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A port-Hamiltonian formulation of physical switclyrsystems
with varying constraints

Claire Valentin*, Miguel Magos, Bernhard Maschke

Laboratoire d’Automatique et de Génie des ProcédASEP, UMR CNRS 5007, Université Claude Bernard
Lyon 1, bat. 308 G, ESCPE, 43, Bd du 11 Novemht8,188622 Villeurbanne cedex, France.

Abstract

This paper extends a generic method to design &Haoniltonian formulation modeling all geometric
interconnection structures of a physical switchgygtem with varying constraints. A non-minimal karn
representation of this family of structures (naniemlac structures) is presented. It is derived froime
parameterized incidence matrices which are a madtieah representation of the primal and dual dymami
network graphs associated with the system. Thisesgmtation has the advantage of making it possibheodel
complex physical switching systems with varying stoaints and to fall within the framework of passiv
based control.

Keywords:modeling, port-Hamiltonian systems, network grafaimily of geometric interconnection structures,
incidence matrix, energy exchanges.

1. Introduction 1999). It is also related to hybrid models based on
bond graphs, which are another graphical
Network graphs have been used to model physicalrepresentation where the switches are modeled by
switching systems in various domains, such aseffort or flow sources (Buisson, 1993; Cormerais,
energy, information, formation flying or people Buisson, Leirens & Richard, 2002). The design of
transportation. Topological changes such as edges opassivity-based control can also be developed mvithi
vertices addition or removal, happen in the graph i the Euler-Lagrange framework, as in (Scherpen,
case of disturbances, for example when equipmentJeltsema and Klassens, 2003).
fails or railway lines are unavailable. In a phgsic
switching system with varying constraints (PSSg th  In this paper, we extend the results in (Magos,
switches are seen as ideal elements whose furistion Valentin & Maschke, 2004-2) to give a graph
to change the interconnection of the functional theoretic construction of the port-Hamiltonian
elements, according to certain discrete parametersformulation for physical switching systems with
Then, the topology of the PSS may change varying constraints.
instantaneously depending on the discrete parasneter
(Van der Schaft & Schumacher, 2000). We use the example of power converters, but they
may be seen as equivalent physical systems from a
We shall consider in this paper a class of systemsdifferent field. Indeed, it is important to pointitathat
where the topology is associated with a physical some mechanical systems or hydraulic systems have
modeling approach based on the use of energy, usingn equivalent network representation. They may be
the port-Hamiltonian framework (Maschke, Van der represented as circuits or more generally by bond
Schaft & Breedveld, 1992). Passivity-based control graphs (Paynter, 1961; Karnopp, Margolis &
methods can thus be developed within this port- Rosenberg, 1990).
Hamiltonian framework.
The paper is organized as follows. Section 2
This energy-based approach used here, is related t@rovides some background on network graphs, dual
other works on linear switched Hamiltonian systems network graphs, the minimal and non-minimal
(Gerritsen, Van der Schaft & Heemels, 2002), hybrid formulations of generalized Kirchhoff's laws ancth
Hamiltonian systems for electrical circuits (Jattse associated Dirac structures. The port-Hamiltonian
Scherpen & Klaassens, 2001), mechanical systemdormulation is supposed to be known and we refer to
(Haddad, Nersesov & Chellaboina, 2003) or various (Lozano, Brogliato, Egeland & Maschke, 2000) and
power converters (Escobar, Van der Schaft & Ortega, (Van der Schaft, 2000). Section 3 introduces the
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dynamic network graphs for systems with variable Various mathematical representations of network
topology. It presents the main result of this paper graphs exist (Recski, 1989). In the sequel, wel shal
which is a hybrid incidence matrix that is usedtfoe use the following matrix representations: the
formulation of a unique model, valid for all the fundamental cutset and loop matrices associated wit
configurations of a physical system with switches. any maximal tree (defined in equation (1)), and the
This matrix is parameterized by the discrete stdite  incidence matrix (defined in Definition 3). Genéyal
the switches. Section 4 gives the constructive the fundamental loop and cutset matrices are most
procedure for deriving an algebraic representation naturally used to model network graphs because they
the family of geometric interconnection structures lead to a minimal system of equations.

(Dirac structures) associated with the dynamic

network graph. The non-minimal implicit port- 2.1. Minimal representation of generalized

Hamiltonian formulation is directly deduced from Kirchhoff's interconnection structure

this algebraic representation. This result is aaptd

the electric power converter Gluk in section 5. From the choice of a maximal tree in the network

graph, one may write the following relations betwee

2. Dirac structure for network models the cycle and cocycle variables (Recski, 1989):
e [y Sllor T2

We shall recall some graph theoretical definitioms by T —1=0 (1)

relation to the network modeling of physical system 0 0 E - 1]&

(Paynter, 1961; Recski, 1989; Narayanan, 1997). The
network model consists of a set of dipoles  where | is the Identity matrix,[I Q,] is the
interconnected by a so-called network graph. This fundamental cutset matrix ang-Q 1]is the

network graph is an oriented graph = (V(G), fundamental loop matrix with coefficients in {-Q,

\Ife(ftii)ge\év(tl/erme\\//((g))) :nc?E(né)niirgpr%n]l?:Stysgétc;ﬁf: 1}, matching thg selected maximal tree. The ye_{;tor
ordered pxairs of elements W{G) callededges(es/ (respectivelyf) is the subvgctor of cocycle variables
E(G) / & = (Vi, W), Vi being the start vertex arlxg related to the tree (respectively cotree) elemdirits.

i AR AT vector g (respectivelye) is the subvector of cycle

being the end vertex). ”X.z Vy Fhe edge |s.a;elf- variables related to the tree (respectively cotree)
loop. A network graph is said to beyclically elements

connected if, and only if, there is a circuit subgraph
(connected §ubg_raph with each vertex having A simple permutation of the variables and relations
degree two i.e. in contact with two graph edges)I

. : . : . eads to:
containing any pair of vertices. This last concispt
independent of any orientation. {ft} :{ 0 ‘Qc}{i}

& Q7 o |f

2)
Every edge of the network graph is associated aith
pair  €) of conjugated variables, callepower
variablesbecause their product has the unit of power.
The set of power variables is represented by two
vectors:f the cocycle variables vector aadhe cycle
variables vector. In the sequel, we shall also tall
ande, flow and effort variablesjn line with bond-
graph terminology. For electrical circuits, the leyc
variables are voltages and the cocycle variables,
currents. The network graph may be partitioned into
a maximal tree and its cotree (this partition ig no
unique). The network graph describes the
interconnection constraints between the power
variables due to Kirchhoff's laws which may be
formulated in a generalized form (Recski, 1989).

Generalized Kirchhoff's laws have been related to a
geometric structure, called Dirac structure on the
space of power variables, (Maschke, Van der Schaft
& Breedveld 1995; Maschke & Van der Schaft
1998; Bloch & Crouch, 1999). A Dirac structure on a
vector space may be defined in terms of various
linear maps related to six various representations:
the kernel, image, input-output, constrained effort
constrained flow and canonical representations
(Dalsmo & Van de Schaft, 1998; Golo, 2002). Irsthi
paper, we shall use the kernel representation which
directly leads to an implicit port-Hamiltonian
representation.

Definition 1. Minimal kernel representation of a
Dirac structure.

Every Dirac structure D7V x V' is uniquely defined
in a basis B = (B ..., h) by the couple of real valued
n x n) matrices (F,E), called structure matrices,
satisfying the conditions:

The term “generalized” indicates that the cycle and
cocycle variables are not necessarily voltages and
currents but may also be forces and velocities or
pressure and mass flow (Maschke, Van der Schaft &
Breedveld, 1992). In the sequel we assume the sig
convention is that of the receptor/passive elements

i.e. the edges orientation, corresponds to the sign EF' +FE' =0 and rank[EiF]=n.
convention of the cocycle variables and the opposit D = {(f, €) 7V x V' /Ff + Ee =0}, where fis the
sign convention of the cycle variables. coordinate vector of f in the basis B of V anis ¢he

coordinate vector of e in the dual basis@ V. D is
defined by exactly n equations.



It should be noted that the equation (1) is a matim
kernel representation of a Dirac structure of
dimensionn, and the equation (2) is a minimal input-

mathematical representation of a network graph if,
and only if, the network graph does not include any
self-loops. A self-loop produces a null column lie t

output representation of the same Dirac structureincidence matrix.

(Golo, 2002). In the sequel we shall use duality to
express the generalized Kirchhoff's cycle and
cocycle laws: the generalized Kirchhoff's cocycle
laws will be expressed using the primal network
graph and the generalized Kirchhoff's cycle laws
using the dual network graph.

2.2. Dual network graph

We shall
assumption:

furthermore make the following

Assumption 1the network graphs are planar so that
it is possible to obtain a dual gra@h for a graphG.

Let us recall Euler’s formula.

Euler’s formula. A planar representation of a graph
G = (V(G), E(G)) divides the plane intg An, + 2
regions named faces. If G is a finite planar graph,
one of the faces is not bounded. It is called the
external face.

Then, a dual grapl* is deduced from the set of
faces associated with the graptas defined below.

Definition 2. Let G = (V(G), E(G)) be a planar
graph. A dual graph G= (V(G), E(G)) of G is a
graph where a vertex set V(Greplaces the faces
defined by GTwo vertices of V(G are connected by
one edge of E(G (are adjacent) if their
corresponding faces in G have a boundary edge in
common.

Let define the incidence matrix which gives a
simple representation of the interconnection betwee
edges and vertices of an oriented network graph wit
no self-loop. It is less frequently used than

fundamental matrices because it leads to a non-

minimal representation, but it is extremely well-
adapted to systems with variable topology as
explained in Section 3.

2.3. Non-minimal representation of Kirchhoff's
interconnection structure

Definition 3. The incidence matrix of the network
graph G, is the (nxng) matrix M(G) with:
-1 if &5 =(v %) andv, 2y,
M (G); =4 1 if &5 =(y V) andy, 2y,
0 ctherwise
ForiO{1,...,n} jO{1,...,n} andkO{1,..., n}.

(3)

Definition 4. Non-minimal kernel representation of a
Dirac structure.
Every Dirac structure D/7 V x V' may also be
defined in a basis B = (b..., ) by a non-minimal
kernel representation which is characterized by the
couple of real valued (nkn) matrices (F,E), called
structure matrices, satisfying the conditions:

EF" +FE" =0 and rank[E:F]=n.
D = {(f, e) 7V xV /Ff + Ee =0}, where fis the
coordinate vector of f in the basis B of V anid ¢he
coordinate vector of e in the dual basis@® V. D is
defined by n’ equations, with n’ > n.

The incidence matrix representation of a cyclically
connected network graph with no self-lodp, leads
to a non-minimal kernel representation of the
generalized Kirchhoff's laws, wusing incidence
matrices of both the network grapgh and a dual
graphG .

I\/l'(G)f+ 0 e=0
0 [~ [M(G)]

This representation is non-minimal in the sensé tha
it is a set of f, + 2) equations whereas a minimal
representation would have 2 less. For a fixed
topology circuit, this representation can immediate
be made minimal by removing one rowhf(G) and
one row inM;(G*). These rows correspond to the
choice of a reference vertex for the primal grapd a
a reference vertex in the dual graph (often, therda
corresponds to the external cycle).

(4)

But, for a variable topology circuit, the choice of
rows to remove changes according to the differing
topology of the circuit, it is therefore impossikite
reduce the non-minimal formulation to a unique
minimal representation for all the configurations
which is defined in section 3.

The equation (4) is a particular case of a non-
minimal representation of a Dirac structure
corresponding to a terminal formulation of
generalized Kirchhoff's laws. It has been called a
relaxed kernel representation in (Van der Schaft,
Cervera & Bafos, 2004) for the interconnection of
port-Hamiltonian systems.

3. Dynamic network graph and its matrix
representation

In this section we shall present the graphical
formulation of a switching interconnection in terms

Each row of the incidence matrix gives the edges ot 54 dynamic network graph and the transformations
connected to the corresponding vertex and eachpenyveen incidence matrices corresponding to the set

column gives the two vertices connected to the of jts configurations. More detailed motivations to
corresponding edge. The incidence matrix is a



use the
representation of the network graphs and to dedine
dynamic network graph are presented in (Valentin,
Magos & Maschkg2006-b).

Definiton 5: A dynamic network graph
Gw = (V(Gy), E(Gy), E{Gy)) consists of an oriented
graph where:

* V(G,) is a nonempty finite set of, rvertices,
V(G)={ vk, x J{1,...n}},

* E(Gy) is a nonempty finite set ofsrordered pairs
of elements of V(@, called functional edges
E(Gy) = {eci / &i = (Vx, Vy)- i J41,.., ns }, v being
the start vertex, vbeing the end vertex and (x4)
{1,...n}%. The port of a functional element is
associated with every of thesmriented functional
edges of this graph.

* E(Gy) is a nonempty finite set of ardered pairs
of elements of V(3 called virtual edges,
EW(GW) = {erj / Q—;wj = (VX1 Vy)’ J U{l,.., rk}a Vx being
the start vertex, ywbeing the end vertex and (x,)
{1,..n}3. The port of a switching element is
associated with every of thg ariented virtual edges
of this graph.

incidence matrix as a mathematical M|(G,); the j-column of M|(Gy): M(Gy), =

MG, I O {L,..., nj}-

If the first configurationG,; (with all the switches
open) is compared to one of the othéss, where a
switch connected between vertiaggnd; is closed,
then, M|(G");. = 0 and M|(G’) is obtained from
M|(G;) after a linear transformation. We suggest
calling this transformation disconnection-
reconnection of the nodes and uy. Thus, the
incidence matrixM,(G’) of the new network graph
G can be obtained fromv(G;) after a linear
transformation.

Definition 6. Let 5, be a physical switching system
with varying constraints whose dynamic network
graph is G, = (V(Gy), E(Gy), Ex(Gy)). Its reference
graph, G, is defined as being the subgraph (WG
E(G,)) with all vertices and functional edges of.G
The (i X ney) incidence matrix of the reference graph,
G, is denoted by NIG,).

Let us define a discrete parametgr] {0, 1}, for
each switchS,,, so thatw,=1 if the switch is closed
and w,=0 if the switch is open. Thus, the discrete

To motivate the proposed approach, let us considerstate (configuration) of the model is given by: =

the simple example of the Cuk converter (Escobar,
Van der Schaft & Ortega, 1999) which is represented

in figure 1 and controls the power provided to the
load by the voltage source through the controhef t
switches .

Vi
Fig. 1. the Cuk converter

A dynamic network graphGa, of the Cuk
converter is given in figure 2 (functional edges ar
represented as thick lines and virtual edges as thi
lines.):

Fig. 2. dynamic network grapgBa,,of the Cuk
converter

DenoteM,(G,);. the i-row of the incidence matrix
Mi(Gw): Mi(Gw)i. = {Mi(Gw)i, | O {1,..., ng} and

Wi, W, ..., VVIS]T

In order to present, in Theorem 1, an expression fo
the family of incidence matrices associated with al
the configurations of a physical system with vaegab
topology, let us give two preliminary definitions:

Definition 7. Let 2, be a physical switching system
with varying constraints with jnswitches, whose
dynamic network graph is G= (V(G.), E(G),

En(Gy)). Its virtual graph is defined as being the
subgraph (V(@), E/{Gy)) with all n, vertices and all

ns virtual edges of @ ns disconnection
reconnection  matrices  Mpgri(Gy )W) to

M pred Gw )(Wrs), @re associated with the ariented
virtual edges, {ew = (vi, V), (i, )A1,..n}? and
k/41,..,n}}, of this virtual graph. They are defined
by:

w, if m=j, n=iandi#]j
M pri G (Wi ) mn=4 —W if m=n=iandi#
0 Otherwise

For (m, n)7{1,..,n}>

®)

Remark: Mprg(Gy, )W) models the transformation

of the reference grap®, when closing the switch
Sk

Thus, a dynamic network grapig, = (V(Gy),
E(G.), EGy)) is mathematically represented both
by the incidence matrix of the reference
configuration,M(G;), and by thens disconnection -
reconnection matrices M pg(Gy, )W) to

Mprnd Guw)Wns).  Mi(G;) represents the static



functional part of the dynamic graph whilst the called admissible configurations and defined as
matricesM pry( Gy, )(w ) represent the variable part.  follows.

Using these definitions, one may now give an Definition 8: a non-admissible configuration
expression of the incidence matrix parameterized COrresponds to: _ o
with the state of the switches, for physical swiitgh i) An effort source in short-circuit or .several
systems which fulfill the following assumption 2. independent effort sources connected in a cycle
with no other functional elements (effort-sources-
Assumption 2 The physical switching system can be _ Only cycle).

represented by a dynamic planar circuit which is ii) A flow source connected in an open-circuit or
cyclically connected with no self-loop. several independent flow sources connected in a

cocycle with no other functional elements (flow-

This assumption guarantees that the incidence Sources-only cocycle or cutse). .
matrices give an accurate  mathematical The set of admissible configurations of the physica

representation of the primal and dual network gsaph Switching  system %, is denoted Aj,).

of this circuit. A, {0, 17=
Theorem 1.The () X ne) parameterized incidence It has been shown in (Valentin, Magos & Maschke
matrix, M(G,)(W), of the 2 configurations of a  2006-a) how the set of admissible configurations ca
dynamic oriented network graph,,®vith ny virtual be defined by the analysis of the parameterized
edges is given by: incidence matrices associated with a PSS.
M,(Gw)(W) = Mt (G)(W) M(G;) (6) In the sequel, we shall firstly use the parametetiz
ns incidence matrices defined in section 3 to defiseta
= D(MT[k](GW)(W))MI(Gr ) (D of Dirac structures and then define the port-
where the (px n,) matrixM,,(G, )(W) is defined Hamiltonian system.
as following by recurrent series: 4.1. Parameterized Dirac structure
For n, Mting =ln, t+ MDRnS(Gw)(WnS)
Fork [7{1,.., n-1}, We shall define this Dirac structure by its kernel

- representation according to the Definition 4. i e
)} noted that in (Magos, Valentin & Maschke, 2004-1)
[il

nS nS
Mrrk ﬂ”V{ H(MT“])}MDRK(GW)(WK){ H(MT the Dirac structure was defined by its constrained

flow representation.

i=k+1

j=k+1

) L . Definition 9. Consider a physical switching system
Remark: to simplify the notation$d,; (G, )(W) with a dynamic network graph,its parameterized
and Mpri(Gy, )(w) are denotediry; and mpgy- incidence matrix MG,)(W), the parameterized
incidence matrix MG,, )(W) of a dual graph and
MT[k] represents the transformations in the A(ZW) its set of admissible Conﬁgurations. The

. . b he el fgeneralized Kirchhoff's laws define a parameterized
geometric interconnections between the elements ofyy; o« iricture D(G)(W) on the vectors of cycle

the system, produced by the switch,Saking into . )
accognt the Fs),tates of thg SWitChG&ﬁ&SV\hf variables e0J0" and cocycle variables 7 [
which admit the following kernel representation:

The proof of Theorem 1 is given in the appendix
and uses properties of the disconnection-recororecti {M (G (W)

transformation matrices. e=0 WUA()}

+ .

0 } LVM(GW )(W)}
4. Implicit port-Hamiltonian representation D(G.)(W) represents a family of geometric
interconnection structures. It depends explicitly o
the stateW of the switches. This structure is non-
minimal in the sense that it is a set offnst+2)
equations while a minimal representation would have
(nst2) less. It has a variable rank depending on the
state of the switches but has a constant dimension

((nef"'ns +2)>< r1ef)-

In this section, we shall give the port-Hamiltonian
representation of a circuit with varying topology
obtained by adding to the dynamic gra@, the
definition of a set of elements connected to its
"functional edges". These elements may be inductors
capacitors, effort or flow sources or resistors.
Considering source elements does however add
constraints to the definition of the configuratipfar
instance, two effort sources may not be in parallel
This leads to consider a subset of the configunatio

This  non-minimal representation of the
parameterized Dirac  structure  models the
configurations of the PSS in a uniform way. In this
context, the roles of the incidence matrices of the



network graph and of a dual graph, less frequently edggseewi*. Asng-n, + 2 = 5, a dual network graph
used, are significant. Ga,, has 5 dual vertices .

4.2. Implicit hybrid port-Hamiltonian formulation

The port-Hamiltonian system is defined on the space
of the energy variablgsandq (for electrical circuits:
the inductances’ fluxg and capacitors’ charges).

The Hamiltonian function is the total electromagmet
energyH(p, q)of the circuit.

Assume moreover that the network has some ports
(edges) to which sources are connected and denote
the corresponding power variables lﬁl)é us) and
others to which resistors are connected and denote
the corresponding power variables (m ,uR). This Fig. 3. Network graplﬁ;a,v dual network graptsa,

leads to an algebro-differential system definecaas
non-minimal implicit parameterized port-
Hamiltonian system by:

The incidence matrix of the reference configuration
of this dual dynamic network graph of the Cuk
converterGa, , is

{M|(GW)(W)}C{ 0 }23:0 ®) 10 1 1 1 1
0 — MGG, )W) -1 0 0 -1 0 0
M, (Ga)=[0 0 -1 0 0 O
with: (f €) L7D(Gw)(W), W A(Zw), 0 -1 0 0 -10
aH T 0O 1 0 0o 0 -1
f={iS q — iR} and

N 9p Hence, the parameterized incidence matrix,

oH T M,(Ga, )(V\f) associated with this dual network
§=[US a_q p UR} grathaN is obtained from Theorem 1:

M,(Ga, )W )=M.(Ga, (W )M, (Ga
5. Application on the Cuk converter 1(Ga, JW)= Mr(Ga, JW M, (Ga )

1 0 1 1 1 1

We shall consider the example of the Cuk converter | =1 —Ww, W -1 -ww, 0
represented on the figure 1. This example was also =| 0 _(1_W1)W2 -1+w, O _(1_W1)‘N2 0
used in (Escobar, Van der Schaft & Ortega, 1998) fo 0 -1+w, 0 0 -1+w, O
which a port-Hamiltonian system was formulated and 0 1 0 0 0 -1

in (Scherpen, Jeltsema and Klassens, 2003) in the
Lagrangian formulation where only the unconstraint

configurations are considered. This excludes the : .
cases whemw,=w,=0 or w;=w,=1. The formulation 4 The Kirchhoff's cocycle laws for the Cuk

proposed here deals with the full set of converter aret, (Ga, J(W)f =0 with:
configurations. i=[fu fe, fc, fu, fu fR]T

4 The incidence matridv,(Ga,)(W) of the Cuk
converter represented by the dynamic network graph Notice thatw =1-w, then: m,(Ga, )(W)=

with (wy, wy) O {0, I}2

given in figure 2 is: 1 0 1 1 1 1
-1 -(L-w)l-wp) -1+wy -1 -(1-wg)l-wp) ©
1 -1 Wy — W, W W, -1 0 —Wl(l—Wz) —Wp 0 —Wl(l—Wz) 0
-1 0 0 1 0 0 0 -w, 0 0 -w, 0
M|(GaN)(W): (O] 1-w  —1+wy 0 0 0 1 0 0 0 -1
0 0 -1+w, 0 1-w, O , 2
o 1 0 0 P with (wy, wo) O {0, 13-

Then, the Kirchhoff’'s cycle laws for the

with (wy, wy) 0 {0, 1}*. Cuk power converter area, (Ga, )(W )e=0 With:

¢ The dual incidence matrixV(Ga, )(W) is _e=[QJ €&, €&, e, €, eR]r
obtained from the dual grapBa, represented in
figure 3. The dotted lines indicate the dual fumcéil

! ; : 4 Therefore, as all configurations are admissible,
edges.es* and the thin dotted lines the dual virtual

the algebro-differential system of the Cuk conwverte



is defined as an implicit non-minimal parameterized general and often, one needs to restrict the d¢tass
port-Hamiltonian system by: obtain results, for example when resolving the
existence of solutions (Gerritsen, Van der Schaft &

Heemels, 2002).
f+

i
— [M(Ga, )W)

M, (Ga, ) (W)
0

This parameterized port-Hamiltonian formulation
has the advantages of being well-structured (agirim

with: W 7{0, 1%, network graph gives the cocycle relations and d dua
network graph gives the cycle relations from dyalit
_ OH oH . T considerations) and completely formalized (from the
f =[|U 4G G — — R} system to the final representation) without reagjri
o on 04 a-priori knowledge of a specific physical field. The

advantages of the Euler-Lagrange framework
H oH . - T (Scherpen, Jeltsema and Klassens, 2003) are #hat th
and:g:[U — — 4 & UR:| graph of the circuit is not necessarily planar. The
0q; 00, formulation proposed here has the advantage of
dealing with constraints with varying rank and to
falls into the framework of passivity-based control
These incidence matricesM,(Ga,)(W) and
M,(Ga, )(W) can be analyzed to draw conclusions This work may be continued by extending the
concerning the constrained configurations of the solution concepts and trajectory calculation
system. Two constrained configurations are createddeveloped in (Gerritsen, Van der Schaft & Heemels,
when the capacitor Gs short-circuitedw,=w,=1) or 2002) to dissipative physical switching system with
when the inductances;land L, are connected in effort sources. Another perspective of this papébi
series \{;=w,=0). Indeed, it is of prime importance to extend control design methods based on continuous
remove non-admissible configurations from the Hamiltonian systems such as Interconnection
control design procedure and to be aware of Damping Assignment Passivity Based Control
constrained configurations which may lead to state (Ortega, van der Schaft, Maschke & Escobar, 2002)
discontinuities in the trajectory of the system. and continuous control design method for
parameterized port-controlled Hamiltonian systems
Note that this implicit port-Hamiltonian system with autonomous switching as impacts (Haddad,
entirely encompasses the model presented inNersesov & Chellaboina, 2003) to dissipative
(Escobar, Van der Schaft & Ortega, 1999) and physical switching system with sources and

includes two additional constraints. controlled switches. Optimal control methods sugh a
(Manon, Valentin-Roubinet & Gilles, 2002;
7. Conclusionsand per spectives Sussmann, 1999; Zaytoon, 2001) can also be applied.
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formulation of physical systems with switching

interconnection. The switching topology is defined The authors thank CONACYT, UAM and CNRS

by a dynamic network graph to which energy specific actions AS155 and AS192 for their finahcia
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defined a parameterized incidence  matrix

corresponding to the set of configurations of the Appendix. The proof of Theorem 1.

switches. In a second step, we have used thisxmatri

to define a parameterized port-Hamiltonian The proof is based on recursion.

formulation of the admissible configurations of the

PSS. It is based on a parameterized non-minimalif the number of virtual edges il is equal to 1,

kernel representation of the Dirac structure 1 B 1

associated with generalized Kirchhoff's laws. The tN€NMi(Gy)(Wa) =[1, +Mpg(Gy)(W4)IM;(G;)

formal design of a hybrid automaton model of the which is an immediate conclusion of the definitions

autonomous physical switching system is presentedof an incidence matrix and of the disconnection-

in (Valentin, Magos & Maschke006-a). reconnection transformation (definitions 3 and 7).
Now, suppose that the Theorem 1 is true for a

An attractive feature is that the discrete statéhef  gynamic graphals™ with n—1 virtual edges.

switching part is explicit as well as the n-1

interconnections betwe(_an elements storing, progidin  Then:m, (Gl )W) = H(MT[k](GvT/s_l )(\N))VII(Gr )-

or dissipating energy in the system. The class of k=1

models presented in this paper encompass a great

variety of non-linear switched systems. The analysi

of such systems is quite complex to be handled in



Hence, in the sequel, we prove that, for a dynamic
network graphGys = (V(Gys ), E(Gy ), E( Gt ),
with nyvirtual edges:

N

M, (G )W) = [ Mr g (G5 WM, )

k=1
which can be written:
ng-1
MG = [TMrg (G2, + Mor Mi(G) (10)
k=1
%/—/

Following definitions 3 7,
[ 1, +Mpry (G )L)IM, (G ) =M, (Gy) the

incidence matrix of the subgrapt(G,), E(G,)) with
all vertices and functional edges @f, and with the
virtual edgeegynsclosed.

As well, [ I, +Mpg, (Gl )O)IM,(G)=M,(Gy)is

the incidence matrix of the subgrapV(Gs),

and
is

E(Gyr)) with all vertices and functional edges of

Gye and with the virtual edges,ns open.

Consequently, equation (10) calculates the
parameterized incidence matrix of a dynamic graph
Ghs™l with ne1 virtual edges ey t0 €swns.s and
with the virtual edges,nsclosed or open through the
transformation of the incidence matrix of the
reference configuratiofl, +Mpg, M,(G,) which

coversM,(G,) and M, (G)).

This transformation is completed the

by
productnﬁl(MT[k](Gvf;s )(W))- Now remains the proof
k=1

that M, (Gys )w) is also obtained by recurrence,

by the following expression:

Ns

MMy

i=k+1

(MT[i]

M) (G )(W)=|nv ’{
j=k+1

In the sequel, we consider two cases:
*for k =ng1,

MT[ ns-1] (G‘vr\]/S )= |nv + MT[ns] M DRns—l-MT[ ns]-r
“for k {1,.., nv2}, My =

nS—J(
1M
j=k+1

:|T
For k 4 {1, .., nl}, let us denote:
M? = MrngMorMr(ng which appears in both

MT[ns M DRk-MT[ns]T|:

In, *Lnls__ll('\"ni])

i=k+1

expressions.

We next prove thaty# for k /7{1,.., n-1} areng1
DRk

disconnection-reconnection matrices defining the
V(Gr™),

dynamic network graph Gt

E(GRE™), EGE™)) with ne1 virtual edgesea,,

to egwns.1 and with the virtual edgegyns closed or

open.
Pk
0 0 0]
0 :
: - W | Pk
MDRk = :
: Wy .0 Ok
0 0 0]
Pns
1 0 0]
0 :
and ) W.ns Uns
MT[ns]_ :
1-wpg 2 Pns
: : . 0
0 0 1]

Five cases must be analyzed to calcylgte:
DRk

1/ if (qns;‘ﬁ qk) and Qns;‘ﬁ pk) and t’ns?’E qk) and t’ns?’E
P, MRk = Mpry Whatevek /7{1,.., n-1}.

Indeed, it means that there is no connection
between egyns and egy in the dynamic graph

Gt

2/ if (Ons = a) @nd €ns # Pu) @nd Pns # d) and Pns #
p), then, whatevek /7{1,.., n-1}, Mgy = Mprk.

Indeed, it means that wheg,,s andeg, have the
same end vertex, the stateeaf,,sdoes not appear

in the disconnection-reconnection mawiggy .

3/ if (qns7ﬁ qk) and Qns = pk) and Ons?ﬁ qk) and Ons?’é
Py, then, whatevek /7{1,.., n-1}, Mz = Mprk.

Indeed, it means that when tbed vertex of edge
ecunsiS the same as the start vertex of eelgg, the
influence of the state @, t0 the disconnection-
reconnection transformation due &g, is taken

. . Ns— .
into account in the producﬂ](MT[k]) and not in
k=1

the termpy# . In that case, the orientation of the

DRk
virtual edges’ sequence respects the matrices’
product.



4/ if (ghs# aw) and Qns# Px) and pns =) and Pps# Buisson, J. (1993). Analysis of switching devices
pJ, then, whatevek 7{1,.., n-1}, M¥g, = with bond graph.J. of the Franklin Institute
330(6), 1165-1175.
Px Cormerais, H., Buisson J., Leirens S. & Richard
0 0 o e e O P.Y. (2002). Calcul symboliqgue de I'ensemble
0 - : : des équations d'état pour les bond graphs en
: commutation.  Conférence Internationale
~ Wk P Francophone d'Automatique. CIFA  2002.
WoeWe Pl O Nantes, France.
: : : Courant, T.J. (1990). Dirac manifoldsTrans.
1- . ola = American Mathematical SocieBl9, 631-661.
(1= Whs Wi ) G = Pns Dalsmo, M. & Van de Schaft AJ. (1998). On
o - o 00 representations and integrability of mathematical
structures in  energy-conserving  physical
systemsSIAM J. Control Optim.37(1), 54-91.

. Escobar, G., Van der Schaft A. J. & Ortega R.
connected tov, are disconnected and reconnected (1999). A Hamiltonian viewpoint in the

to Vgns Indeed, it means that when the end vertex of  gqeling of switching power converters.
the edgeeswk is the same as thatart vertex of the Automatica3s. 445-452.
edgeesuns the reconnection vertex depends on the gerritsen, K.M., Van der Schaft AJ. & Heemels

state ofeg,ns because the orientation of the virtual W.P. (2002). On switched Hamiltonian systems
edges’ sequence does not respect the matrices’ Proceedings MTNS2002. Indiana, U.S.A. '

If w,=0, then Mng:MDRk- Otherwise, edges

product. Golo, G. (2002). Interconnection structures in port
) based modelling: tools for analysis and
S/f (Gns # G and (ns # Pi) @nd Pns # Gi) and s = simulation. PhD Thesis, Twente University
pJ, then, whatevek J{1,.., nr1}, Mpgy = Press, Enschede, The Netherlands, ISBN
Pe=Prs - G 9036518113.
ns ns .
0 0 L 0 Haddad W.M., Nersesov S.G. & Chellaboina V.
) ) (2003). Energy-based control for hybrid port-
0 : : : controlled Hamiltonian systeméutomatica39,
: (Wns_l)wk Pk = Pns 1425-1435.
: = WingWi Pl Ons Jeltsema, D., Scherpen J.M.A. & Klaassens J.B.
: : : (2001). Energy-Control of multi-switch power
(L= W )Wy WooWi 0| g supplies; an application to the three-phase buck
0 ... e .0 0 rectifier with input filter. Proceedings of 32nd

IEEE Power Electronics Specialists Conference
4 _ PESC'01. Vancouver, Canada.
If wh=0, thenMpgy=Mpgy. Otherwise, edges Karnopp, D., Margolis D.L. & Rosenberg R.C.

initially connected tovy have been disconnected (1990). System dynamics: A Unified Approach
and reconnected toy,s by the closing ofegwns John Wiley and Sons, New York, Second
Then, edges connected wgsare disconnected and Edition.

reconnected to/. It means that, wheBguns and Lozano, R., Brogliato, B., Egeland, O. & Maschke B.

eczwk have the same start vertex, the disconnection (2000). Dissipative systems analysis and

vertex depends on the stateegs control: Theory and applications.Springer-
Verlag, Great Britain.

Then, we proved by recursion that te, x n) Magos, M., Valentin C. & Maschke B.M. (2004-1).

matrices MERk for k [ {1,.., n-1} are nel Non—minimal representation of _Dirac structures
for physical systems with  switching
interconnection, International Symposium on
Mathematical Theory of Networks and Systems,
MTNS2004. Leuven. Belgium

Magos, M., Valentin C. & Maschke B.M. (2004-2).
From dynamic graphs to  geometric
interconnection structures of physical systems
with  variable topology, IFAC SSSC'04
Symposium on System Structure and Control,
Oaxaca, Mexicp336-341.

Manon P., Valentin-Roubinet C. & Gilles G. ( 2002).
Optimal Control of Hybrid Dynamical Systems:
Application in Process Engineering;ontrol
Engineering Practicd 0, 133-149.

disconnection-reconnection matrices representiag th
dynamic graphG,, with ns1 virtual edgeseg,: to
€cuns-1and with the virtual edges,nsclosed or open.
Thus, Theorem 1 is proved.
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