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Abstract  
 

This paper extends a generic method to design a port-Hamiltonian formulation modeling all geometric 
interconnection structures of a physical switching system with varying constraints. A non-minimal kernel 
representation of this family of structures (named Dirac structures) is presented. It is derived from the 
parameterized incidence matrices which are a mathematical representation of the primal and dual dynamic 
network graphs associated with the system. This representation has the advantage of making it possible to model 
complex physical switching systems with varying constraints and to fall within the framework of passivity- 
based control. 
 
Keywords: modeling, port-Hamiltonian systems, network graph, family of geometric interconnection structures, 
incidence matrix, energy exchanges. 

 
1. Introduction 
 

Network graphs have been used to model physical 
switching systems in various domains, such as 
energy, information, formation flying or people 
transportation. Topological changes such as edges or 
vertices addition or removal, happen in the graph in 
case of disturbances, for example when equipment 
fails or railway lines are unavailable. In a physical 
switching system with varying constraints (PSS), the 
switches are seen as ideal elements whose function is 
to change the interconnection of the functional 
elements, according to certain discrete parameters. 
Then, the topology of the PSS may change 
instantaneously depending on the discrete parameters 
(Van der Schaft & Schumacher, 2000).  

 
We shall consider in this paper a class of systems 

where the topology is associated with a physical 
modeling approach based on the use of energy, using 
the port-Hamiltonian framework (Maschke, Van der 
Schaft & Breedveld, 1992). Passivity-based control 
methods can thus be developed within this port-
Hamiltonian framework. 

 
This energy-based approach used here, is related to 

other works on linear switched Hamiltonian systems 
(Gerritsen, Van der Schaft & Heemels, 2002), hybrid 
Hamiltonian systems for electrical circuits (Jeltsema, 
Scherpen & Klaassens, 2001), mechanical systems 
(Haddad, Nersesov & Chellaboina, 2003) or various 
power converters (Escobar, Van der Schaft & Ortega, 

1999). It is also related to hybrid models based on 
bond graphs, which are another graphical 
representation where the switches are modeled by 
effort or flow sources (Buisson, 1993; Cormerais, 
Buisson, Leirens & Richard, 2002). The design of 
passivity-based control can also be developed within 
the Euler-Lagrange framework, as in (Scherpen, 
Jeltsema and Klassens, 2003). 

 
In this paper, we extend the results in (Magos, 

Valentin & Maschke, 2004-2) to give a graph 
theoretic construction of the port-Hamiltonian 
formulation for physical switching systems with 
varying constraints.  

 
We use the example of power converters, but they 

may be seen as equivalent physical systems from a 
different field. Indeed, it is important to point out that 
some mechanical systems or hydraulic systems have 
an equivalent network representation. They may be 
represented as circuits or more generally by bond 
graphs (Paynter, 1961; Karnopp, Margolis & 
Rosenberg, 1990).  

 
The paper is organized as follows. Section 2 

provides some background on network graphs, dual 
network graphs, the minimal and non-minimal 
formulations of generalized Kirchhoff’s laws and the 
associated Dirac structures. The port-Hamiltonian 
formulation is supposed to be known and we refer to 
(Lozano, Brogliato, Egeland & Maschke, 2000) and 
(Van der Schaft, 2000). Section 3 introduces the 



 

dynamic network graphs for systems with variable 
topology. It presents the main result of this paper, 
which is a hybrid incidence matrix that is used for the 
formulation of a unique model, valid for all the 
configurations of a physical system with switches. 
This matrix is parameterized by the discrete state of 
the switches. Section 4 gives the constructive 
procedure for deriving an algebraic representation of 
the family of geometric interconnection structures 
(Dirac structures) associated with the dynamic 
network graph. The non-minimal implicit port-
Hamiltonian formulation is directly deduced from 
this algebraic representation. This result is applied to 
the electric power converter of Cuk in section 5.  
 
2. Dirac structure for network models  
 
We shall recall some graph theoretical definitions in 
relation to the network modeling of physical systems 
(Paynter, 1961; Recski, 1989; Narayanan, 1997). The 
network model consists of a set of ne dipoles 
interconnected by a so-called network graph. This 
network graph is an oriented graph, G = (V(G), 
E(G)) where V(G) is a nonempty finite set of nv 
vertices (vx ∈ V(G)) and E(G) is a nonempty set of ne 
ordered pairs of elements of V(G) called edges (eGi∈ 
E(G) / eGi = (vx , vy), vx being the start vertex and vy 
being the end vertex). If vx = vy, the edge is a self-
loop. A network graph is said to be cyclically 
connected if, and only if, there is a circuit subgraph 
(connected subgraph with each vertex vx having 
degree two i.e. in contact with two graph edges) 
containing any pair of vertices. This last concept is 
independent of any orientation. 
 
Every edge of the network graph is associated with a 
pair (f, e) of conjugated variables, called power 
variables because their product has the unit of power. 
The set of power variables is represented by two 
vectors: f the cocycle variables vector and e the cycle 
variables vector. In the sequel, we shall also call f 
and e, flow and effort variables,  in line with bond-
graph terminology. For electrical circuits, the cycle 
variables are voltages and the cocycle variables, 
currents. The network graph may be partitioned into 
a maximal tree and its cotree (this partition is not 
unique). The network graph describes the 
interconnection constraints between the power 
variables due to Kirchhoff’s laws which may be 
formulated in a generalized form (Recski, 1989). 
 

The term “generalized” indicates that the cycle and 
cocycle variables are not necessarily voltages and 
currents but may also be forces and velocities or 
pressure and mass flow (Maschke, Van der Schaft & 
Breedveld, 1992). In the sequel we assume the sign 
convention is that of the receptor/passive elements, 
i.e. the edges orientation, corresponds to the sign 
convention of the cocycle variables and the opposite 
sign convention of the cycle variables. 

 

Various mathematical representations of network 
graphs exist (Recski, 1989). In the sequel, we shall 
use the following matrix representations: the 
fundamental cutset and loop matrices associated with 
any maximal tree (defined in equation (1)), and the 
incidence matrix (defined in Definition 3). Generally 
the  fundamental loop and cutset matrices are most 
naturally used to model network graphs because they 
lead to a minimal system of equations. 
 
2.1.  Minimal representation of generalized 

Kirchhoff’s interconnection structure 
 
From the choice of a maximal tree in the network 
graph, one may write the following relations between 
the cycle and cocycle variables (Recski, 1989): 
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where I is the Identity matrix, ]QI[ c  is the 

fundamental cutset matrix and ]IQ[ T
c− is the 

fundamental loop matrix with coefficients in  {-1, 0, 
1}, matching the selected maximal tree. The vector ft 
(respectively fc) is the subvector of cocycle variables 
related to the tree (respectively cotree) elements. The 
vector et (respectively ec) is the subvector of cycle 
variables related to the tree (respectively cotree) 
elements.  
 

A simple permutation of the variables and relations 
leads to:  
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Generalized Kirchhoff’s laws have been related to a 

geometric structure, called Dirac structure on the 
space of power variables, (Maschke, Van der Schaft 
& Breedveld, 1995; Maschke & Van der Schaft, 
1998; Bloch & Crouch, 1999). A Dirac structure on a 
vector space may be defined in terms of various 
linear maps, related to six various representations: 
the kernel, image, input-output, constrained effort, 
constrained flow and canonical representations 
(Dalsmo &  Van de Schaft, 1998; Golo, 2002). In this 
paper, we shall use the kernel representation which 
directly leads to an implicit port-Hamiltonian 
representation. 
 
Definition 1. Minimal kernel representation of a 
Dirac structure. 
Every Dirac structure D ⊂ V × V* is uniquely defined 
in a basis B = (b1, ..., bn) by the couple of real valued 
(n × n) matrices (F,E), called structure matrices, 
satisfying the conditions: 

[ ] nFE rank  and  0FEEF TT ==+ M . 

D = {(f, e) ∈ V × V* / Ff + Ee =0}, where f is the 
coordinate vector of f in the basis B of V and e is the 
coordinate vector of e in the dual basis B* of V*. D is 
defined by exactly n equations. 



 

It should be noted that the equation (1) is a minimal 
kernel representation of a Dirac structure of 
dimension ne and the equation (2) is a minimal input-
output representation of the same Dirac structure 
(Golo, 2002). In the sequel we shall use duality to 
express the generalized Kirchhoff’s cycle and 
cocycle laws: the generalized Kirchhoff’s cocycle 
laws will be expressed using the primal network 
graph and the generalized Kirchhoff’s cycle laws 
using the dual network graph. 

 
2.2. Dual network graph 
 

 We shall furthermore make the following 
assumption:  

 
Assumption 1: the network graphs are planar so that 

it is possible to obtain a dual graph G* for a graph G. 
 

Let us recall Euler’s formula. 
 

Euler’s formula. A planar representation of a graph 
G = (V(G), E(G)) divides the plane into ne - nv + 2 
regions named faces. If G is a finite planar graph, 
one of the faces is not bounded. It is called the 
external face. 
 

Then, a dual graph G* is deduced from the set of 
faces associated with the graph G as defined below. 

 
Definition 2. Let G = (V(G), E(G)) be a planar 
graph. A dual graph G* = (V(G*), E(G*)) of G is a 
graph where a vertex set V(G*) replaces the faces 
defined by G. Two vertices of V(G*) are connected by 
one edge of E(G*) (are adjacent) if their 
corresponding faces in G have a boundary edge in 
common. 

 
Let define the incidence matrix which gives a 

simple representation of the interconnection between 
edges and vertices of an oriented network graph with 
no self-loop. It is less frequently used than 
fundamental matrices because it leads to a non-
minimal representation, but it is extremely well-
adapted to systems with variable topology as 
explained in Section 3. 

 
2.3.  Non-minimal representation of Kirchhoff’s 

interconnection structure 
 
Definition 3. The incidence matrix of the network 
graph G, is the (nv × ne) matrix MI(G) with: 
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For i ∈ {1,…, nv}  ,  j ∈ {1,…, ne} and k ∈ {1,…, nv}.  
 

Each row of the incidence matrix gives the edges 
connected to the corresponding vertex and each 
column gives the two vertices connected to the 
corresponding edge. The incidence matrix is a 

mathematical representation of a network graph if, 
and only if, the network graph does not include any 
self-loops. A self-loop produces a null column in the 
incidence matrix. 
 
Definition 4. Non-minimal kernel representation of a 
Dirac structure. 
Every Dirac structure D ⊂ V × V* may also be 
defined in a basis B = (b1, ..., bn) by a non-minimal 
kernel representation which is characterized by the 
couple of real valued  (n’ × n)  matrices (F,E), called 
structure matrices, satisfying the conditions: 

[ ] nFE rank  and  0FEEF TT ==+ M . 

D = {(f, e) ∈ V × V* / Ff + Ee =0}, where f is the 
coordinate vector of f in the basis B of V and e is the 
coordinate vector of e in the dual basis B* of V*. D is 
defined by n’ equations, with n’ > n. 
 

The incidence matrix representation of a cyclically 
connected network graph with no self-loop, G, leads 
to a non-minimal kernel representation of the 
generalized Kirchhoff's laws, using incidence 
matrices of both the network graph G and a dual 
graph G*.  
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This representation is non-minimal in the sense that 

it is a set of (ne + 2) equations whereas a minimal 
representation would have 2 less. For a fixed 
topology circuit, this representation can immediately 
be made minimal by removing one row of MI(G) and 
one row in MI(G*). These rows correspond to the 
choice of a reference vertex for the primal graph and 
a reference vertex in the dual graph (often, the latter 
corresponds to the external cycle).  

 
But, for a variable topology circuit, the choice of 

rows to remove changes according to the differing 
topology of the circuit, it is therefore impossible to 
reduce the non-minimal formulation to a  unique 
minimal representation for all the configurations 
which is defined in section 3. 

 
The equation (4) is a particular case of a non-

minimal representation of a Dirac structure 
corresponding to a terminal formulation of 
generalized Kirchhoff's laws. It has been called a 
relaxed kernel representation in (Van der Schaft, 
Cervera & Baños, 2004) for the interconnection of 
port-Hamiltonian systems. 
 
3. Dynamic network graph and its matrix 

representation  
 
In this section we shall present the graphical 
formulation of a switching interconnection in terms 
of a dynamic network graph and the transformations 
between incidence matrices corresponding to the set 
of its configurations. More detailed motivations to 



 

use the incidence matrix as a mathematical 
representation of the network graphs and to define a 
dynamic network graph are presented in (Valentin, 
Magos & Maschke, 2006-b). 
 
Definition 5: A dynamic network graph                   
Gw = (V(Gw), E(Gw), Ew(Gw)) consists of an oriented 
graph where: 
* V(Gw) is a nonempty finite set of nv vertices, 
V(Gw)={ vx , x ∈ {1,..,nv}},  
* E(Gw) is a nonempty finite set of nef ordered pairs 
of elements of V(Gw), called functional edges,         
E(Gw) = {eGi / eGi = (vx , vy), i ∈ {1,.., nef }, vx being 
the start vertex, vy being the end vertex and (x,y) ∈ 
{1,..,nv}

2}. The port of a functional element is 
associated with every of the nef oriented functional 
edges of this graph. 
* Ew(Gw) is a nonempty finite set of ns ordered pairs 
of elements of V(Gw) called virtual edges,             
Ew(Gw) = {eGwj / eGwj = (vx , vy), j ∈ {1,.., ns }, vx being 
the start vertex, vy being the end vertex and (x,y) ∈ 
{1,..,nv}

2}. The port of a switching element is 
associated with every of the ns oriented virtual edges 
of this graph. 
 

To motivate the proposed approach, let us consider 
the simple example of the Cuk converter (Escobar, 
Van der Schaft & Ortega, 1999) which is represented 
in figure 1 and controls the power provided to the 
load by the voltage source through the control of the 
switches Swi.  

 
 

 
 
 
 
 
 
 

Fig. 1. the  Cuk converter 
 
A dynamic network graph Gaw of the Cuk 

converter is given in figure 2 (functional edges are 
represented as thick lines and virtual edges as thin 
lines.): 

 
 

 
 
 
 
 
 

 
Fig. 2. dynamic network graph Gaw of the  Cuk 

converter  
 

Denote MI(Gw)i• the i-row of the incidence matrix 
MI(Gw): MI(Gw)i• = {M I(Gw)ij , j ∈ {1,…, nef}}  and 

MI(Gw)•j the j-column of MI(Gw): MI(Gw)•j =               
{M I(Gw)ij, i ∈ {1,…, nv}}.   
 

If the first configuration G1 (with all the switches 
open) is compared to one of the others, G’, where a 
switch connected between vertices νi and νj is closed, 
then, MI(G’) i• = 0 and MI(G’) is obtained from 
MI(G1) after a linear transformation. We suggest 
calling this transformation disconnection-
reconnection of the nodes νi and νj. Thus, the 
incidence matrix MI(G’) of the new network graph 
G’ can be obtained from MI(G1) after a linear 
transformation. 
 
Definition 6. Let Σw be a physical switching system 
with varying constraints whose dynamic network 
graph is Gw = (V(Gw), E(Gw), Ew(Gw)). Its reference 
graph, Gr, is defined as being the subgraph (V(Gw), 
E(Gw)) with all vertices and functional edges of Gw. 
The (nv x nef) incidence matrix of the reference graph, 
Gr, is denoted by MI(Gr).  
   

Let us define a discrete parameter wk ∈ {0, 1}, for 
each switch, Swk, so that: wk=1 if the switch is closed 
and wk=0 if the switch is open. Thus, the discrete 
state (configuration) of the model is given by: W = 
[w1, w2, ..., wns]

T 
 

In order to present, in Theorem 1, an expression for 
the family of incidence matrices associated with all 
the configurations of a physical system with variable 
topology, let us give two preliminary definitions: 
 
Definition 7. Let Σw be a physical switching system 
with varying constraints with ns switches, whose 
dynamic network graph is Gw = (V(Gw), E(Gw), 
Ew(Gw)). Its virtual graph is defined as being the 
subgraph (V(Gw), Ew(Gw)) with all nv vertices and all 
ns virtual edges of Gw. ns disconnection – 
reconnection matrices, ( )1w1DR w)G(M  to 

( )nswDRns w)G(M , are associated with the ns oriented 

virtual edges, {eGwk = (vi, vj), (i, j)∈{1,..,nv}
2 and 

k∈{1,..,ns}}, of this virtual graph. They are defined 
by:  
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Remark: ( )kwDRk w)G(M models the transformation 

of the reference graph Gr when closing the switch 
Swk. 
 

Thus, a dynamic network graph, Gw = (V(Gw), 
E(Gw), Ew(Gw)) is mathematically represented both 
by the incidence matrix of the reference 
configuration, MI(Gr), and by the ns disconnection - 
reconnection matrices ( )1w1DR w)G(M  to 

( )nswDRns w)G(M . MI(Gr) represents the static 
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functional part of the dynamic graph whilst the 
matrices ( )kwDRk w)G(M represent the variable part. 

 
Using these definitions, one may now give an 

expression of the incidence matrix parameterized 
with the state of the switches, for physical switching 
systems which fulfill the following assumption 2. 

 
Assumption 2. The physical switching system can be 
represented by a dynamic planar circuit which is 
cyclically connected with no self-loop.  

 
This assumption guarantees that the incidence 

matrices give an accurate mathematical 
representation of the primal and dual network graphs 
of this circuit.  
 
Theorem 1. The (nv x nef) parameterized incidence 
matrix, MI(Gw)(W), of the 2ns configurations of a 
dynamic oriented network graph, Gw with ns virtual 
edges is given by: 
 

MI(Gw)(W) = MT (Gw)(W) MI(Gr)   (6) 
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Remark: to simplify the notations )W)(G(M w]k[T  

and )w)(G(M kwDRk  are denoted ]k[TM  and DRkM .  

 

]k[TM  represents the transformations in the 

geometric interconnections between the elements of 
the system, produced by the switch Swk, taking into 
account  the states of the switches Swns to Swk+1.  
 

The proof of Theorem 1 is given in the appendix 
and uses properties of the disconnection-reconnection 
transformation matrices. 

 
4. Implicit port-Hamiltonian representation   

 
In this section, we shall give the port-Hamiltonian 

representation of a circuit with varying topology 
obtained by adding to the dynamic graph Gw, the 
definition of a set of elements connected to its 
"functional edges". These elements may be inductors, 
capacitors, effort or flow sources or resistors. 
Considering source elements does however add 
constraints to the definition of the configurations, for 
instance, two effort sources may not be in parallel. 
This leads to consider a subset of the configurations, 

called admissible configurations and defined as 
follows. 

 
Definition 8: a non-admissible configuration 
corresponds to: 
i)  An effort source in short-circuit or several 

independent effort sources connected in a cycle 
with no other functional elements (effort-sources-
only cycle). 

ii) A flow source connected in an open-circuit or 
several independent flow sources connected in a 
cocycle with no other functional elements (flow-
sources-only cocycle or cutset).  

The set of admissible configurations of the physical 
switching system Σw is denoted A(Σw).                   
A(Σw) ⊂ {0, 1}ns. 
 

It has been shown in (Valentin, Magos & Maschke, 
2006-a) how the set of admissible configurations can 
be defined by the analysis of the parameterized 
incidence matrices associated with a PSS. 
 

In the sequel, we shall firstly use the parameterized 
incidence matrices defined in section 3 to define a set 
of Dirac structures and then define the port-
Hamiltonian system. 
 
4.1. Parameterized Dirac structure  
 

We shall define this Dirac structure by its kernel 
representation according to the Definition 4. It can be 
noted that in (Magos, Valentin & Maschke, 2004-1) 
the Dirac structure was defined by its constrained 
flow representation. 
 
Definition 9. Consider a physical switching system 
with a dynamic network graph Gw, its parameterized 
incidence matrix MI(Gw)(W), the parameterized 
incidence matrix MI(Gw

*)(W) of a dual graph and 
A(Σw) its set of admissible configurations. The 
generalized Kirchhoff’s laws define a parameterized 
Dirac structure D(Gw)(W) on the vectors of cycle 

variables nefe ℜ∈ and cocycle variables f ∈ ℜnef 

which admit the following kernel representation:     
       

0e
)W)(G(M

0
f

0

)W)(G(M
*

wI

wI =







+







 ,W∈ A(Σw)}.  

 
D(Gw)(W) represents a family of geometric 

interconnection structures. It depends explicitly on 
the state W of the switches. This structure is non-
minimal in the sense that it is a set of (nef+ns+2) 
equations while a minimal representation would have 
(ns+2) less. It has a variable rank depending on the 
state of the switches but has a constant dimension 
((nef+ns +2)× nef). 
 

This non-minimal representation of the 
parameterized Dirac structure models the 
configurations of the PSS in a uniform way. In this 
context, the roles of the incidence matrices of the 



 

network graph and of a dual graph, less frequently 
used, are significant. 
 
4.2. Implicit hybrid port-Hamiltonian formulation  
 
The port-Hamiltonian system is defined on the space 
of the energy variables p and q (for electrical circuits: 
the inductances’ flux, φ and capacitors’ charges, q). 
The Hamiltonian function is the total electromagnetic 
energy H(p, q) of the circuit.  
 

Assume moreover that the network has some ports 
(edges) to which sources are connected and denote 
the corresponding power variables by ( )ss u,i  and 

others to which resistors are connected and denote 
the corresponding power variables by ( )RR u,i . This 

leads to an algebro-differential system defined as a 
non-minimal implicit parameterized port-
Hamiltonian system  by:  
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with: (f, e) ∈ D(Gw)(W), W ∈ A(Σw), 

T

RS i
p

H
qif 









∂
∂= & and  

T

RS up
q

H
ue 









∂
∂= &  

 
5. Application on the Cuk converter  
 

We shall consider the example of the Cuk converter 
represented on the figure 1. This example was also 
used in (Escobar, Van der Schaft & Ortega, 1999) for 
which a port-Hamiltonian system was formulated and 
in (Scherpen, Jeltsema and Klassens, 2003) in the 
Lagrangian formulation where only the unconstraint 
configurations are considered. This excludes the 
cases when w1=w2=0 or w1=w2=1. The formulation 
proposed here deals with the full set of 
configurations. 

 
� The incidence matrix MI(Gaw)(W) of the Cuk 

converter represented by the dynamic network graph 
given in figure 2 is:  
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with (w1, w2) ∈ {0, 1}2. 

 
� The dual incidence matrix MI(Gaw

*)(W) is 
obtained from the dual graph Gaw

*  represented in 
figure 3. The dotted lines indicate the dual functional 
edges, eGi*  and the thin dotted lines the dual virtual 

edges, eGwi* . As ne - nv + 2 = 5, a dual network graph 
Gaw

* has 5 dual vertices vi
*.  

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3. Network graph Gaw , dual network graph Gaw
* 

 
The incidence matrix of the reference configuration 

of this dual dynamic network graph of the Cuk 
converter, Gar

*, is: 
 























−
−−

−
−−

=

100010

010010

000100

001001

111101

)Ga(M *
rI

 

 
Hence, the parameterized incidence matrix, 

MI(Gaw
*)(W*), associated with this dual network 

graph Gaw
*
,  is obtained from Theorem 1: 
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with (w1
*, w2

*) ∈ {0, 1} 2. 
 
� The Kirchhoff’s cocycle laws for the Cuk 

converter are 0f)W)(Ga(M wI =  with: 
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Notice that wi

*=1-wi, then: =)W)(Ga(M *
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with (w1, w2) ∈ {0, 1} 2. 
 

Then, the Kirchhoff’s cycle laws for the 
Cuk power converter are: 0e)W)(Ga(M *

wI =  with: 

[ ]TRLLCCU eeeeeee
2121

=  

 
� Therefore, as all configurations are admissible, 

the algebro-differential system of the Cuk converter 
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is defined as an implicit non-minimal parameterized 
port-Hamiltonian system  by:  
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with: W ∈ { 0, 1} 2,  
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These incidence matrices MI(Gaw)(W) and 
MI(Gaw

*)(W) can be analyzed to draw conclusions 
concerning the constrained configurations of the 
system. Two constrained configurations are created 
when the capacitor C1 is short-circuited (w1=w2=1) or 
when the inductances L1 and L2 are connected in 
series (w1=w2=0). Indeed, it is of prime importance to 
remove non-admissible configurations from the 
control design procedure and to be aware of 
constrained configurations which may lead to state 
discontinuities in the trajectory of the system.  

 
Note that this implicit port-Hamiltonian system 

entirely encompasses the model presented in 
(Escobar, Van der Schaft & Ortega, 1999) and 
includes two additional constraints. 
 
7. Conclusions and perspectives 
 

In this paper, we have proposed a port-Hamiltonian 
formulation of physical systems with switching 
interconnection. The switching topology is defined 
by a dynamic network graph to which energy 
conserving, energy dissipating, sources and switching 
elements are connected. In a first step, we have 
defined a parameterized incidence matrix 
corresponding to the set of configurations of the 
switches. In a second step, we have used this matrix 
to define a parameterized port-Hamiltonian 
formulation of the admissible configurations of the 
PSS. It is based on a parameterized non-minimal 
kernel representation of the Dirac structure 
associated with generalized Kirchhoff’s laws. The 
formal design of a hybrid automaton model of the 
autonomous physical switching system is presented 
in (Valentin, Magos & Maschke, 2006-a). 

 
An attractive feature is that the discrete state of the 

switching part is explicit as well as the 
interconnections between elements storing, providing 
or dissipating energy in the system. The class of 
models presented in this paper encompass a great 
variety of non-linear switched systems. The analysis 
of such systems is quite complex to be handled in 

general and often, one needs to restrict the class to 
obtain results, for example when resolving the 
existence of solutions (Gerritsen, Van der Schaft & 
Heemels, 2002).   

 
This parameterized port-Hamiltonian formulation 

has the advantages of being well-structured (a primal 
network graph gives the cocycle relations and a dual 
network graph gives the cycle relations from duality 
considerations) and completely formalized (from the 
system to the final representation) without requiring 
a-priori knowledge of a specific physical field. The 
advantages of the Euler-Lagrange framework 
(Scherpen, Jeltsema and Klassens, 2003) are that the 
graph of the circuit is not necessarily planar. The 
formulation proposed here has the advantage of 
dealing with constraints with varying rank and to 
falls into the framework of passivity-based control. 

 
This work may be continued by extending the 

solution concepts and trajectory calculation 
developed in (Gerritsen, Van der Schaft & Heemels, 
2002) to dissipative physical switching system with 
effort sources. Another perspective of this paper is to 
extend control design methods based on continuous 
Hamiltonian systems such as Interconnection 
Damping Assignment Passivity Based Control 
(Ortega, van der Schaft, Maschke & Escobar, 2002) 
and continuous control design method for 
parameterized port-controlled Hamiltonian systems 
with autonomous switching as impacts (Haddad, 
Nersesov & Chellaboina, 2003) to dissipative 
physical switching system with sources and 
controlled switches. Optimal control methods such as 
(Manon, Valentin-Roubinet & Gilles, 2002; 
Sussmann, 1999; Zaytoon, 2001) can also be applied. 
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Appendix. The proof of Theorem 1.  
 
The proof is based on recursion.  
 
If the number of virtual edges in 1wG  is equal to 1, 

then MI( 1
wG )(w1) )(GM)]w)(G(MI[ rI1

1
w1DRnv

+=  

which is an immediate conclusion of the definitions 
of an incidence matrix and of the disconnection-
reconnection transformation (definitions 3 and 7).  
Now, suppose that the Theorem 1 is true for a 
dynamic graph 1n

w
sG −  with ns–1 virtual edges. 

Then: ( )( ) )(GMW)G(M)W)(G(M rI
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Hence, in the sequel, we prove that, for a dynamic 

network graph sn
wG = (V( sn

wG ), E( sn
wG ), Ew( sn

wG )), 

with ns virtual edges:  
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Following definitions 3 and 7, 

)(GM)(GM)]1)(G(MI[ "
1IrI

n
wnDRn

s

sv
=+  is the 

incidence matrix of the subgraph (V(Gw), E(Gw)) with 
all vertices and functional edges of Gw and with the 
virtual edge eGwns closed.  

As well, )(GM)(GM)]0)(G(MI[ "
0IrI

n
wnDRn

s

sv
=+ is 

the incidence matrix of the subgraph (V( sn
wG ), 

E( sn
wG )) with all vertices and functional edges of 

sn
wG  and with the virtual edge eGwns  open.  

 
Consequently, equation (10) calculates the 
parameterized incidence matrix of a dynamic graph 

1n
w

sG −  with ns–1 virtual edges, eGw1 to eGwns-1, and 

with the virtual edge eGwns closed or open through the 
transformation of the incidence matrix of the 
reference configuration,[ ] )(GMMI rInDRn sv

+  which 

covers )(GM "
1I  and )(GM "

0I . 

 
This transformation is completed by the 

product ( )( )∏
−

=

1s
s

n
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n
w]k[T W)G(M . Now  remains the proof 

that ( )W)G(M sn
w]k[T  is also obtained  by recurrence, 

by the following expression: 
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In the sequel, we consider two cases:  
* for k =ns-1, 

T
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For k ∈ {1, ..., ns-1}, let us denote: 

T
]ns[TDRk]ns[T

# MMMM
DRk

= , which appears in both 

expressions. 
 
We next prove that, #

DRk
M for k ∈ {1,.., ns-1} are ns-1 

disconnection-reconnection matrices defining the 

dynamic network graph 1n
w

sG −  = (V( 1n
w

sG − ), 

E( 1n
w

sG − ), Ew( 1n
w

sG − )) with ns–1 virtual edges eGw1 

to eGwns-1 and with the virtual edge eGwns closed or 
open.  
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Five cases must be analyzed to calculate#

DRk
M : 

 
1/ if (qns ≠ qk) and (qns ≠ pk) and (pns ≠ qk) and (pns ≠ 

pk), DRk
#
DRk MM =  whatever k ∈ {1,.., ns-1}.  

 
Indeed, it means that there is no connection 
between eGwns, and eGwk in the dynamic graph 

1n
w

sG − . 

 
2/ if (qns = qk) and (qns ≠ pk) and (pns ≠ qk) and (pns ≠ 

pk), then, whatever k ∈ {1,.., ns-1}, DRk
#
DRk MM = .  

 
Indeed, it means that when eGwns and eGwk have the 
same end vertex, the state of eGwns does not appear 

in the disconnection-reconnection matrix#DRkM . 

 
3/ if (qns ≠ qk) and (qns = pk) and (pns ≠ qk) and (pns ≠ 

pk), then, whatever k ∈ {1,.., ns-1}, DRk
#
DRk MM = .  

 
Indeed, it means that when the end vertex of edge 
eGwns

 is the same as the start vertex of edge eGwk, the 
influence of the state of eGwns to the disconnection-
reconnection transformation due to eGwk is taken 

into account in the product ( )∏
−

=

1n

1k
]k[T

s

M  and not in 

the term #
DRk

M . In that case, the orientation of the 

virtual edges’ sequence respects the matrices’ 
product. 

 



 

4/ if (qns ≠ qk) and (qns ≠ pk) and (pns = qk) and (pns ≠ 

pk), then, whatever k ∈ {1,.., ns-1}, =#
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If wns=0, then DRk
#
DRk MM = . Otherwise, edges 

connected to vpk are disconnected and reconnected 
to vqns. Indeed, it means that when the end vertex of 
the edge eGwk is the same as the start vertex of the 
edge eGwns, the reconnection vertex depends on the 
state of eGwns because the orientation of the virtual 
edges’ sequence does not respect the matrices’ 
product.  

 
5/ if (qns ≠ qk) and (qns ≠ pk) and (pns ≠ qk) and (pns = 

pk), then, whatever k ∈ {1,.., ns-1}, =#
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If wns=0, then DRk
#
DRk MM = . Otherwise, edges 

initially connected  to vpk have been disconnected 
and reconnected to vqns by the closing of eGwns. 
Then, edges connected to vqns are disconnected and 
reconnected to vqk. It means that, when eGwns and 
eGwk have the same start vertex, the disconnection 
vertex depends on the state of eGwns. 

 
Then, we proved by recursion that the (nv x nv) 

matrices #
DRkM  for k ∈ {1,.., ns-1} are ns-1 

disconnection-reconnection matrices representing the 
dynamic graph Gw with ns–1 virtual edges eGw1 to 
eGwns-1 and with the virtual edge eGwns closed or open. 
Thus, Theorem 1 is proved. 
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