 

in Section 1.7 are an immediate consequence of this result arid the following 

property of the (complex) Wishart dist,ribution. For non-zero frequencies, G 

is distributed as W,@(l,gzz(w)) which implies that for s = N or Y is 

distributed as g,,,y;/2. This property is a special case of that reported in 

Brillinger (1981, chapter 4) where the number of degrees of freedom of the 

coniplex Wishart distribution is taken to be 71 = 1 and therefore the number 

of degrees of freedom of the Chi-squared distribution is 2n = 2. The equiv- 
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alence for zero frequencies can be established in a similar way. However, as 

Brillinger (1981) puts it: 

being, a Wishart with just 1 degree of freedom, the distribu- 

tion is well spread out about fxx(X) [gZz(w) ] .  Therefore, Igi(X) 
[Gzz (w) ] ,  cannot be considered a reasonable estimate. 

However, under the above assumptions the spectral density function is a 

smooth function of frequency (see Brillinger, 1970). Therefore, a reasonable 

estimate at a particular frequency might be constructed by averaging nearby 

values of the periodogram. Thus, one can consider the uniformly smoothed 

periodogram, 

where dk) for k = 1,.  , , , m are nearby frequencies to w .  This smoother is 

a special case of the smoothers introduced in Section 1.8. Again, using the 

above results and the properties of the (complex) Wishart distribution the 

following holds asymptotically: 

Having established the asyniptotic joint distribution of the cumulant spec- 

tral density function for a point-lattice process, we proceed to give the asymp- 

totic properties of the cross-periodogram statistic. It can be shown that 

asymptotically G,, ( w ) ,  which is the cross-periodogram defined in (4.8), has 
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the following properties: 

lim E{ G N Y ( w ) }  = g N y ( ~ )  for w # 0, (4.13) 
&,&z’m 

and lim Cov{GNY(r),G:NY(s)} = 
el,e2-+m 

s{r - s}siviv(r)guu(-r) + 6{r + s}gNY(r)gYN(-r )  

(4.14) 

for r, s # 0, where 6{} is the Kronecker delta defined in Section A.2. 

Thus asymptotically the cross-periodogram is an unbiased estimator of 

the second-order cross-cumulant spectral density function. Equations (4.13) 

and (4.14) can t,hen be used to deduce the asymptotic behaviour of covari- 

ances for the CO- and the quadrature spectra defined in (2.4). Here the 

co-spectrum is written as 

and the quadrature spectrum is written as 

Y ” 
Therefore, the covariance matrix of F N N ,  FYY, E N Y ,  and &J;J is given by 
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Here I( = 1 but if G is used instead of G then K = m. Only the upper 

triangle of tlie covariance matrix is reported; the lower triangle is derived 

by symmetry. The matrix in (4.15) is similar to that reported in Priestley 

(1981b, chapter9) for any two components of a one-dimensional multivariate 

time series. 

The asymptotic results for amplitude, phase and squared coherency spec- 

tra are derived by expanding these functions around their means using Taylor 

series expansions, and retaining the first two or three terms. Taylor expan- 

sions are needed since tlie amplitude, phase and squared coherency spectra 

are non-linear functions of d ~ y ,  Q N Y ,  p”, and &=yy. In fact, using just the 

first two terms of Taylor expansion for functions of several variables gives 

and 

COV($NY,  G N Y )  - 0 

Var(,fiNy) - 2 K v N y ( 1  - uNY)’.  

If the statistics are calculated at frequencies of the form tup = 7 where 

p and e are integers then similar results to the above can be established 

for the equivalent discrete Fourier transforms. Since tuup+! = tup (mod 27r) 

then this should be taken into account when stating conditions in the above 

results. Moreover, the Kronecker delta in (4.14) should be replaced with 

the Kronecker comb defined in Section A.2 to account for the equivalence of 

frequencies modulus 27r. 
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Next,, we establish equivalent properties of those defined above for the 

estiniates defined in Chapter 2. The quantities defined in (2.9) are the sample 

estimates of the modified cross-periodogram statistic defined by 
___ 

G N Y ( W )  = (27q2PN;vr % (2T)y)Q2)  - l F N  (W)FY( w )  , (4.16) 

where FN and F y  are as defiried in (4.6) and (4.10). The above definition is 

required because the lattice pattern in Chapter 2 is assumed to be corrected 

for its mean which is equivalent to  the Fourier transform of the lattice pattern 

being corrected for its mean. However, no such correction is carried out for 

the Fourier transform of the point pattern. Defining 

oue can establish a similar result to (4.12) with the zero-mean vector being re- 

placed by 1) = (ANA(w), O)T.  Hence, h ~ ( w )  are asymptotically independent 

for different frequencies and distributed as IV; (q, ( 2 ~ ) ~ / C l / g z z ( w ) ) ,  where 

gzz is as defined above. The property Cov(X + e, Y) = Cov(X, U) for c a 

constant erisures that the covariance matrices for the distributions of k and 

F coincide. Also, one can define G[F] and &[$I in a similar way to G[F] and 

WI. 
Equations (4.13) and (4.14) still hold if G is replaced by G. In addition, 

the covariance matrix defined in (4.15) also represents the covariance matrix 

of F V N ,  p y y ,  i(= i{$’v~+z}), and q(= ${&-~NY}). Asymptotic 

properties of the associated amplitude (&) , phase ($) and squared coherency 

(6) coiricide with those reported for &, 4, and 6. Note here that CNY, 

QNY,  ANY,  @ N Y ,  and T N ~  are the sample estimates of t, q ,  iu, 4, and 6, 

respectively. 
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4.1.1 Proofs 

In this section, we provide proofs for 

previous section. 

the asymptotic properties stated in the 
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4.1.1.1 Proof of (4.11) 

= .6' l' 

= i e 2  . . . 
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k 

where 
j=l 

For the time being we shall drop the dependence of the above equation on the 

y-ordinate. Set u j  = ay)  - aj"' for j = 1,. . . , k - 1; aj") = U and substitute 

these values in (4.17) then 

change the variables U and u k - 1  then 

el-U e, 
c d U 1  , ' d U k - 2  du d ' U - 1  

-uk-1 
PI  -U 

s=.r",,.r" LU ,.,L, 
+ lel le'- /y.. . s_, C dui ' .  . dUk-2 d U  d U k - 1  

Next, define the following for j = 1,. . . , k - 1 

Then. 
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In (4.18) it can be shown that the limits of the variable U are m k - 2  and Mk-2 

for the lower arid upper bounds, respectively, regardless of the limits of the 

variable ~ k - ~ .  Therefore, 

e,-U 

B = J e ' - m L k - '  ~~~~2 [I-u.. .S_, C du, . . . du duk-2 duk-1. 
-.vr-l 

Next, interchange the variables U and uk-3 by defining the limits of the vari- 

able u ~ - ~  in the same manner as that of uk-* and repeat the above steps until 

the last variable u , ~  is reached. Figure 4.1 is a graphical representatiorl of how 

the limits of the integrals involving the variables U arid uj are interchanged. 

The final step of interchanging variables leads to the following equation 

= J-;~ S ' I - ~ L ~ - ~  , , , ~ t 1 - m ~  , , , /"-mi 
C d U d U l . .  . d U . ,  . . dUk-1  

- M k - i  -AI, - Mz 
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U 
..,. 

... ...... 

Figure 4.1: Interchanging limits for the variahles U and uj. 

whereC' = exp{ -iCj=l k-1 w1 (1) ~ ~ ) " i b , . . . ~ ~ ( u ~ , ~ .  ;u~-~). Next, repeat the above 

for the y-ordinate then (4.1.1) becomes 

Here, we have for j = 1,. . . , k - 1 
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and nk = [-!I,!I] x [-e,,!,]. Also, 
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However, 
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However, 

since by (4.3) 

and K is a finite number. Therefore, 

c 



4.1.1.2 Proof of (4.12) 

To prove (4.12), first standardise FZ(w)  by multiplying i t  by InI-;. Then, 

Next, 
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Now O(A(C,"= l~ ( J ) ) )  = O((n1) so for k > 2 the above equation tends to  

zero asymptotically. This proves (4.12) for the case w # 0 by using the 

remark on cuniulants of normal variables given in Result 2 of Appendix B. 

.4 similar proof holds for the ot,her case. 

4.1.1.3 Proofs of (4.13) and (4.14) 

as !,,e2 --t 00 since A(w - w )  = A(0) = PI& = lnl, and O(L)/lnl --t 0 

This proves (4.13). Equation (4.14) is proved as follows. Consider 
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With the aid of some algebra, it can be shown that 



Hence, 

since 0(jOl) = O(L2) .  As ! , ,e2 + 00 we have 

for r ,  s # 0. Note that 

delta defined in Section A.2. Hence, equations (4.13) and (4.14) are proved. 

+ 6{a} as e,, --t 03, where 6 is the Kronecker 

4.2 Confidence Intervals 

By analogy with Brillinger (1981) and Priestley (1981a, chapter 9) methods 

to construct confidence ixitervals for spectral estimates are discussed in this 

section. In Section 1.7 the standardised auto-spectra were stated to be inde- 

pendently distributed as Chi-squared variables with two degrees of freedom, 

xi, for w # 0. Thus, confidcnce intervals can be constructed for the auto- 

spectra based on this distribution. However, these estimates are unstable 

being based on the xi distribution, hence smoothed estimates are used. 

The asympt,otic independence of scaled periodogram ordinates together 
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with (1.14) and (1.15) imply that smoothed periodogram ordinates are asymp- 

totically distributed as 

I,  1, m 

In practice the distribution of such a variate is usually aI: roximal 

(4.20) 

d by the 

lix: distribution. The degrees of freedom, n, and the multiplier, K ,  of Kx: 

are dekrmined by equating the first and second moments of K x ~  to those 

of (4.20) Brillinger (1981)see. Hence, 

m 

Therefore, n = 2/(xr=, tu;) and K = 2/n. In the case where the weights are 

uniform, that is wk = l/m for k = 1,. . . , m, the distribution of (4.20) is ex- 

actly &;,,. For computational convenience, uniform weighting will be used 

when constructing confidence intervals, unless otherwise specified. Thus, a 

l O O ( 1  - a)% confidencc interval for f S s ( w )  is 

(4.21) 

where x:(a) is the 100a percentile of the Chi-squared distribution with n 

dcgrees of freedom, s = Y or N and F,, is the uniformly smoothed non-scaled 

auto-spectrum. As the sample size increases the normal approximation to  

the above distribution can be used to  construct confidence intervals. 

In Section 4.1 an estimate of the cross-spectral density was provided via 

f i N y ( ~ ( k ) ) .  Furthermore, it was shown that @ N ~ ( ( W ( ~ ) )  kN,,(u) = m-' 
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for k = 1,. , , , rn can be considered as m independent estimates of k ~ y ( w )  

for w(k)  near w .  Thus, one can construct a confidence interval for the co- 

spectrum, c N y ( w )  = Re{frjy(w)}, based on the estimate 

rn n 

k = l  k=1 

Let e* = (m - l ) - l ~ ~ = l ( C k  - C ) 2  then, by analogy with Brillinger 

(1981), the Student's t distribution can be used to  approximate the distri- 

bution of the variate e. Hence, a l O O ( 1 -  a)% confidence interval for c is 

given by C f Atrn-l(l - n/2), where t,(p) denotes the loOD percentile of 

Student's t dist.ribution with n degrees of freedom. Alternatively, the normal 

distribution N ( c ,  f { f ~ ~ f y ~  + c2 - q'})  can be used to  find an approximate 

confidence interval. 

The confidence interval constructed for the co-spectrum can be used to 

test whether the two in-phase components of the hybrid process are correlated 

at a particular frequency. If the two components are uncorrelated then one 

expects the co-spectrum to be zero. The same procedure can be used to  

obtain corifidence limits for the quadrature spectrum by replacing c by q 

where q = qNy(w) = Im{fNy(w)}. 

The other cross-spectral estimate for which one might be interested in 

calculating a confidence interval is the phase spectrum. A confidence interval 

for the phase spectrum may be derived by approximating tan{@} = -Q/C 

by a normal distributiou with mean tan{$} and variance $ sec4{$}(w-'- 1). 

The mean and variance are derived by using Taylor expansion (see Priestley, 

1981b). 

Note that if U = 0 then one can show that  4 is uniformly distributed 
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on (-7r/2,7r/2). This can be done by noting that when U = 0 then C and 

Q are uncorrelated. Further, if C and Q are assumed to be bivariate nor- 

mal, then in this case they are independent with zero means and common 

variance $ { j ” ~ f y ~ } .  This implies that their ratio is Cauchy. Hence, the 

tan-l transformat,ion resulk in a uniformly distributed random variable on 

(-7r/2,7r/2) as stated in Section 2.4. 

Hannan (1970, chapter 5) gives the following confidence interval for the 

phase spectrum 

where t and /3 are as before. This confidence interval is derived from the 

distribution of the complex regression coefficient, r ( w )  = ~NNO, ” Y ( ~ )  of E’ on N 

(see Section 4.2.1 for more details). For computational convenience we will 

use the earlier approach to find a confidence int,erval for the phase spectrum 

because we comput,e the phase spectrum based on the tan-’ function. 

4.2.1 Test for Zero Squared Coherency 

In t,his section, a test for zero squared coherency is discussed. This test, is 

an adaptation of a test for the one-dimensional rnultivariatc case discussed 

by Priestley (1981b, chapter 9). The two-dimensional version follows iinme- 

diately. Hence, we will only summarise the one-dimensional test statistic. 

Under the null hypothesis that the coherency, fi, is zero we have 

(4.22) 

where Fp,q is the F-distribution with p and q degrees of freedom, and m is 

the number of ordinates used in smoothing the periodograrn at  a particular 

129 



frequency. An insight into this result can he gained by investigating a linear 

relationship between the two components X and Y of a bivariate process as 

outlined below. Consider 
m 

Y ( t )  = c h ( u ) X ( t  - U )  + t(i), 
a= - m 

where t is added noise and uncorrelated with X and h is a function. In 

addition, e and X have zero means 

However, the spectral representation theorem implies that 

where M = s_", exp{ztw}dZhf(w), M = Y, X ,  E and 

T ( w )  = E,"==_, h(u) exp{-iuw}, (see Priestley, 1981a, chapter 4). Note that 

the process dZh, has the following properties: 

I E { d Z M ( U ) }  = 0 for all w ,  

~ { l d Z M ( w ) ) ~ }  = fh,hf(w)dw for all w ,  

I E { d Z M ( w ) d Z M ( w ' ) }  = 0 

where f h b M ( w )  is the non-normalised auto-spectrum. For the case where 

E and X are zero mean complex Gaussian, Goodman (1963) proves that 

the increments dZ,, dZ,y and dZy are also zero mean complex Gaussian. In 

addition, he concludes that even for non-Gaussian processes the increments 

can stzll be regarded as complex Gaussian. Therefore, treating (4.23) as an 

ordinary linear regression problem yields the following quantities: 

for w # w', 

1. residual sum of syuares (RSS): 
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2 .  e:cplained sum of squares (ESS): 

Since r ( w )  = - f h y ( w )  then RSS = f , . ~ ( w ) [ l  - .u(w)]dw and 

ESS = v ( u ) f ~ ~ ( ~ ) d w .  Therefore, & FSS - - A4 I-v(w) as required. 
fhx-@) 

Hanrian (1970, chapter 5) gives a detailed derivation of the density func- 

iFxy(w)’ . The derived den- 
J F x x ( w ) F w  (U )  

tiori for the coherency spectrum, a = 

sity yields (4.22) under the null hypothesis. 

Notc that for t,he two-dimensional point-lattice process and under the 

null hypothesis of CSR, where the point process is an HPP and the lattice 

process is white noise, the individual DFTs are distributed as Gaussian ran- 

doni variables. Thus, one can extend the above arguments in an obvious way 

to derive a zero cohcrerlcy test for the two-dimensional case. In the next 

section, we will apply the results of this section to  some of the examples of 

Chapt,er 2 .  
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4.3 Application 

In this section, we will construct confidence intervals for auto- and cross- 

spectra of the examples LINKED and CSRPLE of Chapter 2. In addition, 

we will provide the figures for the zero test statistic for the other examples 

of Chapter 2. 

Figures 4.2 and 4.3 represent the profiles of the auto-spectra of LINKED 

together with 95% confidence bands a t  each frequency. The profiles are 

obtained by conditioning on the WE frequencies since this results in fewer 

panels pcr plot. For most frequencies the auto-spectra lie close to the upper 

bound of the confidence bands. This is because the upper bound for most 

ordinates is calculated as ( 9 F , , ( w ) / ~ ~ ~ ( 0 . 0 5 / 2 ) )  sz 1.1 F,,(w) since most or- 

dinates have eight neighbours. In addition, the spectral power is concentrated 

mainly around low frequencies. The similarity between the point and lattice 

spcctra is attributed to the method that generated them. For comparison 

Figures 4.4 arid 4.5 give the 95% confidence bands for the auto-spectra based 

011 using Method A once and the approximation K x ~ .  This approach results 

in wider confidence bands. 
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Figure 4.2: Profile of the point spectrum of LINKED using uniform smoothing, solid line, 
and the 95% confidence band around each frequency, dotted lines. The far left panel of 
t,he bot,t,om row corresponds t o p  = 0, t,he second left panel of t,he bottom row corresponds 
to p = 1 ,  and so forth such that, t,he far right panel of t,he top row corresponds to p = 15. 
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Figure 4.3: Profile of the lattice spectrum of LINKED, solid line, and the 95% confidence 
hand around each frequency, dott,ed lines. 
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Figure 4.4: Profile of the point spectrum of LINKED, solid line, using Method A once 
and the 95% confidence band around each frequency, dotted lines. 
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Figure 4.5: Profile of the lattice spectrum of LINKED, solid line, using Method A once 
and the 95% confidence band aronrid each frequency, dotted lines. 
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The co-spectrum plots reveal t,hat the two components are positively cor- 

related for frequencies in the range p = 0 , .  . . , 9  and q = -10,. . . , l o ,  see 

Figure 4.6. It is worth noting here that the confidence bands around most 

frequencies in the above range exclude zero. Furthermore, the co-spectrum 

is almost zero outside this range, thus, the in-phase components are uncorre- 

lated for high frequencies. For low WE frequencies the quadrature spectrum 

resembles a sine wave, see Figure 4.7. This feature fades out as the WE fre- 

quency increases. In fact, for large WE frequencies the quadrature spectrum 

is alniost zero. 

Figure 4.8 represents the profile of the zero coherency test st,atistic to- 

gether with the corresponding upper 5% critical point of the F distribution. 

The figure implies that the two components are correlated at almost all fre- 

quencies. However, this correlation is pronounced for the frequency range 

p = 0 , .  . . , 9  and q = -10,. . . ,IO. Having established the range for which 

the squared coherency is non-zero, one can construct confidence int,ervals for 

the phase spectrum in t,his range. Figures 4.9 and 4.10 represent the tan- 

gent of the phase spectrum toget,her with the corresponding 95% confidence 

bands for the frequency band p = 0 , .  . . , 5  and q = -5 , .  . . ,5 .  The first 

of the two figures is conditioned on the WE frequencies, while the other is 

conditioned on the SN frequencies. The figures reveal that the tangent of the 

phase spectrum decreases linearly along these frequencies. Hence, one can 

conclude that the two components of the hybrid pattern are positively corre- 

lated in the frequency range p = 0 , .  . . , 9  and q = -10,. . . , l o .  In addition, 

as implied by the quadrature spectrum and the tangent of the phase graphs 

there exists a phase shift between the two components. 
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Figure 4.6: Profile of the co-spectrum of LINKED, solid line, and the 95% confidence 
band around each frequency, dotted lines. Dashed line represents the zero value. 
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Figure 4.7: Profile of the quadratme spectrum of LINKED, solid line, and the 95% 
confidence band around each frequency, dotted lines. Dashed line represents the zero 
value. 
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Figure 4.8: Profile of the zero coherency test statistic spectrum for LINKED, solid line, 
and the corresponding upper 5% critical point of the F distribution, dotted line. 
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Figure 4.9: Profile of the tangent of the phase spectrum of LINKED, solid line, for 
p = 0 , .  . .  , 5  and q = -5,. . .  , 5 ,  conditioning here is on the WE frequencies, and the 95% 
confidence band around each frequency, dotted lines. 
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Figure 4.10: Profile of the tangent of the phase spectrum of LINKED, solid line, for 
p = 0, .  . . , 5  and q = - 5 , .  . . , 5 ,  conditioning here is on the SN frequencies, and the 95% 
confidence band around each frequency, dotted lines. 
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Figures 4.11, 4.12, 4.13, 4.14 and 4.15 represent the profiles of the 

auto-, CO-, quadrature and zero coherency spectra, respectively, for CSRPLE. 

The confidence bands are calculated at the 99% confidence level. The auto- 

spect,ral power is spread across all frequencies as expected for a completely 

spatially random process. The CO- and quadrature spectra oscillate around 

zero. Note that all the confidence bands include zero. The zero coherency 

statistic is well below the upper 1% critical point of the F distribution for 

alniost all frequencies. As expected, one can conclude that the two processes 

are uncorrelated. 

For the examples THRESACOS, THINCOS, THRESBMA and BAL- 

.4NCED of Chapter 2 graphs of the zero coherency statistic are presented 

in Figures 4.16, 4.17, 4.18, and 4.19, respectively. The plots for THRE- 

S.4COS and THINCOS reveal that the two components are correlated in the 

neighbourhood of the frequencies where thc lattice spectra have their power 

concentrated, see Figures 2.7 and 2.12. However, the plots for THRESBMA 

and BALANCED imply that the two components are correlated at low fre- 

quencies. The zero coherency figures for LINKEDSHIFTED are not shown 

because they closely resemble those for LINKED. Thus, using the zero 

coherency test we are able to determine the range where the two components 

are correlated formally. Having done so, we are then able to find confidence 

intervals for the tangent of the phase spectrum. In addition, this test plays 

an irnport,arit role when studying the phase spectrum, since the variance of 

the phase spectrum is inversely proportional to the squared coherency, see 

Section 4.1. So if the coherency is zero then the phase spectrum is expected 

to behave in an erratic manner because its variance will tend to infinity. 
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Figure 4.11: Profile of the point spectrum for CSRPLE, solid line, using uniform smooth- 
ing and the 99% confidence band around each frequency, dotted lines. 
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Figure 4.12: Profile of the lattice spectrum for CSRPLE, solid line, and the 99% confi- 
dence band around each frequency, dotted lines. 
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Figure 4.13: Profile of the co-spectrum for CSRPLE, solid line, and the 99% confidence 
band around each frequency, dotted lines. Dashed line is the zero line. 
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Figure 4.14: Profile of the quadrature spectrum for CSRPLE, solid line, and the 99% 
confidence band around each frequency, dotted lines. Dashed line is the zero line. 
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Figure 4.15: Profile of the zero coherency test statistic spectrum for CSRPLE, solid 
line, and thc dotted line represents the upper 1% critical point of the F-distribution. 
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Figure 4.16: Profile of the zero coherency test statistic spectrum for THRESACOS, 
solid line, and the corresponding upper 5% critical point of the F distribution, dotted line. 
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Figure 4.17: Profile of the zero coherency test statistic spectrum for THINCOS, solid 
line, and the corresponding upper 5% critical point of the F distribution, dotted line. 
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Figure 4.18: Profile of the zero coherency test statistic spectrum for THRESBMA, solid 
line, and the corresponding upper 5% critical point of the F distribution, dotted line. 
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Figure 4.19: Profile of the zero coherency test statistic spectrum for BALANCED, solid 
line, and the corresponding upper 5% critical point of the F distribution, dotted line. 
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4.4 Summary 

In this chapter, the asymptotic distribution of the cross-spectral statistic 

matrix G:z:z(w) was established to be a complex Wishart distribution of di- 

mension two with one degree of freedom for w # 0, and to be a Wishart 

distribution of dimension two with one degree of freedom for w = 0. The 

cross-periodogram statistic was found to be an unbiased estimator of the 

cross-spectral statistic GNY(w) .  The cross-spectral estimates at different fre- 

quencies were shown to be asymptotically independent of each other. Having 

established the asymptotic properties of the cross-spectral statistic, confi- 

dence intervals were obtained for the auto-, CO-, quadrature and phase spec- 

tra. In addition, a test for zcro coherency was discussed. It was verified 

that the test statistic followed an F distribution. Furthermore, confidence 

intervals were provided for some of t,he examples of Chapter 2, and the test 

for zero coherency was used to determine whet,her the two components of the 

examples were correlated. In the next chapter we will discuss another tool 

that one might use in an attempt to uncover patterns of correlation in point- 

lattice processes. This tool is based on discretising the point pattern and 

studying the joint properties of the resulting pattern and the lattice pattern 

using spectral analysis. 
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Chapter 5 

Lattice-Lattice Processes 

Lattice processes are observed at  regular grid points. However, this property 

is not shared by point processes that can be observed anywhere in the study 

region. This situation might lead to some complications in the estimates of 

the cross-spectra, especially the phase spectrum. So one might consider dis- 

cretising the point process in order to eliminate any discrepancies attributed 

to  the above fact. Lattice-lattice processes, their properties and their esti- 

mates are discussed briefly in Section 5.1. In Section 5.2 methods to discretise 

the point pattern are discussed arid some examples are considered. 

5.1 Estimates 

A4 lattice-lattice process is a process with two components where each com- 

ponent is a lattice process. Both components are observed in the same study 

region. Thus the matrices that represent both processes have the same di- 

mension. Analysis of such processes can he carried out in the same manner 

as point-lattice processes by replacing estimates of the point process with 

those of a lattice process. 
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Let {YlrY2} be a lattice-lattice process where Yl and Yl are observed 

on the rectangular region [0, el] x [0, e,]. Then in accordance with previous 

chapters one can estimate the auto-spectra via (1.11) and the cross-spectra 

via 

FYIV> b, 4 )  = FY, b> q P , ;  ( P ,  4 )  

where F is the DFT of a process, ( b l ,  b2)  denote the grid points where the 

processes are observed, and p , q  are integers that index frequency (up,uq), 

compare (5.1) to (2.9). Equation (5.1) can then be decomposed either into 

its real and imaginary parts or into its amplitude and phase spectra. In 

addition, the squared coherency and gain spectra may be estimated. 

Asymptotic properties can be derived in the same manner as for point- 

lattice processes. These properties are a special case of the properties derived 

by Brillinger (1970) for an r vector-valued p-dimensional series where 

T = p = 2 (see also Priestley, 1981b, chapter 9). Therefore, as scen from 

(5.1) one can adjust the spectral techniques discussed so far to accommodate 

lattice-lattice processes. 

5.2 Point Processes into Lattice Processes 

In this section, methods to discretise a point pattern are investigated. A 

point pattern can be transformed to a lattice pattern via simple binning, 

linear binning, fitting a fine lattice or using a kernel intensity estimator. 
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Details of these methods are given below. Note that if the number of events 

is large and the dimensions of the region are composite then discretising the 

point pattern results in computational gains because we are able to use the 

FFT. 

5.2.1 Simple Binning 

In this study, simple binning constitutes discretising a point pattern using 

either a binary or a count operation. Let, X be the point process compo- 

nent of a point-lattice process in the region [0, e l]  x [0, &]. The associated 

binary lattice (BL) or prescnce/absence latatice, X B L ,  is defined as follows: 

let X B L ( b l $ b * )  denote the d u e  of the lattice in the quadrat a b  = A ( b l , b Z ) ,  

where A ( b l , b z )  = [b l ,  bl + 11 x [b,, bz + 11, then 

1 
0 

if at  least one event occurs in a b ,  
if no events are present in a b ,  { X B L ( b l ,  b2) = 

where bl = 0 , .  . , , e ,  - 1, b2 = 0,. . . ,e, - 1. The count lattice (CL), X c L ,  is 

obtained by assigning the nuniber of events in the quadrat A b  to X C L ( b l ,  b z ) .  

5.2.2 Linear Binning 

As discussed by Wand and Jones (1995) linear binning assigns weights to 

the nearest neighbouring grid points of an event. Let the rectangle formed 

by the nearest neighbours t ie  part,itioried into subrectangles according to the 

position of the event within the rectangle, see Figure 5.1 for illustration. 

Then the weight at a givcn neighbour is calculated as the proportion of the 

area of the opposite subrectangle to the total area. For example, the point 

X I  in Figure 5.1 is assigned the weight al where al is the proportion of the 
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Figure 5.1: An example illustrating how weights are assigned to  neighbouring grid points 
of an event X using linear binning. Points XI ,  X,, X 3  and Xq arc assigned t,he weights 
al ,aZ ,  a3 and a4 respectively, see main text for more details. 
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area of the subrectangle determined by the event at  X and the point X3 to 

the arca determined by the points X I ,  X Z ,  X ,  and Xq. For examples in this 

study the area of the rectangle determined by the neighbouring grid points is 

always one because the grid is sampled at  unit intervals. The lattice resulting 

from using linear binning will be denoted by LBL. 

5.2.3 Fitting a Fine Lattice 

Let { X F L }  denote the class of lattices fitted to the point process X such that 

no more t,han one event is present in a given quadrat. Each member of this 

class is termed a fine lattice (FL). Let X A L  be a member of this class such 

that the dimensions of X f k  are the smallest integer multiples of e, and e,. 

157 



Let the dimensions of X$;," be mel and nez. If m or n is greater than one 

then the lattice component Y of the hybrid process should be enlarged to 

have the same dimension as Xfk. The enlarged process Yen' can be obtained 

from the process Y by assigning to the quadrats 

of the enlarged process the same value as the quadrat Ab of the process Y .  

Alternatively, the lattice pattern can be interpolated to fit the finer grid. 

Computationally XAL is determined as follows. 

1. Let XcL be the count lattice for t,he process X .  If all the entries in 

X c L  are either zeros or ones then set X,"," = X c L  and stop, otherwise 

go to step 2. 

2. For X c L  > 1 determine the minimal distance between events in the 

corresponding quadrat. Let Ami, be the quadrat where the (global) 

minimal distance is detected. 

3.  Determine the minimal integers m and n such that if Amin is divided 

into m x n subquadrats then no two events within A belong to the 

same subquadrat. 

4. Let X L k  be the lattice with dimensions mel x ne, and entries zero if 

110 event is present in a quadrat and one otherwise. 

Note that fitting an FL is computationally expensive especially if the mini- 

mum distancc is relatively small. In practice, the point processes are usually 
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recorded to a certain number of decimal places, so one can use this number 

to define the minimal distance. However, this might lead to heavy computa- 

tions if the locations of points are given to great precision due to the size of 

the lattices required. 

5.2.4 Kernel Intensity Estimator 

The kernel intensity lattice (KIL), X K I L ,  is obtained by finding estimates 

of the number of events at  the grid points (b, ,  b2)  using the kernel intensity 

estimator. The kernel intensity estimator is defined as 

NV ,. 
XKzL(b;H) = x K H ( b - a j ) ,  ( 5 4  

~ 

,=I 

where a, ( j  = 1, .  . . , Nx) are the locations of the events of the point process 

X in the study region, Nx is the number of events of the point pattern and H 

is a symmetric positive definite 2 x 2 matrix known as the buridwidth matrzz. 

In addition, KH(b) = (det(H))-'/2K(H-1/2bT) where K is a bivariate func- 

tion satisfying K(b)db  = 1 and is known as the kernel function. Usually 

the kernel function is taken to be a bivariate symmetric probability density 

function, for example, the bivariate standard normal distribution (see Wand 

and Jones , 1995). 

Conditional on the number of events 1 X K I L  i ( b ;  H) can be treated 

as a kernel density estimation problem. This enables us to use existing tech- 

niques addressing the different issues related to the choice of the bandwidth 

matrix and the kernel function, the former being the most important of the 

two (see N:and and Jones , 1995). Several bandwidth selectors have been 

studied in the literature including least squares cross-validation (LSCV) and 

Nx 
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plug-in methods, see Wand and Jones (1994) and Wand and Jones (1995, 

chapter 4) for more details. The usual criterion for selecting a bandwidth 

when using the two selectors mentioncd above involves minimising t,he mean 

integrated square error (MISE) function of k ,  namely 

MISE{i(H)} = E{k(b,H) - h(b)}'db, J 
where h is the true process. The LSCV method is based on minimising the 

quantity 

where is the kernel estimator based on the sample less the point a,. As 

the name suggests plug-in methods are based on inserting estimates of the 

unknown parameters that are encountered in the formulae of the asymptotic 

hlISE optimal bandwidth. 

Diggle (1985) has proposed a kernel estimator for the one-dimensional 

DSPP that does not require conditioning on the observed number of events. 

Diggle and Marron (1988) have proved the equivalence between bandwidth 

selectors for Diggle's (1985) intensity estimator and LSCV bandwidth selec- 

tors for t,he one-dimensional kernel density. In the light of this equivalence 

fnrt,hPr studies might be carried out to invest,igate the possibility of an equiva- 

lence between bandwidth selectors for kernel density and intensity estimators 

for the one- arid two-dimensional cases using plug-in methods. 

In this study, we will use the plug-in approach within the conditional 

framework. The reason for this choice is the availability of computer code 

that calculates the two-dimensional kernel density estimator and uses the 
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plug-in method for bandwidth selection. The computer code is available 

from wanddensity library of Splus functions. 

.4nother issue related to the kernel intensity estimator is the boundary 

effect, whereby the intensity function is extended beyond the study region by 

setting it equal to zero, and where the intensity is positive at the boundaries, 

for more details see Diggle and Marron (1988). This situation will result in 

the kernel int,ensity having discontinuties at  the boundaries. Diggle (1985) 

has addressed this problem for the one-dimensional point process. He sug- 

gested that the one-dimensional version of (5.2) can be modified to correct 

for boundary problems by dividing the estimator by the convolution of the 

kernel function with one over the study area. This correction can be easily 

extended to the two-dimensional case. However, we will overlook this prob- 

lem due to the illustrative role the kernel intensity estimator plays in this 

study. 

5.2.5 Application 

The point pattern of the example LINKED of Chapter 2 is discretised as 

an illustration of the above methods. Figures 5.2(a) to (e) represent the 

graphs of the point pattern of LINKED, and the discretised point pattern 

using BL, CL, LBL and KIL, respectively. The discretised pattern using FL 

is not included in Figure 5.2 due to graphical resolution limitations. The size 

of the resulting latt,ice using FL is 3040 x 3040 corresponding to a minimal 

inter-event distance of 1/95. This lattice has 1965 unit entries; all the other 

entries are zero. The riumber of unit entries corresponds to the number of 

events of the point pattern of LINKED. The size of the original lattice was 
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extended to 3040 x 3040 using Section 5.2.3 method to enlarge the original 

lattice (component E’ of the process) where m = n = 95. 

The auto- and cross-spectra of the resulting lattice-lattice patterns are 

presented in Figures 5.3, 5.4, 5.5, 5.6 and 5.7. The kernel intensity estimator 

calculations have been carried out using wanddensity library of functions. 

The discretised point pattern, component YI of the process, auto-spectra 

using BL, CL and LBL resemble the auto-spectrum of the original lattice pat- 

tern. However, using KIL results in a slightly different auto-spectrum that 

has most of its power concentrated at  low frequencies. In fact when using 

the CL the two auto-spectra are identical. This is due to the way the lattice 

pattern was generated in LINKED. The fact that the auto-spectra are iden- 

tical results in the co-spectrum being identical to them. The quadrature and 

phase spectra are identically zero, and the squared coherency is identically 

one, see Figure 5.3. 

The auto-spectrum of the discretised point pattern using FL, Figure 5.7(a), 

also resembles that of the original lattice pattern for the range of frequen- 

cies p = 0 , .  . . ,16 and q = -16..  . ,15. Outside this range t,he spectrum of 

the discretised point pat,tern fluctuates around zero. The same is true for 

the original lattice but the FL auto-spectrum fluctuates more wildly. The 

range of frequencies presented in Figure 5.7 is restricted t o p  = 0, . . . ,32 and 

q = -32 . .  . , 3 2 .  This is a subset of the frequency range p = 0 , .  . . ,1520 

arid q = -1520,.. . ,1519 that can be investigated using the FL method. 

The reason for only displaying the restricted subset of frequencies is that 

and as mentioned above the values outside the range p = 0 , .  . . ,16 and 

q = -16..  . ,15  fluctuate around zero. 
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The quadrature spectra that result from the BL and FL methods of dis- 

cretisation fluctuate around zero. This implies that there is no phase shift 

betwreri the two coniponents of the lattice-lattice pattern. This is confirmed 

by the phase spectra being almost zero for frequencies where the squared 

coherency is different from zero. The phase spectrum resulting from KIL 

also fluctuates around zero but for a shorter frequency range than BL and 

FL. However, the quadrature spectrum resulting from the application of LBL 

resembles that of the original point-lattice process. Furthermore, the phase 

spectrum implies that the phase shift between the two components is 

( - l / Z ,  -1/2). 

Thus discretising the point pattern using BL, CL or FL removgd the 

artificial phase shift between the point pattern and the lattice pattern which 

arose because of the way the lattice was simulated. Using LBL did not remove 

the phase shift between the two pat,terns. However, LBL is known to be 

superior to simple binning in estimating the true distribution (see Wand and 

Jones , 1995). Furthermore, LBL is computatiorially less expensive than FL 

and unlike KIL it does not require bandwidth selectors and density functions 

to be specified. 
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" A  

Figure 5.3: (a) Auto-spectrum of the count lattice corresponding to Figure 5.2(c); (b) 
anto-spectrum of the original lattice Figure 2.14; (c) to (f)  CO-, quadrature, phase, and 
squared coherency spectra of the lattice-lattice pat,tern. 
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Figure 5.4: Auto- and cross-spectra using the Binary Lattice 
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Figure 5.5: Auto- and cross-spectra using the Linearly Binned Lattice. 
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Figure 5.6: Auto- and cross-spectra using the Kernel Intensity Lattice 
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Figure 5.7: Auto- and cross-spectra using the Fine Lattice. 
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5.3 Summary 

Analyses of point-lattice patterns through discretisation of the point pattern 

to form lattice-lattice patterns have been investigated. The main advantage 

of such an approach is that it eliminates problems that are due to lattice 

processes being observed on a grid whereas point processes are not,. Several 

mcthods to discret,ise the point pattern have been discussed. These include 

linear binning which has been recommended by Wand and Jones (1995) 

as a better alternative to simple binning. Kernel intensity estimators have 

also been studied. In addition, using a fine lattice has been investigated. It 

is computatiorially expensive to use this method, especially when the mini- 

mum distance between events is relatively small. In the next chapter we will 

use the techniques discussed so far to explore the relationship between the 

components of a point-lattice pattern for a real data set. 
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Chapter 6 

Cross-Spectral Analysis of Tree 
Species in a Rain Forest in 
French Guyana 

In this chapter, we explore the relationship between the components of a real 

point-lattice pattern using cross-spectral analysis techniques. The data set 

consists of the locations of fifty-one tree species in a rain forest at Paracou in 

French Guyana; altitude values of the study area are also provided. This data 

set has been supplied by Dr. Michel Goulard of Le Centre INRA de Toudouue, 

France, and Dr. Hklkne Dessard of CIRAD-Fort%, France. In Section 6.1 the 

t,ree species data are briefly discussed. In Sections 6.2 to 6.5 cross-spectral 

analyses for some species are provided. 

6.1 The Data 

The data set consists of locations of fifty-one groups of tree species in a plot 

of land of dimensions 250m x 250m. For convenience we will use the term 

species to mean a group of one or more species. In addition, altitude values 

are provided on a 50x50 square grid with spacings of 5m between consecutive 
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grid points in each direction. Altitude values, which are relatively easy to 

measure, are of interest to foresters due to the information they hold about 

soil characteristics, in particular, the type of drainage. The data were col- 

lected at  an experimental site at  Paracou (5"18N, 52"53W) near Sinnamary, 

French Guyana. Figure 6.1 is a map of French Guyana. This map was down- 

loaded from the University of Texas library website. The website address is 

http://www.lib.utexas.edu and the map can be obtained by following links 

to the Perry-Castafieda Library Map collection. Figure 6.2 gives the loca- 

t,ion of the experimental site where the current data set was collected at  plot 

number one. This map is an extract from a map downloaded from the 

website of Silvolab Guyana which is a research group interested in studying 

the ecosystem of tropical forests in French Guyana. The website address for 

Silvolab Guyana is http://kourou.cirad.fr/silvolah. For more details about 

the data set see Dessard (1996) and Forget et al. (1999). 

For species two to fourteen Table 6.1 gives the species number, botanical 

family, scientific name, and local names used in French Guyana and (British) 

Guyana. The number of trees of each species and the status of the species 

are also given. The st,atus is a classification of the species as either an active 

timber tree (a) or a potential timber tree (p). The classification was extracted 

from the appendix of Hammond et al. (1996). Any missing information is 

indicated as NA. Table 6.1 indicates that potential timber trees are relatively 

abundant, compared to act,ive timber trees. 

We do not possess detailed information for species one and species fifteen 

to fifty-one. However, the number of events for species one is 1543 whereas 

species fifteen to fifty-one consist of thirty-three events or less. Species one 







Table 6.1: Scientific/local names of thirteen species, their number (SN), status (ST) as 
active/potemtial and niinibcr of trees (TN) 

iN PamilylScientific name French Guyana 

2 Chqsobolonaceoc Gaulette 
local name 

Licania rnaiuscula Bois. eaulette 

ST 

D 
Licania rriicrantha 
Parinari carnpcstris 

. -  
Pali, gaulette P 
Foungouti, gaulette blanc p 

I Symphonia glahulifera 1 Manil Marecage 1 N A  
9 I Vochysioceae I I 

4 
5 

6 

7 

8 

1 ~ o u a c a p o u a  arnericana I wacapou 
11 1 Lecythidoceae 1 Mahot rouge 

Eschweilera chartarea Mahot noir, rouge P 
Eschweilera pedicellata Mahat noir, Baikaaki P 

~ Eachweiicra poiteaui Mahat noir, rouge P 
NA Palrniers NA 
Burseraceoe Encens 
Protium dccandrurn Encens a 
Protium heptaphyllum Encens a 
I'rotiurn sagotiarturn E"CenS a 
Myristicoceoe 
lryanthera sagotiana Toss0 Pas& P 
Papilionaceoe 
Bocoa prouacensis BOCO NA 
Clustocees 

12 

Carapa procera 

Licania carinella 
Ncctandra pisi 
Ocotea carialicuiata 
Ocatea globifera 
Ocotea guiariensis 
Ocotea iieesiana 
Ocotea ohlonga 
Ocotea petalanthera 
Ocotca puberla 
ocotea  tomentella 
Ocatea wKhenheimii 

Eschweilera sagotiana Mahot rouge a 
Eschweilera subglandulasa Mahot rouge P 
Meltaceoe ca rapa  
Carapa guiairesis Carapa rouge a 

Cedres 
Cedrc carlelie 
Cedre noir 
Cedre canelle 
Cedre apicic 
Cedre 
Cedre 
Cedre apici 
Cedre apici 
Cedre gris 
Ccdre 
Cedre Rris 

1 a a 

a 

British Guyana 
local name 

Kautahalli 
Marishiballi 
Burada, broad-leaved 

Kakaralli, Toka 
Kakaralli, swamp wina 
N A  
NA 

Kurokai 
IIaiawa, Incense tree 
Kurohi 

Kirikaua 

NA 

NA 

NA 

Kakaralli, common black 
Kakaralli, black 

Crabwood 
Crabwood 

Silverballi, brown 
Shirua 
Silverballi, white 
NA 
Shirua, Tokawe 
NA 
Kereti, soft 
NA 
Kereti 
BXad2." 
Kereti, hard 
Buradiye 

NA 

- 
TN 

637 
- 

- 
572 

- 
145 
131 
- 

- 

130 

100 

96 

84 

81 
69 

- 

- 

- 
- 
- 

- 
61 

- 
52 

- 

35 - 
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consists of trees that were not identified botanically and are of least impor- 

tance for the foresters. 

In the next sections preliminary exploratory analyses of Species 3, 10, 

11 and 12 are provided. Species 3 arid 11 were chosen because they belong 

to  the same family. It is therefore of interest to compare Species 3 and 11 

because Species 3 is a potential timber tree while Species 11, according to 

Table 6.1, can be either a potential or an active timber tree. We suspect 

that in the current data set Species 11 contains only the subgroup that is 

an active timber tree. The number of events of Species 3 is 572 while that 

of Species 11 is 69. Species 10 and 12 were chosen since they are important 

commercial trees (see Forget et al., 1999). Analyses of the remaining tree 

species are provided in Appendix C. 
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are detected as significant at  this level (see the comment in Section 2.5.1.3 

about tapering). 

The magnitude of the (scaled) periodogram (defined in Section 1.9.2) or- 

dinates does not exceed one for most of the additional significant frequencies. 

This can be seen from Figure 6.5(a) which gives a categorised representation 

of the lattice auto-periodogram where the categories are defined as follows. 

1. Values exceeding 100 are assigned to category 1 

2. Values between 10 and 100 are assigned to  category 2 

3 .  \:slues of the lattice periodogram bet,weeri 1 and 10 are assigned to 

category 3. 

4. Values less than 1 are set to he not available on the graph 

The importance of the value one is that under the null hypothesis of CSR 

the expected value of the (scaled) periodogram is unity. Furthermore, the 

tot,al power contributed by all the frequencies with value less than one is 

approximately 2.3%. Therefore, the detection of frequencies with magnitude 

less than one is spurious and might be due to the repeated use of Fisher’s 

test. 
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are negat,ively correlated. Therefore, the intensity of the trees is negatively 

correlated with altitude with fewer trees at  higher altitudes. This coincides 

with the pattern visible in Figure 6.3. 

Figure 6.7(b) is t,he graph of the quadrature spectrum. This figure has 

troughs at  (0, l),  ( 1 , O )  and a peak at ( 1 , O ) .  Thus the two components are 

out of pliasr and one expects that a phase shift exists between the two com- 

ponents. 

No specific information can be extracted from the full phase spectrum, 

Figure 6.7(c), due to its erratic behaviour. This behaviour is a result of the 

coherency spectrum, Figure 6.7(d), being almost zero except at  low frequen- 

cies. Figures 6.8 arid 6.9 represent the profiles of the coherency spectrum 

together with the corresponding upper 1% and 5% critical points of the F 

distribution. These figures confirm that the coherency is zero for almost, all 

frequencies except for p = 0, 1 , 2  and q = 0 , 1 , 2  and some sparse higher fre- 

quencies. However, we will focus only on the lower frequencies since both 

lattice and point spectra have their power concentrated at low frequencies. 

Having established the range where the point and lattice patterns are cor- 

related, we investigate the phase spectrum across this range. Figures 6.10(a) 

and (b) represent t,he profiles for the adjusted phase spectra in the WE and 

SN directions, respectively, for the frequency band p = 0,1 ,2  and q = 1,2 ,3 .  

The profiles indicaic that there is a phase shift between the two components 

of the point-lattice pattern. The mean value of the slope in the WE direction 

is 2.2 and in the SN direction is -0.83. Thus the point patatern is to the west 

of the lattice pattern by 2.2 pixels (2.2 x 5m = l l m  011 the original scale) 

and to its north by 0.83 pixels (0.83 x 5m = 4.15m on the original scale). 
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Figure 6.7: Cross-spectra for Maliot Noir versus altitude pattern: (a) and (b) raw co- 
and quadrat,ure spectra; (c) and (d) smoot,hed phase and coherency spectra using Method 
A four times. 
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Figure 6.8: Profile of the zero coherency test statistic spectrum for Mahot Noir versus 
altitude, solid line, arid the corresponding upper 1% and 5% critical points of the F 
distributioii, dashed and dotted line. The far left panel of the bottom row corresponds to 
p = 0, the second left panel of the bottom row corresponds to  p = 1, and so forth so that 
the far right panel of the top row corresponds to p = 15. 
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Figure 6.9: Profile of the zero coherency test statistic spectrum for Mahot Noir versus 
akitude, solid line, and the corresponding upper 1% and 5% critical points of the F 
distrihbion, dashed and dot,ted line, for p = 16,. . .  , 2 5 .  The far left panel of the bottom 
row corresponds to p = 16. 
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Figure 6.10: (a) and (b) Profiles of the adjusted phase spectra in the WE and SN 
directions for the frequency hand p = 0, 1 , 2  and q = 1 , 2 , 3 ,  respectively. 

Using the techniques of Section 3.2, the phase shift estimate is approximately 

0.86 in the WE direction and -0.65 in the SN direction. These estimates were 

based on using the Hamon and Hannan weights. The difference between the 

two sets of estimates is att,ributed t,o the fact that the first set of estimates 

is based on the smoothed and adjusted phase spectrum, whereas the second 

set is based on the unsmoothed phase spectrum. Henceforth, we will use the 

Hamon and Hannan weights (see Section 3.2), unless otherwise stated. The 

reason for this choice is that the frequency bands of interest within the phase 

spectrum are chosen according to the zero-coherency test statistic which is 

equivalent t o  the Hamon and Hannan weights. 

For illustration puposes, we discretise the pattern of Mahot Noir using 

LBL, see Figure 6.11(a), and study the cross-spectral properties of the discre- 

t,ised pattern and altitude. The auto-periodogram of the discretised pattern is 
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shown in Figure 6.11(b). The associated cross-spectra of the discretised pat- 

tern and altitude (a lattice-lattice pattern) are presented in Figures 6.11(c) 

to ( f ) .  These figures resemble those of the point-lattice pattern. No signif- 

icant features are detected in these figures that were not detected using the 

point-lattice pattern. For this reason and in order not to overload the reader 

with too nimy figures, thereaft,er, we will not attempt, to produce similar 

analyses of discretised patterns for the other species. 
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Figure 6.14: Cross-spectra for Wacapou versus altitude pattern: (a) and (b) raw co- 
and quadrature spectra; (c) and (d) smoothed phase and coherency spectra using method 
A four times. 
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Figure 6.15: Profile of the zero coherency test statistic spectrum for Wacapou versus 
altitude pattern, solid line, and the corresponding upper 1% and 5% critical points of the 
F distribution, dashed and dotted line, for p = 0, .  . . ,15. The far left panel of the bottom 
row corresponds t o p  = 0. 
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Figure 6.16: Profile of the zero coherency test statistic spectrum for Wacapou versus 
altitude pat,tern, solid line, and the corresponding upper 1% and 5% critical points of the 
F distribution, dashed and dotted line, for p = 16 , .  . .  , 25 .  The far left panel of the bottom 
row corresponds t o p  = 16. 
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Figure 6.17: (a) and (b) Profiles of the adjusted phase spectra for Wacapou versus 
altitude pat,terri in the WE and SN directions for the frequencies ( p  = 0,q  = {1 ,2}) ,  
( p  = 1 , q  = 1-2 ,.,. ,2}) and ( p =  2 , q  = {-2,-l,O}). 

Figures 6.17(a) and (b) represent the profiles of the adjusted phase spectra 

for Wacapou versus altitude pattern in the WE and SN directions for the 

frequencies (p = O,q = {1,2}), (p = 1 , q  = {-2,. . . ,2}) and ( p  = 2, q = 

{-2,-1,0}), The magnitudes of the slopes in the WE direction for the 

frequencies with q = -2, , . , , 2 ,  are approximately 0, 0.04, 0.12, 1.1, and 

0.55, respectively The slopes in the SN direction arc approximately -0.28, 

-1.51 and -1.14 for t,he frequencies with p = 0 ,1 ,2 ,  respectively. Thus, the 

Wacapou pattern is to the west of the altitude pattern by an average of 1.81m 

for low significant frequencies, and to the north of the altitude pattern with 

a mean phase shift of approximately 6.6m for frequencies with p = 1 , 2 .  The 

estimates based on phase correlation techniques arc 0.216 pixels in the WE 

direction and -0.525 in the SN direction. 
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t,lie nnmber of events of Mahot Rouge is 69 which hinders the possibility of 

testing the significance of the peak at the frequency (2, -21). Moreover, we 

arc mainly interested in low frequencies since the lat,tice spectrum has its 

power concentrated a t  low frequencies. Thus the point pattern resembles a 

cluster process completing one cycle in both the SN and WE direct,ions. 

The troughs a t  ( 0 , l )  and ( 1 , O )  in the co-spectrum, Figure 6.18(c), imply 

that the trees favour low altitude values. These troughs coincide with those 

of Mahot Noir versus altitude co-spectrum, Figure 6.7(c). The peak in the 

quadrature spectrum, Figure 6.18(d), a t  (1, -1) and the troughs a t  ( 1 , O )  and 

( 0 , l )  indicate that the two component,s are out of phase. 

Despite the discontinuities in the phase spectrum, Figure 6.18(e), a posi- 

tive slope is observed along the SN direction for frequencies with low p values. 

Note that the coherency spectrum, Figure 6.18(f), is close to one around these 

frequencies and fluctuates around zero elsewhere. 

The profile of the zero coherency test and the corresponding upper 1% 

and 5% critical points of the F distribution for the frequencies p = 0,. . . ,15 

and q = -25,. . . ,24 conditional on the WE frequencies are presented in 

Figure 6.19. This figure indicates that for low frequencies the coherency 

is significantly different from zero at the 5% significance level around ( p  = 

{O,. . . , 4 } , q  = {0,1}) and ( p  = {U, l } , q  = 2). 

The adjusted phase spectra in the WE and SN directions for the fre- 

quencies ( p  = (0 , .  . . ,4}, q = {U, 1)) and ( p  = { O , l } , q  = 2) are given in 

Figure 6.20. A positive slope is detected in the WE direction for the frequen- 

cies q = 0,1, and its mean value is 0.21. The slope in the SN direction has 

a mean value of approximately -1.41 for the frequencies p = 1, .  . . ,4 .  Thus 
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Figure 6.19: Profile of the zero coherency test statistic spectrum for Mahot Rouge versus 
altitude pattern, solid line, and the corresponding upper 1% and 5% critical points of the 
F distribution, dashed and dotted line, for p = 0 , .  , . ,15. The far left panel of the bottom 
row corresponds t o p  = 0. 
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Figure 6.20: (a) and (h) Profiles of the adjusted phase spectra for Mahot Rouge versus 
altitude pattern in the WE and SN directions for the frequencies ( p  = {0, . . . ,4} ,  Q = 
{ O ,  l}) and (p = {0, l}, q = 2).  

on averagc the hlahot Rouge pattern is to the west of the altitude pattern 

by 1.05m and to its north by 7.05m. The estimates of the slopes in the WE 

anti SN directions based on the phase correlation techniques are 0.855 and 

-1.206, respectively. 
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6.5 Species 12: Carapa 

The graph of Carapa versus altitude pattern is presented in Figure 6.21(a). 

Peaks of t,he auto-periodogram of the point pattern, Figure 6.21(b), are de- 

tected at (18, -12) and (1, -1). The number of Carapa trees is 61 which im- 

plies that  one can test the significance of the frequencies ( p  = (0, . . . , 3 } ,  q = 

{ - 3 , .  . . , 2 } ) .  The frequency (1, -1) is the only significant peak at the 1% 

level. The test was also carried out at, the 10% level of significance but no 

other frequency was detected as significant. Therefore, the Carapa pattern 

completes 1.41 cycles in the unit square along the direction of the 135" angle 

from the x-axis. 

The troughs a t  (l ,-l) and ( 0 , l )  in the co-spectrum, Figure 6.21(c), 

indicate that the intensity of the trees and altitude values are negatively cor- 

related. Hence Carapa trees favour relatively low altitude. The two compo- 

nents are out of phase as indicated by the peaks in the quadrature spectrum, 

Figure 6.21(d), at ( 0 , l )  and (1, -1). The troughs of the eo-spectrum coin- 

cide wi th  the peaks of t,he quadrature spectrum. The phase spectrum for the 

ordinates where the quadrature spectrum has its peaks and the co-spectrum 

has its troughs therefore lies between -7r and -7r/2. 

The phase and coherency spectra are given in Figures 6.21(e) and (f) ,  re- 

spcctively. Thc coherency spectrum fluctuates around zero for most frequen- 

cies except for frequencies with low p and q. However, the profile of the zero 

coherency test statistic, Figure 6.22, indicates that  none of these frequencies 

is significant a t  the 1% level arid only a few number of low frequencies are 

significant a t  the 5% level. Thus the negative correlation between the two 
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components which is detected by the co-spectrum is weak. No further anal- 

ysis of the phase spectrum will be carried out due to  the lack of significant 

frequencies in the coherency spectrum. 

6.6 Comparison to Other Studies 

In this section we compare our results to those of Dessard (1996). Dessard 

(1996) st,udied the relationship between altitude and some of the tree species 

based on kernel regression of the intensity of the tree species on the grid of 

altitude values. In brief, Dessard (1996) proceeds by first estimating local 

intensities at  the grid points of the altitude lattice using a kernel intensity es- 

timator which is based on the observed locations of a species. Then assuming 

that the intensity depends on the altitude data the regression coefficient is 

calculated using a weighted kernel intensity estimator, not necessarily equal 

to the one used in the first step, where the weights are taken to be equal 

to the estimated intensities calculated in the first step. Furthermorc, this 

weighted kernel is corrected for boundary effects in the same way as that of 

Diggle’s (1985) correction. 

Using the kernel regression approach Dessard (1996) found that the inten- 

sity of Mahot Rouge decreases quite rapidly with altitude, and that Wacapou 

prefers dry soils which is a characteristic of high altitude. These results agree 

with the results of our spectral approach with regard to  the relationships be- 

tween both species and altitude. In Section 6.3 and Section 6.4 we found that 

Wscapou favoured high altitudes wherea,s Mahot Rouge favoured relatively 

low altihdes. These conclusions are mainly based on the informa,tion pro- 

vided by the co-spectrum of each species and altitude. Further information 
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Figure 6.22: Profile of the zero coherency test statistic spectrum for Carapa versus 
altitude pattern, solid line, and the corresponding upper 1% and 5% critical points of the 
F distribution, dashed and dotted line, for p = 0,.  . . , 15 .  The far left panel of the bottom 
row corresponds to p = 0. 
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about the relationship between the species and altitude has been extracted 

using the other spectra. Using the phase and coherency specrta we found 

that the two species are to the north-west of the altitude pattern but with 

different magnitudes. However, no such information could be extracted using 

the kernel regression approach. In addit,ion, Dessard (1996) assumes that the 

intensity depends on alt,itude in order to proceed with the analysis of the two 

processes. No such assumption is needed in our approach. 

6.7 Summary 

In this chapter we have demonstrated the ability to explore the relationship 

between the components of a real point-lattice pattern using cross-spectral 

techniques. The relationships between a number of tree species and altitude 

were investigated. Cross-spectral analyses revealed whether or not the tree 

patterns were related to altitude. For Species 3, 10 and 11 we found that the 

point pattern is to the north-west of the lattice pattern. In addition, it was 

revealed that Species 3, 11, and 12 favoured relatively low altitudes whereas 

Species 10 favoured high altitude. In the next chapter, we will investigate 

anot,her data set arid discuss how to extend the techniques discussed so far 

in order to unveil the relationship, if any, between marked point processes 

and lattice processes. 

203 



Chapter 7 

Cross-Spectral Analysis of 
African Storms 

In this chapter, we will investigate a data set consisting of locations of 

storms in the Sahel region of Africa together with elevation values of the 

region. In Section 7.1 we describe the data set in more detail. In Section 7.2 

marked point,-lattice processes will be introduced and spectral techniques for 

analysing such processes will be discussed. These techniques are extensions 

of those used for point-lattice processes. Analysis of the storm data set using 

spectral tools will be provided in Section 7.3. 

7.1 The Data 

The Sahel region of Africa lies south of the Sahara desert. The region extends 

in the WE direction from the Atlantic ocean to Ethiopia and in the SN 

direction from 5"N to 20"N. The storm data set was collected in order to 

identify and understand the characteristics of convective storms, which are 

the sourccs of most of the rain in this region. The need for studying storm 

charact,eristics was hig1ilight)ed by the severe droughts that devastated the 
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Sahel area during the early seventies and eighties. Haile (1994) collected 

spatial location and time of storm initiation, maximum size and dissipation 

from meteorological satellite imagery of the Sahel region for the month of July 

1989. In addition, the data set provides duration and speed of the observed 

storms. Dr. Menghestab Haile of t,he Ethiopian Disaster Preparedness and 

Prevention Commission made the storm data available for this project. 

Topography is thought to be one of the parameters that affect the storm 

life cycle. This assumption is mainly based on visual inspection of the storm 

location and characteristics such as the st,orm duration and topographical 

features of the region, specifically elevation from the sea surface (altitude). 

The mountains in the eastern side of the Sahel region are believed to affect 

storm duration thus giving rise to short- or long-lived storms. In the western 

side, which consists mainly of river plains, it is thought that  no such segre- 

gatiou exists (see Mugglestone and Taylor, 1994). (The eastern side of the 

Sahel region stretches from 7.5"E to 40"E while the western side stretches 

between 18"W and 7.5"E.) In Mugglest,one and Taylor (1994), short-lived 

storms are defined to be storms that lasted between six and fifteen hours 

and the long-lived storms are those that lasted more than fifteen hours. 

Elevation data were downloaded from the GTOP030 website. These 

data are derived from a global digital elevation model that is based on data 

from eight sources. The sources that are listed in decreasing order of per- 

centage of the global data derived from each are: Digital Terrain Elevation 

Data (50%), Digital Chart of the World (29.9%), Antarctic Digital Database 

(8.3%), United States Geographical Survey I-degree digital elevation model 

(6.7%), International Map of the World (3.7%), (American) Army Map Ser- 
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vice (l.l%), New Zealand digital elevation model (0.2%), and Peru Map 

(0.1%). The website address is http://edcwww.cr.usgs.gov/landdaac/gtopo30. 

The data available from this website are in the form of 16-bit binary-signed 

integer data. After downloading they were converted to a format acceptable 

t>o s-plus. 

The elevation data in this study come from two files which collectively 

range from 10"s to 40"N and from 20"W t o  60"E. However, in our analysis 

we will investigate the study region stretching from 6.446"N to 19.937"N and 

from 10.704"W to 36.787"E. Henceforth, this region will be referred to as 

Region A. Elevation data in Region A range from 35111 to 3398m with mean 

value of 449.7m and median of 401m. Elevation in GTOP030 is measured 

regularly at 30-arc seconds spacing which is approximately equivalent to one 

kilometre. Note that the ground distance in the WE direction (longitude) 

of a quadrat decreases with increasing latitude while in the SN direction it 

increases. For example, the WE distance of a quadrat at 10"N is equivalent 

to 914m and t,he SN distance equates to 922m, whereas at 20"N the WE 

distance corresponds to 872m and the SN distance to 923m. The size of 

the lattice corresponding to the Region A elevation data is 5700 x 1620. 

Figure 7.1 is a map of elevation data for Africa where the spacing is as 

before. The superimposed box defines Region A. The map was downloaded 

from the website of the Africa Data Dissemination Service. The address of 

the website is http://edcintl.cr.usgs.gov/adds. 

Using spectral analysis we will explore the relationships between storm 

characteristics and elevation. Thus we will be able to establish the validity 

of the above claims regarding these relationships. However we still need to 
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develop techniques to explore the relationships between point processes and 

their characteristics and lattice processes. In an attempt to achieve this goal, 

we will discuss marked point-lattice processes in the next section. 

7.2 Spatial Marked Point-Lattice Processes 

In this section, a brief summary of how to study properties of marked point 

processes using two-dimensional spectral analysis is given. Having done so 

wc will extend cross-spectral analysis techniques from point-lattice processes 

to marked point-lattice processes. 

When spatial point processes are investigated, measurements other than 

the locations of events may be recorded. Such measurements are called 

marks. For example, tree heights may be measured in addition to tree loca- 

tions. The joint process is referred to as a marked point process. Analysis of 

such processes using correlation functious has been investigated by authors 

such as Penttinen, Stoyan and Henttonen (1992) and Goulard, Paglrs and 

Cabanettes (1995). These articles looked at the correlations between loca- 

tions of trces in forest stands and marks such as height, diameter, number 

of sprouts and length of crown. The analyses of the data sets carried out as- 

sumed stationarit,y and isotropy, however, within their theoretical framework 

Goulard, Pagks and Cabanettes (1995) assumed only stationarity. Renshaw 

(1999) used two-dimensional spectral analysis to study stationary spatial 

marked point processes. 

Formally a marked point process is denoted by {M(a)} where a is an 

event of the point process. It will be assumed that this process is stationary 

and that, the marks are nonnegative. By analogy with point processes one 
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can define the first-order intensity function of this process as 

where dM(a) is the sum of marks within a small neighbourhood of the event 

a, and the second-order intensity function is defined as 

(see Cressie, 1991, chapter 8). Since the process is assumed to be stationary 

then AMM depends on al and a2 only through their difference al - a2. The 

mark spectral density function, f M M ( w ) ,  can be defined in a similar way to 

the point process spectral density function. Estimates of the mark spectral 

density function are provided via 

Here 

whcrc ( n 1 3 ,  a,23) = a,, j = 1, .  . . , N x ,  are the events of the point pattern 

observed in the study region [0, !I] x [O, e,] ,  M ( a l j ,  a z j )  is the mark associated 

with event aj, NX is the total number of events within the study region and 

(wp,wq)  = (?,?), (see Renshaw, 1999). The marked point process is 

assumed to be corrected for its mean M = M ( a l j ,  az j ) /Nx.  As for the 

point process the marked point process has no Nyquist frequency. Likewise, 

the number of independent periodogram ordinates is limited by the number 

of events 
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Note that the DFTs of point and lattice processes are special cases of 

(7.3). The point process can be obtained by substituting one in place of the 

mark, M .  The lattice process is a marked point process with events occurring 

at  the grid points of the lattice and marks the value of the lattice process at 

these events. 

A model for a marked point process that exhibits CSR would have marks 

that are IID random variables and are independent of the associated point 

process. An example of such a process is provided by considering the com- 

pound Poisson process that has IID marks that are positive integers and 

events that form an HPP (see Cressie, 1991). Alternative models to CSR are 

also given in Cressie (1991). Renshaw (1999) simulates some models in order 

to study the spectral properties of marked point processes. 

A spcitiul n~urlced point-luttice process is a process with three compo- 

nents, namely, the marks associated with the point process, the point pro- 

cess itself and the lattice process. We denote such a process by Z(a) = 

{M(a), Nx(a), Y(a)}. To study the second-order spectral properties of this 

process we need to extend the functions defined for the point-lattice processes 

from two to three components. 

The spectral matrix for a spatial marked point-lattice process, FZZ, is 

defined as 

1 F M M ( w )  F M N ( w )  FMY(w) 
Fzz(w) = F N M ( U )  F N N ( W )  F N Y ( W )  : 

F Y M ( W )  F Y N ( W )  FYY(W) 

where F z ( w )  = (FM(w), FN(w), Fy(w)), and FAB(W) = F ~ ( u ) m  for 

A ,  B = M ,  N, Y. Here F M ,  F N ,  Fy are the DFTs of the mark, point and lattice 

processes, respectively. Note that the above matrix is symmetric in the sense 
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that FAB(w)  = Fsa( -w) .  Thus one needs only to study the elements of the 

matrix that are on and above the diagonal. Initially the range of frequencies 

investigated will depend on the size of the lattice process, as is the case for 

point-lattice processes. 

Asymptotic properties for marked point-lattice processes may be derived 

by analogy with point-lattice processes, see Chapter 4. Defining the process 

of increments for the marks process as 

WA) = J, dM(a), 

where A is a subregion of R2, one can extend the results of Chapter 4 to  

three components rather than two. 

Figure 7.2 representas a realisation of a marked point-lattice process that 

exhibits CSR. The lattice pattern is a realisation of white noise on a 32 x 32 

study region. The point pattern is a realisation of an HPP. The number 

of events of this pattern is 1024. The marks are a realisation of a Poisson 

process with mean 5 and are independent from the point pattern. 

Thc auto-spectra of the individual processes are presented in Figure 7.3.  

As cxpccted power is distributed across the range of frequencies for all these 

spectra. None of these frequencies for the different patkrns was found to be 

significant at the 10% level using Fisher’s test. 

Figure 7.4 represents the CO-, quadrature and coherency spectra for the 

point versus lattice, mark versus lattice and mark versus point patterns. All 

these spectra are seen to fluctuate around zero indicating that the compo- 

nents of the marked point-lattice pattern are not correlated. In the next 

section we will analyse the storm data using spectral tools. 
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Figure 7.4: Cross-spectra for point versus lattice, first row, mark versus lattice, second 
row, and mark versus point, third row. Column 1 figures (a), (d) and (9) are the co-spectra; 
colunin 2 figures (b), (e) and (h) are the quadrature spectra; and column 3 figures (c), ( f )  
and (i) are coherency spectra. All the spectra were smoothed using Method A four times. 
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hitiation Points + Duration 

W s 
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Degrees of Longitude 

Figure 7.5: Initiation points in Region A represented as centres of the squares together 
with storm duration represented as size of squares. The size of the square reflects the 
storni duration where larger sizes imply longer durations. Storm duration ranges from 4 
to 44 hours. 

7.3 Cross-spectral Analysis of the Storm Data 

111 this srction, we will investigate the relationships between storm initiation 

points and duration and elevation in Region A. Figure 7.5 represents initia- 

tion points in Region A as centres of squares and associated storm duration 

as the relative size of the squares. Storm initiation points supcrimposed 

on rlevatiori data of this region are presented in Figure 7.6. There are 190 

rvcrits of initiation within this region and the storm duration varies between 

4 and 44 hours with a mean value of 10.59 and median 8. In what follows, 

using spectral analysis we will investigate the auto- and joint-properties of 

elevation data, initiation points and their duration. 

Since the elevation data matrix is of dimension 5700 x 1620 (see Sec- 
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tion 7.1) then the range of frequencies for the elevation auto-periodogram 

is p = 0,. . . ,2850 and q = -810,. . . ,809. However, 84% of the power in 

this periodogram is explained by the frequencies with p = 0 , .  . . , 15 and 

(I = -16, .  . . , 15. Furthermore, using the full range of frequencies requires 

heavy coniputations and is time-consuming. For example, to get a sum- 

mary of the auto-periodogram requires approximately half an hour using the 

Splus 3.4 package on a Sun machine. We will thus limit our analysis to the 

shorter range. 

Figure i . i ( a )  is the auto-periodogram of elevation data for p = 0 , .  . . ,15 

and q = -16,. . . ,15. Concentration of power is observed along frequen- 

cies ( p  = (1,. . . , i } , q  = 0 ) ,  ( p  = l , q  = { - 3 , .  . . ,1}) and ( p  = 2 , q  = 

{ - 2 , .  . . , 2 } ) .  These frequencies contribute 51% of the auto-periodogram 

power with the full range of frequencies and 61% of that  with the shorter 

range. The dominant peaks occur at ( p  = {1 ,3 ,4} ,  q = 0) and ( p  = 2,  q = 1). 

Figures i . i ( b )  and (c) give the significance of elevation-periodogram ordi- 

nates at the 1%, 5%, and 10% levels using Fisher’s test with adjusted and 

fixed variance, respectively. Most of the above frequencies are detected as 

significant a t  the 1% level. 
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tion points repeats once in the SN direction and once in the direction of the 

vector with angle 74.13". 

Figure 7.8(b) represents the aut,o-periodogram of the duration pattern. 

Power seems to be distributed over the different frequencies of this peri- 

odogram. In fact none of the frequencies was found to be significant at  the 

10% level using Fisher's test. The range of frequencies investigated using 

Fisher's test is p = 0 , .  . . , 6  and q = -6, .  . . ,5 .  In another att,empt to test 

the null hypothesis of CSR of the marks, we simulated 99 realisations of a 

Poisson process with mean equal to that of the mean mark and used a Monte 

Carlo approach to  test the null hypothesis. Approximately 40% of the auto- 

periodogram ordinates, 194 out of 495, were found to be significant at the 1% 

level, see Figure 7.8(c). Thus storm duration pattern is composed of many 

sinusoidal waves 

Figures 7.9(a) to (e) represent the CO-, quadrature and coherency spectra 

for initiation versus elevation, respectively. A trough is observed in the co- 

spectrum at the frequency (1, l) and a peak at the frequency (3,O). Thus for 

patterns travelling in the direction of the 74.13" angle initiation points are 

negatively correlated with elevation values. However for patterns repeating 

three times in the WE direction the two components are positively correlated. 

The troughs and peaks in the quadrature spectrum indicate that the two 

components are out of phase. 

The significant values of the zero coherency test at  the 1%, 5%, and 10% 

levels are given in Figure 7.9(d). Concentration of coherency is detected along 

the frequencies (p = {6,7, X}, q = -lo), (p = (2 , .  . . ,7},q = {-4,  -3}), 

(p = {5,6,7}, q = 9}), and ( p  = 8, p = {2 , .  . . ,6}). Ordinates of the adjusted 
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Initiation Points + Duration Categorised 
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Figure 7.12: Storms that initiated in Region .4 classified as short- (circles), niedium- 
(triangles), or long-lived (crosses). The vertical dotted line at 7.5"E divides the region 
into eastern and western subregions. 

in  R.cgion A. However, evidence that storm duration is correlated with global 

featurcs of elevation or the storm initiation patterns is not strong. 

In order to investigate the present data set further, we will study the 

properties of storm initiation versus elevation conditional on storm duration. 

In this study, storms will be classified as: short-lived if they lasted less than 

six hours, mcdium-lived if they lasted strictly more than 6 hours and strictly 

less t,lian 15 hours, or long-lived if they lasted more than 15 hours. There 

arc 67 short-lived storms, 87 medium-lived and 36 long-lived. A graphical 

rcprcsentation of Region A storms classified as short-, medium-, or long-lived 

is providcd in Figure 7.12. Conditional on the storm being short-, medium-, 

or long-lived Figures 7.13, 7.14 and 7.15 represent the auto-periodograms 
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for initiation, CO-, quadrature, amplitude, and coherency spectra, and the 

zero-coherency test statistic for initiation and elevation. 

Fisher’s test applied to the auto-periodogram ordinates of short-lived ini- 

tiation points indicates that ( 0 , l )  is significant at the 5% level. For medium- 

lived storms significant ordinates are detected at  the 1% level at ( 0 , l )  and 

at  the 5% level at (1,l). None of the investigated frequencies for the long- 

lived storms was found to be significant at the 10% level. Thus short- and 

medium-lived storms cluster in one big clump in the SN direction, in addition 

medium-lived storms cluster in the direction of the vector with angle 74.13”. 

However, for long-lived storms the null hypothesis of CSR cannot be rejected 

based on Fisher’s test. Note that significant peaks of the auto-periodogram 

for medium-lived storms coincide with those of the unclassified storms 

Troughs are observed at (1,l) in all the co-spectra of the classified storms, 

but the magnitude of the medium-lived storms is the largest. Furthermore, 

for medium-lived storms a peak is noticed at  (3,O) and for long-lived at  ( 2 , l ) .  

Thus in broad t,errris storms tend to initiate from relatively low land rather 

than high. This can be easily seen by visual inspection of Figure 7.6. The 

quadrature spectra of all three categories have peaks and troughs indicating 

that storms and elevation are out of phase. The amplitude spectra indicate 

that all types of storms are correlated to elevation. However, the extent of 

such correlation is not strong as seen from the coherency spectra and the 

zero coherency test statistic. 

Concentration of significant coherency ordinates at the 5% level is de- 

tected for short-lived storms and elevation at  ( p  = {2,3,4},q = -4) and 

( p  = {11,12,13},q = -13). The slope in the WE direction of the phase 
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spectrum along the first frequency band is 1.1 and along the second band 

is -0.55. For medium-lived storms and elevation, concentration is detected 

along (p = 8, q = (0,1,2}). The slope in the SN direction for this frequency 

band is -0.16. Long-lived storms and elevation have concentration of co- 

herency at (p = (5,. . . ,8} ,q = 9) and (p = 6,q = (9,10,11}); the slope 

in the WE direction along the first frequency band is 1.19 and in the SN 

direction along the second is -0.27. Thus in general storm initiation points 

are negatively correlated with elevation irrespective of storm duration. 

Next, we note that the topographical features in the western and eastern 

parts of Region A are different (see Mugglestone and Taylor, 1994) and that 

the differences might affect storm locations and characteristics. We will, 

therefore, divide Region A into the two subregions studied by Mugglestone 

and Taylor (1994) and provide separate analyses for each subregion in the 

next sections. 

7.3.1 Eastern Subregion 

The eastern subregion extends from 7.5"E to 36.787"E. There are 126 storms 

that initiated in the eastern subregion. Figure 7.16 gives the graphical repre- 

sentation of auto-periodograms of elevation, initiation points, and duration 

of the eastern subregion, in addition to the significant ordinates of the eleva- 

tion data using Fisher's test. In the elevation auto-periodogram peaks occur 

at  (2,O) and (1, I), in addition to other minor peaks around low frequencies. 

These peaks are detected as significant at the 1% level using Fisher's test. 

The frequency (0 , l )  is detected as significant at  the 1% level in the initiation 

auto-periodogram. Using Fisher's test none of the frequencies in the duration 
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that the two components are negatively correlated along the vector with an- 

gle 65.25". Note that the magnitudes of the trough and peak are inversely 

proportional to the trough and peak of the initiation versus elevation c+ 

spectrum of the whole area. The peaks in the quadrature spectrum indicate 

that the components are out of phase. 

Concentration of significant coherency, Figure 7.17(c), at  the 5% level is 

observed in the zero coherency test statistic image, Figure 7.17(d), along the 

frequency bands (jJ = l , q  = {-5,. . . , -2>), (p = 2, q = {-4, -3, -2}), (p = 

5 , q  = {-2,-1,0}), (jJ = {6,7,8},q = {-14,3)), (jJ = {7,8,9),q = -IS), 

and ( p  = {1,2,3},q = -3). Figures 7.17(e) and (f) represent the profiles of 

adjusted phase spectra of the above frequency bands in the WE direction for 

q = -14, -13, f 3  and in the SN direction for p = 1,2,5. The slopes in the 

WE direction are 1.12, 0.09, 0.61, and 0.01 for q = -14, -13, -3,3, and in 

the SN direction are -0.14, -0.3, and -0.58 for p = 1,2 ,5 ,  respectively. The 

estimates of the corresponding slopes using phase correlation techniques are 

0.285 in the WE direction and -0.143 in the SN direction. 

Figures 7.18 and 7.19 represent the CO-, quadrature, coherency spectra 

and zero coherency test statistic for duration versus elevation and initiation 

within the eastern subregion. In general, these spectra exhibit similar char- 

acteristics to their equivalents for the entire region. As before it can be seen 

that duration is not highly correlated with elevation or initiation. 

Next, we will explore the relationship between initiation and elevation 

within the eastern subregion conditional on the storm duration. Storms 

initiating in the eastern subregion and classified according to their storm 

duration are presented to  the east of the dashed line in Figure 7.12. There are 
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45 short-, 57 medium-, and 24 long-lived storms within the eastern subregion. 

The auto-periodograms for short-, medium-, and long-lived storm ini- 

tiation points in the eastern subregion are given in sub-figures (a) of Fig- 

ures 7.20, 7.21, and 7.22, respectively. All these periodograms exhibit one 

significant peak at (0,l)  where the level of significance for the medium- and 

long-lived storms is 5% and for short-lived storms is 1%. Note that no signif- 

icant peak was detected when long-lived storms were studied for the entire 

region. 

The short-lived storms and elevation co-spectrum, Figure 7.20(b), has 

a peak at (7,l). Note that the major trough observed in the cc-spectrum 

for short-lived storms at  (1,l) for the entire region is not visible for this 

subregion. The co-spectrum for elevation versus medium-lived storms, Fig- 

ure 7.21(b), resembles the corresponding co-spectrum of the entire region. 

However, the magnitudes of the peaks and troughs are inversely proportional 

to those of medium-lived storms in the entire region. The co-spectrum for 

long-lived storms and elevation, Figure 7.22(b), is similar to the long-lived 

storms cc-spectrum in Region A. 

The quadrature spectra for all the duration categories presented in sub- 

figures (c) of Figures 7.20, 7.21 and 7.22 exhibit major peaks and minor 

troughs. This is an indication that the two components are out of phase. 

The amplitude spectra, sub-figures (d) of Figures 7.20, 7.21 and 7.22, em- 

phasise that the two components are correlated. Sparsely spread significant 

coherency ordinates are detected at  the 5% level, as seen from sub-figures (e) 

and (f) of Figures 7.20, 7.21 and 7.22. 

In summary, initiation points in the eastern subregion are correlated with 
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elevation data, however the nature of the correlation depends on the direc- 

tion of travel of the patkrns. When storms are classified by duration such 

correlation is mainly observed for medium-lived storms. 
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7.3.2 Western Subregion 

The western subregion extends from 10.704"W to 7.5"E. The initiation points 

and their durations are presented in Figure 7.12 west of the dashed line. 

There are 64 events of initiation within this subregion out of which there are 

12 long-lived, 30 medium-lived and 22 short-lived storms. 

Figures 7.23(a) and (b) represent the auteperiodogram of elevation data 

within this subregion and the significant ordinates using Fisher's test. Peaks 

are observed at (1 ,O)  and (1, -1). These peaks are significant at the 1% level. 

Other significant ordinates are detected within the frequency range with 

p = 0, . . . , 5  and q = -5, . . . , 5 .  The initiation points auto-periodogram, Fig- 

ure 7.23(c), possesses a peak at (0,l)  which is significant at  the 1% level. As 

in the entire region and the eastern subregion the duration auto-periodogram, 

Figure 7.23(d), does not possess any significant ordinates at the 10% level 

using Fisher's test. 

A major trough is observed in the co-spectrum for initiation versus el- 

evation at (2, l). In addition, two minor peaks occur at (1, -1) and (0,4), 

see Figure 7.24(a). The trough in the quadrature spectrum, Figure 7.24(b), 

indicates that the two components are out of phase. The significant ordi- 

nates of the coherency spectrum, Figure 7.24(c), using the zero coherency 

test statistic are presented in Figure 7.24(d). No concentration of coherency 

is detected for relatively low frequencies. However, concentration at the 5% 

level is detected along (p = {12,13,14},q = 6) and ( p  = 13,q = {4,5,6}). 

The slope in the WE direction for the first frequency band is -0.41 and the 

slope in the SN direction along the second frequency band is -0.26. The esti- 
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mates of the slopes along the frequency band p = 11,. . . ,14 and q = 3 , .  . . , 7  

using the phase correlation techniques are 0.29 and -0.18 for the WE and 

SN directions, respectively. 

Therefore, initiation points and elevation are negatively correlated along 

the vector with angle 34". Moreover, they arc positively correlated along the 

vector wit,h angle -53.45" and for the pattern repeating four times in the SN 

direction. In addition, these two components are out of phase. However, the 

correlations indicated by the CO- and quadrature spectra at low frequencies 

are not strong, since no concentration of coherency is detected around these 

frequencies. Furthermore, for relatively high frequencies where coherency 

is concentrated the elevation pattern is to the west of initiation points by 

approximately half a pixel and to the south by one third of a pixel. 

Figures 7.25 and 7.26 represent the CO-, quadrature, and coherency spec- 

tra in addition to the zero coherency test statistic for duration versus eleva- 

tion and initiation within the western subregion, respectively. As it is the 

case for the entire region and the eastern subregion, correlation between the 

marks and latt,ice pattern is suggested by the peaks and troughs in the co- 

and quadrature spectra. However, there is insufficient evidence to suggest 

that such correlation is strong due to the lack of concentration of coherency 

for duration versus elevation. Note here that the peaks and troughs in the 

cc-spectrum are mainly concentrated around frequencies with low p ,  whereas 

the cc-spectra for the entire region and the eastern subregion have theirs con- 

centrated around frequencies with low q. 

The CO- and quadrature spectra for the marks and initiation exhibit a 

similar structure to those of the entire region and the eastern subregion. 
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None of the spectra for the entire region and its subregions are characterised 

by distinctive features but peaks and troughs are observed over the whole 

investigated range. Concentration of coherency at  the 5% level is detected 

around the frequencies (p = (1 , .  . . ,4}, q = (-15, -14, -13}), (p = 6, q = 

{-4, -3, -2}), ( p  = 8, q = 1-2, -1; 0}), and (p = (8,9,10},q = 0) .  The 

mean value of the slope of the adjusted phase spectrum in the WE direction 

for the first frequency band with q = -15, -14, -13 is -0.83, whereas the 

mean shift in the SN direction for frequencies with p = 2 , 3 , 4  is 0.33. The 

slopes in the SN direction for the frequency bands with p = 6,8 are 0.54 and 

0.32, respectively. The slope in the WE direction for q = 0 is 0.14. 

Figures 7.27(a), 7.28(a) and 7.29(a) represent the auteperiodograms of 

the short-, medium-, and long-lived storm initiation points. A significant 

peak of the auto-periodogram of short-lived initiation points is detected at  

( 0 , l )  at the 5% level. This frequency is also the only significant peak at the 

10% level for the medium-lived storms. Note that for long-lived storms we 

were not able to use Fisher’s test since [ 0 / 2 ]  = 1 where 12  is the number 

of events of long-lived storms in the western subregion. However, visual 

inspection of the auto-periodogram for long-lived storms does not suggest 

any specific structure. In order to assess the hypothesis of CSR for this 

point pattern we simulated 99 realisations of the HPP process on the western 

subregion. Only 3% of these ordinates were found to be significant at  the 5% 

level. None of the frequencies in the range p = 0, .  . . , 1 2  and q = -4, .  , . , 4  

were found to be significant at this level. 

The CO- and quadrature spectra for the initiation points classified by du- 

ration and the elevation surface are presented in sub-figures (b) and (c) of 
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Figures 7.27, 7.28 and 7.29 for the short-, medium-, and long-lived storms, 

respectively. The peaks and troughs in both spectra and the peaks in the 

amplitude spectra, sub-figures (d), indicate that initiation points are corre- 

lated with elevation. However, the sparsity of significant coherency ordinates 

implies that such correlation is not strong. Coherency spectra are presented 

in sub-figures (e), while the zero coherency test images are presented in sub- 

figures (f). It is worth noting here that the number of events for the classified 

storms does not exceed 30 events in each case. 

In summary, storm initiation is correlated with elevation within the west- 

ern subregion. However, the nature of this correlation varies with the direc- 

tion of travel of the waves. For duration versus the elevation surface there is 

no strong evidence to suggest that the global patterns in the two components 

are correlated. The same holds true for duration versus initiation. Further- 

more, studying the properties of initiation points versus elevation conditional 

on the duration of storms has not revealed any distinctive features. 

7.4 Comparison to Other Studies 

In this section we compare our findings about the storm data and those 

of Mugglestone and Taylor (1994). Mugglestone and Taylor (1994) used 

random labelling to determine if there is any difference between the spatial 

distributions of medium- and long-lived storms in the eastern and western 

subregions. They found out that there is a slight difference between the 

two types of storms in the eastern subregion where the medium-lived storms 

are more strongly aggregated than the long-lived storms. However, they had 

insufficient evidence to claim that such a link exists in the western subregion. 
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They also reported that visual comparison of the maps of storm initiation 

points and elevation suggests that there is a link between the storm duration 

and the proximity of mountains to the points where the storms initiate. 

However, formal confirmation of such a link could not be established using 

random labelling. Our analysis suggests that for the data set at hand there 

is insufficient evidence to support the claim that storm duration is in general 

related to the elevation data, except for medium-lived storms in the eastern 

subregion where there is some evidence that such a link exists. Nevertheless, 

storm initiation was found to be correlated with elevation. Further studies 

can be carried out to see if such relationships hold for similar data and to 

investigate if there is a link between storm duration and other topographical 

features. 

7.5 Summary 

Using cross-spectral analysis techniques for processes with two and three 

components, we explored the relationship between elevation data, storm ini- 

tiatiou points and their duration within the Sahel region of Africa. The 

analysis of this data set was carried out using several scenarios. 

First, the data set was studied within the entire region. It was shown 

that initiation points and elevation data are correlated, however the type of 

correlation is dependent on the direction of travel of the main waves under- 

lying the processes. Furthermore, evidence of correlation between duration 

and either elevation or initiation was not strong. 

Second, conditional on duration being classified as short-, medium-, or 

long-lived, the properties of initiation points and elevation were explored. 
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The spectra betwecn initiation and elevation for the different categories ex- 

hibited similar features, mainly within the co-spectrum, but the magnitudes 

of these features varied from one category to another. Again it was not 

evident that correlatioIi between initiation points and elevation differed ac- 

cording to storm duration. 

Third, the above two approaches were used to study the properties of 

two subsets of the data. The two subsets were derived by splitting Region A 

into eastern and western subregions. Initiation points in the eastern sub- 

i-cgion were found to be correlatcd with elevation data. However, in the 

western subregion correlation between these two components was to a lesser 

extent. Furthermore, there was insufficient evidence to  suggest duration and 

the other two components were correlated within the subregions. Classify- 

ing the storms by duration in the eastern subregion revealed that correlation 

between initiation and elevation differed between the duration categories. Vi- 

sual inspection of the different spectra revealed that the correlation between 

the medium-lived storms and elevation was relatively stronger than for the 

other duration categories. However, no such phenomenon was detected in 

the western subregion. 

251 



Chapter 8 

Conclusions and Directions for 
Further Research 

In this chapter, we summarise the main results of this study and propose 

directions for further research in this area. 

8.1 Conclusions 

In this section, we recap t,he major contributions of this study. In general, 

we have established that, two-dimensional spectral analysis techniques can be 

used to explore the relationship between the components of a hybrid process 

consisting of a spatial point process and a lattice process. Thus, the basis 

for nonparametric analysis of such processes was laid down. In addition, we 

have derived asymptotic distributions of the spectral density matrix of the 

hybrid process. These distributions are analogous to results from studies of 

one-dimensional processes. We have also provided analyses of two real data 

sets. In more detail, this thesis contains the following achievements. 

The potential of cross-spectral estimates to unveil the nature of corre- 

lation between a two-dimensional point process and a lattice process 
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was demonstrated using simulated examples 

Models that extend two-dimensional linked and balanced doubly stochas- 

tic point processes introduced by Diggle and Milne (1983) to the case 

of linked and balanced point-lattice processes were provided. In addi- 

tion, for simulated examples of these models we have shown that the 

spectral estimates were in agreement with the theoretical results. 

A method to adjust the phase spectrum for jumps that are due to the 

constraint of the phase belonging to the interval ( -T ,  T )  was provided. 

The importance of these adjustments for extracting information about 

the phase shift between the two components of the hybrid process was 

manifested through simulated examples. 

Techniques to calculate slopes of the phase spectrum locally were sug- 

gested. The need for these techniques arises mainly for two reasons: 

1. in some situations, the two components are only related at a subset 

of the frequencies investigated; and 

2. the phase spectrum is not necessarily linear in all cases. 

For non-zero frequencies, the asymptotic distribution of the cross-spectral 

matrix was established to be a complex Wishart distribution of dimen- 

sion two with one degree of freedom. For zero frequencies, the distri- 

bution was established to be a Wishart distribution of dimension two 

with one degree of freedom. In addition, the cross-periodogram statis- 

tic was shown to be an unbiased estimator of the cross-spectral statistic 
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and cross-spectral estimates at  different frequencies were shown to he 

asymptotically independent of each other. 

Confidence intervals were obtained for the auto-, CO-, quadrature and 

phase spectra using the asymptotic properties. 

A test for zero coherency was discussed. The test statistic followed 

an F distribution. The motivation for applying the test is to deter- 

mine formally the range of frequencies where the two components are 

correlated. 

Several methods for discretising point patterns to form lattice patterns 

were considered, and the joint properties of the resulting lattice-lattice 

patterns were studied. We examined the extent to which such an ap- 

proach eliminates problems that can he attributed to lattice patterns 

being observed on grid points whereas point patterns being observed 

anywhere in the study region. 

We established spectral tools for analysing hybrid processes including 

marked point processes. 

For the trces of the rain forest of French Guyana, we found that Species 3, 

10 and 11 were to the north-west of the altitude pattern. In addi- 

tion, Species 3, 11, and 1 2  favoured relatively low altitudes, whereas 

Species 10 favoured high altitude. 

In analysing the storm data of the Sahel region of Africa, we considered 

several scenarios. The main findings in each case are listed below. 
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- For the entire region, we showed that initiation points and ele- 

vation data were correlated. However, the nature of correlation 

depended on the direction of travel of the main waves underlying 

the two components. Furthermore, evidence of correlation be- 

tween duration and either elevation or initiation was not strong. 

- The relationships between initiation points and elevation were ex- 

plored conditional on duration being classified as short-, medium-, 

or long-lived. Similar features were observed in the cross-spectra 

of initiation and elevation for the different duration categories. 

This similarity was mainly manifested in the co-spectrum. 

- The study region was divided into eastern and western subregions, 

and the relationships between initiation points, their durations, 

and elevation were studied using the previous scenarios. In the 

eastern subregion, initiation points were found to be correlated 

with elevation data, whereas in the western subregion this cor- 

relation was not as st,rong. Again, correlation between duration 

and t,he other two components was not evident within the subre- 

gions. Analyses of storm initiation and elevation conditional on 

the classified duration revealed that the extent of correlation be- 

tween medium-lived storms and elevation was relatively stronger 

than for the other duration categories. No such phenomenon was 

observed in the western subregion. 
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8.2 Future Work 

This thesis has not exhausted all the possible methods one can use to study 

the relationship between a spatial point process and a lattice process. In 

what follows, we list some suggestions for extending this study. 

Throughout this thesis analysis of hybrid processes has been based 

on second-order cumulant functions. As an immediate extension one 

can consider studying the properties of hybrid processes using third- 

and higher-order cumulants and their Fourier transforms. This ap- 

proach might be particularly useful for the hybrid process consisting of 

a marked spatial point process and a lattice process because it would 

enable us to study quantities such as 

where M x  and NX represent the cumulative mark process and cu- 

mulative number of events of the point process X ,  and Y is the lattice 

process. The importance of third- and higher-order cumulant functions 

is due mainly to the fact that for Gaussian processes cumulants that are 

of order greater than two vanish (see Brillinger, 1994). This is relevant 

to our case because under the null hypothesis of CSR it was found that 

the individual DFTs of point and lattice processes were Gaussian. In 

addition, studying higher-order spectra would enable the detection of 

processes that have their first- and second-order equivalent to those of a 

completely spatially random process but are not themselves completely 

spatially random. 
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Spectral analysis techniques are based on transformations of the process 

using Fourier functions. As an alternative approach one might investi- 

gate the joint properties of the (marked) point processes and lattice pro- 

cesses using wavelets. Wavelets are transformations of a process corn- 

posed of translations and scalings of a single function called the mother 

function (see Nason and Silverman, 1994). In time series analysis 

wavelets offer a more efficient representation for non-smooth and/or dis- 

continuous functions than do Fourier transforms, although for smooth 

functions the converse is true (see Nason and Silverman, 1994). 

In this study, when the joint properties of marked spatial point pro- 

cesses and lattice processes were examined the mark process was as- 

sumed to possess one component. An obvious extension would be to 

consider several components of this process. For example, the marks 

process for the Sahel storms may consist of the storm speed in addition 

to the storm duration. 

Further studies to investigate the possibility of an equivalence between 

bandwidth selectors for kernel density and intensity estimators for the 

one- and two-dimensional cases using plug-in methods could be carried 

out, sec Chapter 5 for more details. This equivalence might be based 

on the equivalence between bandwidth selectors for this intensity esti- 

mator and kernel density for the one-dimensional case using the LSCV 

criterion proved by Diggle and Marron (1988). 

In connection with the study of the storms data set, it would be of 

interest to study the joint spectral properties of storm tracks and the 
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elevatiori data. The storm tracks are defined as the line segments join- 

ing the points where the storms initiated, reached their maximum size 

and dissipated, see Figure 8.1. In Figure 8.1 the dots represent ini- 

tiation points, the triangles represent the positions where the storms 

reached their maximum size, and the crosses represent the positions 

where the storms dissipated. Thus one might consider an extension of 

Bartlett's (1967) work on the spectral analysis of line segments. 

Both data sets that were used in this study are extracts from a larger 

data base. An interesting extension would be to carry out similar 

analyses on the other parts of the data and compare and contrast results 

with the findings of this study. 
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Figure 8.1: The dots represent initiation points, the triangles represent the positions where 

the storms reached their rnaxirnum size, and the crosses represent the positions where the 

storms dissipated. The storm t,racks are defined as the line segments joining the points. 



Appendix A 

Mat hemat ical Tools 

A.1 Useful Identities 

The following are a set of well known trigonometric relations. Let pl and p2 

be two integers such that 0 5 p l , p z  5 [N/2] ,  then 

N 0 i f 0 < p l # ~ z <  [ N / 2 ] ,  
N / 2  
N 

if 0 < p l  = pz < N/2 ,  
if p l  = p~ = (0 or N/2  if N is even.) t = i  

N 0 if 0 I P I  # PZ i [NI21 , 
sin (7) 2.rrp,t sin (1;) 2.rrP2t = { N/2  if 0 < pi = p2 < N/2 ,  

t=1 0 if pl = p z  = (0 or N/2  if N is even.) 

A.2 Delta Functions 

The following are some basic functions that are needed for the proof of 

theorems included in previous chapt,ers. The definitions were taken from 

Brillinger (1981, chapter 2 )  and are reproduced here because we found it 

difficult to obtain a copy of Brillinger (1981). 
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Kronecker delta 

1 i f a = O  
0 otherwise 

6{a} = 

Kronecker comb 

Dirac delta function 

6(a) ,  -00 < a < 00, 

with the property 

1 ifs= O (  mod 2 ~ )  

for all functions f(a) continuous a t  0. 

Dirac comb 

m 

q(a) = ~ ( a  - 2nj), for - 00 < a < CO, ('4.5) 
j=-m 

with the property 

for all suitable functions f ( a )  

A.3 Relevant Distributions 

In this section, we provide definitions of the complex normal multivariate 

distribution and the complex Wishart distribution. 
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The Complex Normal Distribution Let Nk(p,  C) denotes a k vector- 

valued normal distribution with mean 1-1 and covariance matrix E. Let 

X be a k complex vector-valued variate, then X is said to be a complex 

k vector-valued normal variate denoted by N:(p, E), if 

From the above definition, one can conclude that 

E[(X - p ) ( X  - P ) ~ ]  = C and that E[(X - p ) ( X  - D ) ~ ]  = 0.  

The Complex Wishart Distribution If X I , .  . . , X,, are independent 

N,@(O, C) variates, then the k x k matrix-valued random variable W = 

E,"=, X j T  is said to have a complex Wishart dist,ribution of dimen- 

sion k and degrees of freedom 7n, and is written as Wf(m,  E). This 

distribution was introduced by Goodman (1963), it, is an extension of 

the Wishart distribution. Now, if we write W = lIWjkR + iWJkllir 

where R, I in the subscript denote the real part and the imaginary 

part, respectively. The joint distribution of the distinct elements of the 

niatrix W is called a complex Wishart distribution. The probability 

density function of the joint distribution is given by 

where, 

j = O  

and IVI denotes the determinant of the matrix V. In addition, r is the 

gamma function. The density fw(V) is defined over the domain where 

V is Hermitian positive semi-definite 
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A.4 Linear and Space Invariant Operators 

.4n important class of operators consists of those that are linear and space 

invariant  (see Brillinger, 1970). Let B be an operator whose domain, ID, is 

a process X(a) ,a  E Et2. The operation is linear if 

where bl,  b2 are constants arid Xi, X2 are in ID. 

The opcration is spacc invariant, if 

B[T"X](a) = B[X](a + U),  

where T"X(a) = X(a + U). 
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Appendix B 

Cumulants 

B.l Definition and Properties 

It  is well known that the characteristic function, Q(t ) ,  of a given distribution 

determines the distribution uniquely. In addition, knowing the distribution 

function enables us to  calculate the moments of all orders of the given distri- 

bution by using the Taylor expansion of the function, if such an expansion 

exist. 

Therefore, if we are interested in determining the joint distribution of 

product,s of random variables, as it is the case here, then it is sufficient to 

establish the characterist,ic function of the product. However, in most cases, 

it is algebraically difficult to  do so. Such a problem can be simplified by 

using the log transform, which maps products t o  sums. 

Hence, inst,ead of calculating the characteristic function, one determines 

its log transform, log Q(t ) ,  known as the cumulant generating function (see 

Kendall and Stuart, 1963, chapter 3). Since the log transform is a one to  

one transformation then the cumulant generating function also determines 

the distribution of a given random variable uniquely. 
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Next following the notation in Brillinger (1981, chapter 2), cumulants are 

defined by analogy to the moments of a distribution. 

Definition B.l.l Let (Y l , .  . . ,I$) be an T variate random variable with 

EIY, 1‘ < CO f o r  j = 1,.  . . , T ,  where the Y ,  are real or complex and 

EY = 

i s  given b y  the coeficient of i T t l . .  .t, in the Taylor series expansion of 

log(Eexp i 

However, authors such as Brillinger (1981) and Kendall arid Stuart (1963) 

give the above definition as a theorem after defining the cumulant function 

of several variables as below. 

ydF(y) .  TherLh-orderjoint cumulant, Cum(Y1,.  . . , Yr) ,  of (Yl , .  . . , K )  

Y&) about the origin. 

Definition B.1.2 Let (Y l , .  . . , Y,) be as above, then 

Cum(Y1,. . . , Y,) = C(-l)”-’(p - l)! (E 3). . . (E 
3-1 3% 

q) ,  (B.l) 

where the summation extends over all partitions ( V I , .  . . , u p ) ,  p = 1 , .  . . , T ,  

o f ( L . . .  , r )  

A special case occurs when y3 = Y, j = 1,. . . , r .  The definition gives then 

the cumulant of order r of a univariate random variable. 

Note that for r = 1 , 2 , 3  Definition B.1.2 implies that 

Next, we list some properties of cumulant functions. 
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1. Cum(alY1,. . . , a,K) = al . . . a,Cum(Yl,. . . , Yr) for a l ,  . . . ,a, constants 

2. The function Cum(Y1,. . . , Y?) is symmetric in its arguments. 

3. If any group of the Y's  is independent of the remaining Y's, then 

Cum(Y1,. . . ,E:) = 0. 

4. For the random variable (Zl, Yl , ,  . , , Yr) , 

Cum(Y1 + Zl,YZ,. . . , K) = Cum(Y1, Yz,. . . ,Yr) + Cum(Z1, Y2, .  . . , K).  

6. If the random variables (Yl , .  . . ,E) and (Zl,.  . . , Z7) are independent 

then. 

Curn(Yl + Zl,. . . , Y, + 2,) = Cum(Yl,. . . , Y,) + Cum(Z1,. . . , Z7).  

7. Cum(Y) = IE(Y). 

8. Cum(Y, Y) = Var(Y). 

9. Cum(Y, Z) = Cov(Y, Z) 

B.2 Important Lemma 

In this section, we supply a lemma that enz_..s us to  determine the cumu ants 

for a random variable in a systematic manner. This lemma is due to  Leonov 

arid Shiryaev (1959) for real random variables but was extended by Brillinger 
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and Rosenblatt (1967) to the complex case. First, we introduce some relevant 

definitions. 

Definition B.2.1 Consider a (not necessarily rectangular) two way table 

and a partition of  its elements into disjoint sets { PI , Pz , . . . , P, } two 

sets of  the partition Pi, and Pi2 are said t o  hook if there exist ( j l , j z )  E 

Pi, and ( j , , j 4 )  E Pi, such that jl = j ,  

Definition B.2.2 Two sets Pi, and Pp are said to communicate if there 

ezists a sequence of sets Ptt = Pi',,, Pi2,. . . ,Pi, = Pit( such that Pi, and Pi,+1 

hook for each, j .  

Definition B.2.3 A partition is said t o  be indecomposable if all its sets 

communicate. 

Result 1 If the rows of the above table are denoted b y  RI, . . . , RJ then 

{ P I ,  . . . , P, } is indecomposable if and only if there exists no sets Pt,, . . . , P,, 

( n  < m) and TOWS R3,, . . . , RIP ( p  < J )  with 

Pil U , .  . UP,, = Rj, U , .  . U Rjp 

Lemma B.2.1 Given an array llYmnll,n = 1,.  . . , K,  and rn = 1,.  . . , J of 

random variables consider the J complex random variables 
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The joint Jth-order cumulant Cum(z1,.  . . , ZJ} is given b y  

where C, = Cum{Y,, , . . . , Y,”.} when U = (a , ,  . . . ,a,) the a’s being pairs 

of  integers taken from the aboue table and the summation extends ouer all 

indecomposable partitions of the above table. 

Result 2 For a Normal variable X ,  it can be easily shown that cumulants 

of order greater than two vanish (see Kendall and Stuart, 1963, chapter 5). 

Hence, t o  show that a variable is normally distributed it is suficient to show 

that the c,umulants of order greater than two vanish. This is so because the 

Normal distribution is determined b y  its moments. 

268 



Appendix C 

Tree Species (Continued) 

In this appendix we providc exploratory cross-spectral analyses for Species 2, 

4 , .  . . , 9 ,  13 and 14 that are listed in Table 6.1. In addition, the joint prop- 

erties of species that belong to the same family are studied. 

C.1 Species 2: Gaulette 

Figure C.l(a) is the graph of Gaulette versus altitude pattern. Figure C.l(b) 

has two peaks at  the frequencies ( 0 , l )  and (1,-1). This indicates that 

Gaulette resembles a cluster process repeating once in the SN directiou and 

along the direction of the 135" angle. These peaks are significant at the 5% 

and 10% level, respectively. 

Henceforth, we will only report significant features of the species studied, 

obvious interpretations will be omitted. However, for completeness we will 

provide all the essential figures associated with each species. 

The co-spectrum, Figure C.l(c), has peaks at ( 0 , l )  and (1, -1). The 

quadrahre spectrum, Figure C. l (d) ,  has troughs at  (1, l), (0, l), and a peak 

at  ( 1 , O ) .  The phase and coherency spectra are given in Figures C.l(e) and 

269 



Species 2 

Figure c.1: (a) Gaulette versus altitude pattern; (b) raw auto-periodogram of the point 
pattern; (c) and (d) raw CO- and quadrature spectra; (e) and (f )  smoothed phase and 
coherency spectra using Method A four times. 
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( f ) ,  respectively. 

Figure C.2 is the profile of the zero coherency test for Gaulette versus 

altitude pattern for p = 0,. . . ,15. Figures C.3(a) and (b) represent the 

adjusted phase spectra in the WE/SN directions for the frequencies where 

concentration of significant ordinates was observed in the zero coherency 

test. Note that coherency is concentrated along the frequencies ( p  = 1, q = 

{-2,.  . . ,2}) and ( q  = 2 , p  = (0 , .  . . ,4}).  The slope in the SN direction for 

the frequency band p = 1 is -0.12, and the slope in the WE direction for the 

frequency band q = 2 is -0.11. Thus Gaulette is to the east of the altitude 

data by 0.6m and to its north by 0.5511~ 
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Figure c.2: Profile of the zero cohercncy test statistic spectrum for Gaulette versus 
altitude pattern for p = 0,. . . ,15, solid line, and the corresponding upper 5/1% critical 
point of the F distribution, dotted/dashed%B. 



Adjusted Phase Spectrum 
WE direction 

wy=i14kA 0 .-. 
w y  = -2 

3.141-j _ . - a  

0 

wy.2 
3.14 
1.57 
0 

w y  = -1 
3.14 
1.57 

0 

w y  = -3 

Adjusted Phase Spectrum 
SN direction 

w x = 4  
-3.14 

W x = l  

3.14 .-. 0 I 

-3.14 
-4.71 
-6.28 

w x = 2  

3.14 
1.57 

0 

w x = o  

Figure (2.3: (a) and (b) Profile of the adjusted phase spectrum (Gaulette versus al- 
titude pattern) in the WE and SN directions for t,he frequencies p = 0,1 ,2 ,4  and 
q = -3, -2 ,  -1,1,2.  

C.2 Species 4: Palmiers 

The locations of Palmiers are presented in Figure C.4(a) superimposed on 

altitude values. The raw auto-periodogram of the point pattern, Fig- 

ure C.4(b), has peaks at ( 4 , l )  and (1, -1). The former frequency was found 

t,o be the only significant frequency at the 5% level among the frequencies 

investigated. 

Figure C.4(c) is the co-spectrum, and it possesses a trough at (1, -1) and 

a peak at  (1,O).  The quadrature spectrum has peaks at (1, -l), ( 0 , l )  and 

a trough at  (1, l) ,  see Figure C.4(d). The phase and coherency spectra are 

represented in Figures C.4(e) and (f) ,  respectively. 
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The profile of the zero coherency test for p = 0 , .  . . ,15, is provided in 

Figure C.5. From this figure we note that the coherency is significantly 

different from zero, at the 5% level, for (q = 4,p  = {0,1,2}). The slope 

along this frequency band is 0.67. Thus Palniiers lie to  the west of the 

altitude pattern by 3.35m. 
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Figiirr C.5: Profile of t,he zero coherency test statistic spectrum for Palmiers versus 
altitiidr, patt,ern for p = 0 , .  . . .  15. 
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C.3 Species 5 :  Encens 

Figure C.6(a) gives the locations of Encens together with altitude values. 

The sample point spectra, Figure C.6(b), has peaks a t  ( l , O ) ,  (20, -ll), (0,2) 

and (0 , l ) .  The peak a t  ( 1 , O )  is significant a t  the 5% level. However, given 

that the number of events is 131, the frequency range is restricted so that 

the significance of the frequency (20, -11) cannot be assessed. 

A peak is observed a t  ( 0 , l )  in the co-spectrum, Figure C . ~ ( C ) ,  and a 

trough is observed a t  (1, -1). The quadrature spectrum, Figure C.G(d), has 

a major trough a t  ( 1 , O ) .  Figures C.6(e) and (f)  represent the phase and 

coherency spectra, respectively. The coherency is significantly different from 

zero a t  the 5% level for the frequency band ( p  = {0, . . . ,4}, q = 3). The slope 

of the adjusted phase spectra in  the SN direction for this frequency band is 

-1.24. 
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Figure c.7: 
altitude pat,tern for p = 0 , .  . . , 15 .  

Profile of the zero coherency test statistic spectrum for Encens versus 
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C.4 Species 6: Tosso Passa 

The point pattern of Tosso Passa is presented in Figure C.8(a) together with 

altitude values of the study region. The auto-periodogram of the point 

pattern, Figure C.8(b), has peaks a t  (17,15) and (1, - 2 ) .  However, the null 

hypothesis of CSR was not rejected a t  the 10% significance level. 

The co-spectrum, Figure C.8(c), possesses major troughs at (0, I), (1, -1) 

and a minor peak at ( 1 , O ) .  The quadrature spectrum, Figure C.8(d), exhibits 

troughs a t  (1 ,0) ,  (0, l), and peaks a t  (1, -l), (0,2).  The detection of these 

peaks and troughs, despit,c failing to  reject the null hypothesis of CSR of 

the poirit pat,tern, might he attributed to the simple structure of the lattice 

pattern. The phase and coherency spect,ra are provided in Figures C.8(e) 

and ( f ) ,  respectively. The profile in Figure C.9 reveals that  there is no con- 

centration of coherency. Thus Tosso Passa is not (highly) correlated with 

altitude data. 
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Figurr C.9: Profile of the zero coherency test statistic spectrum for (Tosso Passa) versus 
altit,udtL patt.ern for p = 0 , .  . . , 15. 
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C.5 Species 7: Boco 

Figure C.lO(a) gives the locations of Boco superimposed on altitude values. 

Figure C.lO(b) represents the auto-periodogram of the point pattern. This 

periodograni exhibits peaks at (1, -1) and (9, -13). The peak at (1, -1) is 

significant a t  the 1% level. 

The co-spectrum has peaks a t  (1, -l), (1,l) and (0, l), see Figure C.lO(c). 

Figure C.lO(d) represents the quadrature spectrum which exhibits a trough 

a t  ( 0 , l )  and two peaks at (1, -1) and ( 1 , O ) .  

The phase arid coherency spectra are presented in Figures C.lO(e) and 

( f ) ,  respectively. Concentration of non-zero coherency, around relatively low 

frequencies, is observed along the frequency band ( p  = 2, q = {-2, . . . , Z } ) ,  

see Figure C . l l .  The slope of the adjusted phase spectra in the SN direction 

for this frequency band is 0.52. 
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Figure c.11: Profile of the zero coherency test statistic spectrum for Boco versus altitude 
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C.6 Species 8: Manil Marecage 

The pattern of the locations of Manil Marecage superimposed on altitude is 

presented in Figure C.l2(a). Figure C.l2(b) is the auto-periodogram for 

the point pattern. The peak at ( 1 , O )  is the only significant low frequency at 

the 5% level. 

Figure C.l2(c) represents the co-spectrum which possesses troughs at 

( 1 , O )  and (0, -1). The quadrature spectrum, Figure C.l2(d), exhibits a ma- 

jor peak at (0, l) and two other minor peaks at (1, -1) and (1, l). The graphs 

of the phase and coherency spectra are given in Figures C.l2(e) and (f) ,  re- 

spectively. The profile of the zero coherency test in Figure C.13 indicates 

that the correlation detected above is not strong. 
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Figure c.13: Profile of t,lie zero coherency test statistic spectrum for Manil Marecage 
VCTSIIS altitridc pattern for p x 0 . .  . . , 15. 
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C.7 Species 9: Gonfolo Rose 

Gonfolo Rose versus altitude pattern is provided in Figure C.l4(a).  The 

auto-periodogram for the point pattern, Figure C.l4(h), exhibits peaks at 

(1, 1) and (13,23). The former peak is significant a t  the 1% level. The 

significance of the latter peak cannot he assessed since the number of events 

in the point pattern 84 implies that we can only investigate the frequency 

band ( p  = { O , .  . . , 4 } , q  = {-4,. . . ,3}). 

Figure C.14 (c) is the co-spectrum of the point,-lattice pattern. It pos- 

sesses peaks a t  (0 ,  I ) ,  ( I ,  1) and (I ,  0). The quadrature spectrum, Figure C.14(d), 

has a peak at ( 0 , l )  arid troughs at ( l , O ) ,  (1, -1) and (1,l). The spectra of 

phase and coherency are presented in Figures C.I4(e) and (f) ,  respectively. 

Figure ‘2.15 represents the profile of the zero coherency test. Note that at 

the 5% significarice level coherency is concentrated around the frequencies 

( p  = 2,q = { - l , O ,  1)) in the SN direction and ( p  = { 2 , 3 } , q  = -1) in the 

WE direction. Calculating the slope of the adjusted phase spectrum in the 

SN direction for the frequency band ( p  = 2, q = { - l , O ,  I}) yields -1.52. The 

slope in the WE direction for the frequency baud ( p  = {2,3},q = -1) is 

0.12. 
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Figiirr c.15: Profile of the zero coherency test statistic spectrum for Gonfolo Rose 
VCI'SIIS alt,it,iide pattern for p = 0 , .  . . , 15. 

291 



C.8 Species 13: Cedres 

The locations of the point pattern formed by the Cedres are presented in Fig- 

ure C.l6(a).  The auto-periodogram for the point pattern, Figure C.l6(b),  

has a major peak a t  (1,l).  This peak is significant at the 1% level, moreover 

the frequency (3,O) is significant a t  the 5% level. Peaks are detected a t  (1,l) 

and ( 0 , l )  in the co-spectrum, Figure C.l6(c). The quadrature spectrum, 

Figure C.l6(d),  exhibits a major trough at (1, -1) and two minor troughs at 

( 1 , O )  and ( 0 , l ) .  

The graphs of' phase and coherency spectra are provided in Figures C.l6(e) 

and ( f ) ,  respectively. Figure (3.17, the profile of the zero coherency test for 

this species versus altitude pattern, indicates that the coherency is different 

from zero for couple of sparse low frequencies. 
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C.9 Species 14: Angelique 

The locations of Arigeliquc are presented in Figure C.l8(a). Figure C.l8(b) 

gives the graph of the auto-periodogram of the point pattern. Peaks are 

detected at  (1, -2) ,  (2 ,0) ,  (1, Z ) ,  ( 0 , l )  and (0 ,Z) .  The first two of these peaks 

are significant at the 1% level and the fourth at  the 5% level. 

The co-spectrum, Figure C.l8(c), has peaks at  ( l , O ) ,  ( 0 , l )  and a trough 

at  (0,2).  The quadrature spectrum, Figure C.18(d), has a major trough at 

( 0 , l )  and a minor peak at ( 1 , O ) .  

The phase and coherency spectra are presented in Figures C.l8(f) and 

( f ) :  respectively. Concentration of coherency is detected along the frequen- 

cies ( p  = { 1 , 2 } , q  = {-lo, .  . . , -3)) and ( p  = { O , l ,  2}, q = 3) ,  see Fig- 

ure (2.19. The slope of the adjusted phase spectrum in the WE direction for 

the frequency band with q = 3 is 0.25, and the slopes of the adjusted phase 

spectrum in the SN direction for the frequency bands with p = 1 , 2  are 0.11 

and 0.27, respectively. 
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Figure c.19: Profile of the zero coherency test statistic spectrum for Angelique versus 
xititude pat,tem for p = 0 , .  . . , 15. 
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Figure C.21: (a) raw auto-periodogram of the point pattern of the joint pattern for 
Species 3 and 11, (b) and (c) raw CO- and quadrature spectra; (d) and (e) smoothed phase 
and coherency spectra using method A four times. 
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The profile of the zero coherency test statistic, Figure C.22, indicates 

that there is concentration of significant ordinates at  the 1% level at the 

frequencies ( p  = 0, q = {1,2,3}), ( p  = 1, q = {-1,. . . , 3 } )  and ( p  = 

2, q = {-I, .  . . , 2 } ) .  Figures C.23(a) and (b) represent the profiles of the 

adjusted phase spectra in the WE direction and SN direction for the previ- 

ously mentioned frequencies, respectively. The slopes in the WE direction 

for q = -1,. . . , 3  are 0.29, 0.92, 1.61, 1.58 and 1.14, respectively. The slopes 

in the SN direction for p = 0 , 1 , 2  are -0.53, -0.9 and -0.37, respectively. 

300 



~20 ~ 1 0  0 10 20 -20 -10 0 10 M 

15 

10 

5 

0 

15 

- 
7 10 
U c m 
v) 
a, 
U ar 

“ 5  

._ 

$ 0  - 
v1 

? 15 x 
U c 
$! 
W 10 1 s 

5 

0 

15 

10 

5 

0 

-20 -10 0 10 20 -20 -10 0 10 20 

SN.freq 

Figure C.22: Profile of the zero coherency test statistic spectrum for Species 3 and 11 
\‘i:rsus altitude pattern for p = 0 , .  . . , 15. 
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Adjusted Phase Spectrum 
WE direction 

Adjusted Phase Spectrum 
SN direction 

I 3.14 . ~ 

Figure C.23: (a) and (b) Profile of the adjusted phase spectrum for Species 3 and 11 
versus altitude pattern in the WE and SN directions for the frequencies p = 0, 1 , 2 ,  and 
y = -1,.. .  , 3 .  

C . l l  Species 10 and 14: 
Leguminosae- Caesalpineaceae 

Figure C.24 represents the point pattern formed by Species 10 and 14 to- 

gether with altitude data. The sample point pattern is presented in Fig- 

ure C.25(a). Peaks are detected at  (0, l), (1, -1) and ( 1 , O ) .  

The co-spectrum, Figure C.25(b), also exhibits peaks at the above fre- 

quencies. The quadrature spectrum, Figure C.25(c), exhibits a major trough 

at (1, -1) and a peak at  ( 0 , l ) .  Figures C.25(d) and (e) represent the phase 

and coherency spectra. Figure C.26 represents the profile of the zero co- 

herency test statistic. It indicates that coherency is concentrated around 
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Figure C.25: (a) raw auto-periodogram of the point pattern of the joint pattern for 
Species 10 and 14; (b) and (c) raw CO- and quadrature spectra; (d) and ( e )  smoothed 
phase and coherency spectra using Method A four times. 
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Figure c.26: Profile of the zero coherency test statistic spectrum for Species 10 and 14 
versus altitude pattern for p = 0, .  , , , 15 .  
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