
HAL Id: hal-00367321
https://hal.archives-ouvertes.fr/hal-00367321

Submitted on 13 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High Speed 3D Tomography on CPU, GPU, and FPGA
Nicolas Gac, Stéphane Mancini, Michel Desvignes, Dominique Houzet

To cite this version:
Nicolas Gac, Stéphane Mancini, Michel Desvignes, Dominique Houzet. High Speed 3D Tomography
on CPU, GPU, and FPGA. EURASIP Journal on Embedded Systems, SpringerOpen, 2008, 2008,
http://www.hindawi.com/GetArticle.aspx?doi=10.1155/2008/930250. �10.1155/2008/930250�. �hal-
00367321�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archive Ouverte en Sciences de l'Information et de la Communication

https://core.ac.uk/display/31895944?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00367321
https://hal.archives-ouvertes.fr

High Speed 3D Tomography on CPU, GPU
and FPGA

Nicolas GACa,b , Stéphane MANCINIa, Michel DESVIGNESa and Dominique HOUZETa

Abstract—Back-Projection (BP) is a costly
computational step in tomography image recon-
struction such as Positron Emission Tomography
(PET). To reduce the computation time, this
paper presents a Pipelined, Pre-fetch and Par-
allelized Architecture for PET BP (3PA-PET).
The key feature of this architecture is its orig-
inal memory access strategy, masking the high
latency of the external memory. Indeed, the
pattern of the memory references to the data
acquired hinder the processing unit.

The memory access bottleneck is overcome by
an efficient use of the intrinsic temporal and
spatial locality of the BP algorithm. A loop re-
ordering allows an efficient use of general purpose
processor’s caches, for software implementation,
as well as the 3D Predictive and Adaptive Cache
(3D-AP Cache), when considering hardware im-
plementations. Parallel hardware pipelines are
also efficient thanks to a hierarchical 3D-AP
Cache: each pipeline performs a memory refer-
ence in about one clock cycle to reach a compu-
tational throughput close to 100%.

The 3PA-PET architecture is prototyped on a
System on Programmable Chip (SoPC) to val-
idate the system and to measure its expected
performances. Time performances are compared
with a desktop PC, a workstation and a GPU
(Graphic Processor Unit).

I. Introduction

Tomography consists of reconstructing an object
from its projections via numerical methods [1].
This process is used in medical scanners, such as
Computed Tomography (CT) or Positron Emission
Tomography (PET) scanners. PET is a nuclear
imaging modality; its goal is to measure the spatial
and temporal distribution of a radio-tracer perfused
in a patient’s body. PET imaging is used in on-
cology, to detect, track and visualize tumors. After
data acquisition, the 3D image of the radio-tracer

a : GIPSA-lab, Grenoble Institute of Technology - INPG,
BP 46, 38402 St Martin d’Hères, France

b : ETIS, CNRS, ENSEA, Univ Cergy-Pontoise, F-95000
Cergy-Pontoise, France

is reconstructed off line from the measures (called
sinograms) to diagnose pathologies. Oncology and
other clinical applications need a high quality recon-
struction as fast as possible (few minutes at most)
to reduce the device occupation and allow a patient
repositioning1. Also, dynamic PET is in need of
even faster reconstruction.

Moreover, tomography is required in many other
medical imaging techniques, such as 3D Magnetic
Resonance Imaging and 3D Ultra-sound Imaging,
or in other domains such as Synthetic Aperture
Radar (SAR), contact-less control and industrial
X-Ray applications. Therefore, the acceleration of
the reconstruction algorithm is of great interest for
various applications.

Due to the large amount of the acquired data and
the complexity of the algorithms, reconstruction is
a very time-consuming process. From a computing
point of view, reconstruction methods can be clas-
sified into two main techniques: analytic (direct)
reconstruction and iterative reconstruction. They
both include a Back-Projection (BP) step that ac-
counts for 50% to 70% of the processing time.

In 3D reconstruction, the computational complex-
ity of the standard algorithm to reconstruct an N3

data-set from N angles of projection is O(N4). In
the previous decade, several algorithms have been
proposed to reduce BP complexity. The lowest cost
obtained is O(N3 logN) but generally with a lower
quality of reconstruction; also it doesn’t take into
account some required data management, which
delay the process. Although CPUs have gained suf-
ficient computing power for 2D reconstruction, with
3D reconstruction the increase of the amount of
data for high quality images leads to higher comput-
ing times. Iterative reconstruction algorithms may
reach several hours of processing [2].

1A patient can not experienced a radio-tracer twice in a
short while and has to wait several months before a new
examination, in case of bad camera positioning.

The algorithmic optimizations of reconstruction
have reached some limits and it is becoming manda-
tory to reduce the computing time through archi-
tecture solutions. General purpose parallel comput-
ers benefit from recent competing technologies: the
System on Programmable Chip (SoPC) and the GP-
GPU (General Purpose Graphical Processing Unit).

This paper shows that a hardware implementa-
tion of the BP algorithm needs to overcome the
memory bottleneck. This may be solved both by a
loop reordering and the use of an efficient caching
mechanism. Parallel hardware pipelines can be fed
with a hierarchy of semi-general purpose cache such
as the 3D-AP Cache [3]. The resulting architecture
makes a better use of memory bandwidth than
general purpose CPUs and GP-GPU.

The first parts of this paper present the use of
the 3D BP algorithm and different solutions to ac-
celerate it. Next, we present the memory bottleneck
of a classical implementation of 3D BP to over-
come. From this study, an efficient architecture is
proposed: the Pipelined, Pre-fetch and Parallelized
Architecture for 3D PET BP (3PA-PET). The qual-
ity, complexity and timing performance of the 3PA-
PET architecture are also presented. Measures on
its prototyping on a SoPC allows a comparison with
the implementation of BP on CPU and GP-GPU.

II. 3D BP in Tomography reconstruction

In this section, we will first show that 3D PET BP
and the 3D CT BP using respectively a parallel and
a cone beam geometry, are close algorithms. Then,
we will present some related works on acceleration
of these two BPs on several architectures.

A. BP algorithms
1) 3D parallel beam BP for PET: The detectors

of a PET scanner are usually paving a cylinder
and stacked in a set of rings of detectors [1]. The
γ rays issued from the disintegration of a radio-
tracer particle, are detected by a pair of sensors
facing each others. The line which connects two
sensors is called a Line Of Response (LOR) and the
coincidence events counted on one LOR are stored
in a bin. All the bins are stored in a sinogram as
illustrated in figure 1. The reconstruction process
attempts to estimate the image of the radio-tracer
distribution f that has produced the sinogram.

The sinogram pPET is a 4D space along
(∆, ψ, u‖, v‖). The coordinates (∆, v‖) represent a

couple of rings : ∆ is the axial distance between the
two rings (segment number) and v‖ is the mean axial
coordinate of the two rings (plane number). The
coordinates (ψ, u‖) represent one particular LOR
between two rings: ψ is the azimuthal angle and u‖
is the tangential coordinate (bin number).

y

PROJECTION SPACE

ψ

(angle number)

(bin number)u‖

v‖

Segment ∆ of the 4D sinogram

(plane number)

voxel

z

LORs
x

IMAGE SPACE

∆

detectors rings

Figure 1. The acquired data are stored in a 4D sinogram,
a sinogram bin corresponding to one particular LOR. To
reconstruct one voxel, the data needed by the BP algorithm
draw a 3D sinusoid in each segment ∆.

For each voxel (VOlume piXEL) of coordinate
~r = (x, y, z), the BP algorithm sums up all the sino-
gram bins corresponding to that voxel projection:

f∗PET(~r) =
∫∫

pPET
(
∆, ψ, u‖(ψ,~r), v‖(ψ,∆, ~r)

)
J∆dψd∆

(1)
J∆ is a jacobian and the parallel beam coordi-

nates (u‖, v‖) are computed as:

u‖(ψ,~r) = x cosψ + y sinψ + offset

v‖(ψ,∆, ~r) =
∆

2Ra
· (x sinψ − y cosψ)

+z + offset

(2)

Using aij(ψ,∆) coefficients, we get:

{
u‖(ψ,~r) = a00x+ a01y + a03

v‖(ψ,∆, ~r) = a10x+ a11y + a12z + a13

(3)
2) Cone beam BP for CT: The cone beam BP

used in CT imaging modalities uses a similar al-
gorithm [4]. In CT, the data is the X ray inten-
sity reaching an X camera that rotates around

the observed volume. It measures the attenuation
due to the density of tissues. The density f∗CT(~r) is
computed from the measured data pCT following:

f∗CT(~r) =
∫
pCT

(
α, u∨(α,~r), v∨(α,~r)

)
· w(α,~r)2 · dα

(4)
Where α is the trajectory parameter of the cam-

era. The cone beam coordinates (u∨, v∨) are com-
puted as:

{
u∨(α,~r) = (c00x+ c01y + c02z + c03) · w(α,~r)
v∨(α,~r) = (c10x+ c11y + c12z + c13) · w(α,~r)

(5)
where cij depends on α (i.e. cij = cij(α)) and

w(α,~r) =
1

c20 · x+ c21 · y + c22 · z + c23
(6)

3) Comparison of CT and PET: Although the
CT BP is more complex due to the perspective
transformation (eq 6), these algorithms are quite
similar. Indeed, the summation over α (trajectory
parameter) for CT BP, is equivalent to the sum-
mation over ψ and ∆ for PET BP. Moreover, in
these loops, both these BPs compute very similar
projection coordinates (u‖, v‖) and (u∨, v∨). Nev-
ertheless, the computation of the projection coor-
dinates for CT BP needs a division by a distance
weight w(α,~r). Thus, the CT BP kernel has more
arithmetic operations than has PET BP.

Supposing that one is able to design a pipeline
that computes a sum update at each clock cycle,
both for CT and PET BP, then the challenge is to
fetch data along a complex path (a 3D sinusoid)
in the acquired data (3D CT data or 4D PET
sinogram). The method presented in this paper for
solving the case of PET BP (parallel beam) could
be transposed to solve the CT BP (cone beam).

B. Acceleration of reconstruction

Different computer architectures coupled with
dedicated memory access strategies are used to
accelerate the BP step of an analytic or iterative
reconstruction, including: general purpose proces-
sors [5], [6], [7], graphical processors [8], [9], [10],
[11], [12], [13], [14], the Cell processor [4], [15] or
ASIC/FPGA architectures [16], [17], [18], [19], [20].
While most of these works have investigated cone

beam BP, only a few of them have investigated 3D
parallel beam BP [2], [5], [8], [9].

The parallelisation of reconstruction algorithms
on shared memory parallel general purpose com-
puter [5] stays efficient only up to 4 processing
units, because of conflictual accesses on the memory
bus. Considering clusters of heterogeneous PCs [6],
[7], efficiency of parallelisation drops down quickly
because of the costly communication between PCs.
After 10 PCs, parallelisation is not worthy. Yet
on a distributed memory parallel computer, par-
allelisation works very well. for 3D PET iterative
reconstruction, Jones et al. [2] succeeded to get an
acceleration factor of about 30 with 32 processors.
Ni et al. [21] achieved an excellent acceleration
factor of 300, when they parallelized the Katsevitch
algorithm, an exact cone beam BP with 300 CPUs.

Besides parallelisation on several nodes of general
purpose processors, more efficient engines such as
the GPU (Graphical Processing Unit) or the IBM
Cell can be used. Current GPUs can be used either
as a graphical pipeline, which is originally designed
for [8], [9], [10], or as a multiprocessor chip thanks
to the CUDA interface from Nvidia [10], [12], [13],
[14], [15]. For both options, the acceleration factor
of GPU is high, about an order of magnitude for
cone beam BP. Xu et al. [10] have observed that
an implementation of the cone beam BP using the
graphic pipeline is 3 times faster than the one made
with the CUDA interface. Kachelriess et al. [4] and
Scherl et al. [15] present good result of acceleration
of cone beam BP using the Cell processor. With
its 1+8 cores, this architecture is an intermediate
solution between general purpose parallel processors
and GPU. The 8 vector engines have to be specif-
ically programmed. Nevertheless, Scherl et al. [11]
have measured that a GPU with CUDA is 3 times
faster than the Cell for the BP alone.

FPGA technology is an alternative to processors,
allowing designers to make a customized architec-
ture. Most often, it is used to prototype ASIC
implementations. In this context, FPGA implemen-
tations of 2D parallel beam BP [16] and 3D cone
beam BP [17], [18], [19] have been investigated.
These architectures are made of several pipelines
working in parallel. Moreover, like the imageProX
by Siemens [18], several FPGA chips can be used in
a single board to raise the computational power.

Two memory access strategies have been applied

for all these architectures. In case the processor
already has a memory cache, developers rely on it to
optimize the external memory accesses. Otherwise,
developers set up custom memory strategies in order
to hide the memory access time. The most com-
mon approach is to use double buffering: the next
required projection data is loaded from external
memory, meanwhile the ongoing loaded projection
data are back-projected. In this case, CPU and GPU
memory strategies are based on an extensive use
of the cache. For example Yang et al. [13] have
observed that enabling a GPU cache is more com-
petitive than software pre-fetching. On the other
hand, the Cell and FPGA memory strategies have
to be taken in charge by the software designers.

III. Overcoming the memory bottleneck

In this section, we focus our study on finding
out the best appropriate memory strategy to get
the best fit between the 3D BP algorithm and a
hardware architecture.

A. Memory access strategy

As the sinogram is kept in a SDRAM like external
memory, we need an efficient memory management
to overcome its latency and allow a high level of
parallelism. The main difficulty is to deal with
the high strides of addresses due to the sinusoidal
pattern of references in the 4D space. A cache would
help to hide the high latency of the external memory
despite these strides. Standard caches therefore are
inefficient as they exploit temporal and address
locality of references. Hence they are used at their
best when the references follow a 1D linear pattern
as a cache line is loaded when a miss occurs.

Indeed, as shown earlier, the reconstruction of a
single voxel f(~x) needs to follow a 3D sinusoid in
the 4D sinogram. Such a pattern is of poor address
locality but has a high index locality. Moreover, be-
cause of the v‖ dimension, the memory accesses for
3D BP have higher strides and are more distributed
in the memory space than in the 2D BP case [22].
The challenge is to speed-up these memory accesses
in a 4D data structure.

Therefore a new cache mechanism is needed. Es-
timating which bins would be referenced would help
the cache to download the needed bins during the
computing process.

SDRAMADDRESS

DATA Latency

4−10 cycles

SRAM

3D−AP

Cache

(10−100 Ko)

SoPC : System on Programmable Chip

COORDINATE

(128 Mo−1 Go)

3D−BP

DATA
Latency

1 cycle

ACCES TIME

v‖ (PLANE NUMBER)
ψ

(A
N

G
L
E

N
U

M
B

E
R

)
u‖ (BIN NUMBER)

Figure 2. The memory access strategy is based on a fast and
small cache memory inside the SoPC. The cache predicts the
needs of the 3D BP unit and therefore succeeds to mask the
high latency (4-10 cycles @200 Mhz) of the slower and bigger
external SDRAM memory.

B. Improvement of spatial and temporal locality

A reconstruction with the Voxel-driven Bilinear
Interpolation (VBI) standard BP is made of three
loops, as described in algorithm III-B: the first loop
is on the voxels ~r, the second on the segments Delta
and the third on the angles psi. Since voxels can be
reconstructed independently, the loop on voxels can
be split into two parts: one loop on blocks of voxels
(0 .. nmax) and the other loop on the voxels of a block
n (~rmin(n) .. ~rmax(n)).

Algorithm 1 The loop reordering of the 3D BP
improves spatial and temporal locality

for n = 0 to nmax do
for Delta = 0 to Deltamax do
for psi = 0 to psimax do
for ~r = ~rmin(n) to ~rmax(n) do
f(~r)+ = bin

(
psi, Delta, u‖(psi,~r), v‖(psi,~x)

)
A loop reordering increases the temporal and spa-

tial locality of memory accesses. Indeed, for given
psi and Delta values, the data bin(psi,~r) will
be used several times for different voxels since the

projection of a 3D block of voxels is a 2D plane in
the 4D space of the sinogram.

The figure 2 shows that the proposed loop re-
ordering allows to cache a part of the sinogram.
The BP of a block of voxels makes the references
to follow a coherent 3D sinusoid in the sinogram
along the time.

C. Mean Bin Reuse Rate (MBRR)

To give a theoretical estimation of the best
achievable cache efficiency, the Mean Bin Reuse
Rate (MBRR) is defined as the ratio between the
number of bins accessed in cache memory by the
processing units and the number of bins loaded in
cache memory from the external memory. The ideal
MBRR can be computed analytically. It depends
on the shape of the block of reconstructed voxels.
Figure 3, presents this optimal MBRR computed
for each segment versus the size of the block.

 0

 2

 4

 6

 8

 10

 12

 14

 0 200 400 600 800 1000

M
ea

n
 B

in
 R

eu
se

 R
at

e

Block size (number of voxels)

segment 0
segment 1
segment 2

Figure 3. Mean Bin Reuse Rate (MBRR) estimated for
a 3D BP without bilinear interpolation versus the size of
reconstructed blocks of voxels for each segment of a Siemens
HR+ sinogram (span 9 with 96 angles of projection)

IV. A 3P Architecture for PET

In this section, we present the Pipelined, Pre-
fetched and Parallelized Architecture for PET
(3PA-PET). The 3PA-PET architecture is made
of a high performance pipeline connected to a 3D
Adaptive and Predictive Cache (3D-AP Cache).
It allows to perform an update of a voxel value
up to 1 operation per clock cycle (100% pipeline
utilization), even for high latency memories.

A. Pipelined Architecture
The pipeline in figure 4, implements the different

steps of the VBI standard BP: the computation of
u‖(psi,~r) and v‖(psi,~r), the bilinear interpolation
of the bin, and finally the accumulation of the voxel
value. The forward flow control is done by packets
passing through each stage of the pipeline.

MEMORY

(rho,psi,lambda)

3D−AP

CACHE

INTERPOLATION

COORDINATE

COS

RAM

Reconstructed voxel
Bin

Coordinate
FSM Data flow

Control flow

ACCUMULATION RAM

BRIDGE

VOXEL

COMPUTATION

FIFO

f(x,y,z)

psi

(x,y,z)

(x,y,z)

cos(psi)

A
C

C
E

S
S

 T
O

 T
H

E
 E

X
T

E
R

N
A

L
M

E
M

O
R

Y

f(~r) =

interpolated bin(psi,~r)

(u + 1, psi, v)
(u, psi, v + 1)
(u + 1, psi, v + 1)

C00 ∗ bin00

C10 ∗ bin10

C11 ∗ bin11

+
y ∗ sin(psi)

(u, psi, v)

u(psi,~r) =

bin(psi,~r) =

∑
bin(psi,~r)

x ∗ cos(psi)

+
C01 ∗ bin01

+

+

Figure 4. Pipeline of 3PA-PET

The 4 bins needed for the bilinear interpolation
are fetched through the memory bridge. This bridge
controls the 3D-AP Cache and can freeze (or not)
the pipeline depending on the requested data avail-
ability. A backward flow control synchronizes the
pipeline and the 3D-AP Cache.

B. Pre-fetch Architecture
The 3D-AP cache [3] masks the latency of the

external memory so that the pipeline is no more
systematically stalled. The memory bridge gets four
bins from the cache at each clock cycle.

The 3D-AP Cache is a semi-generic cache memory
mechanism that pre-fetches references following a
continuous path into a 3D memory space. It was
originally designed as a cache for a computer vision
lip-tracking application [3] but it targets a large
class of multi-dimensional processing algorithms. In
the 3PA-PET architecture, the 3D-AP Cache is
tuned to follow the references needed to reconstruct
a block of voxels, as shown in figure 5. The pipeline
issues spatial coordinates of the requested bin, here
(psi, u‖, v‖), to the 3D-AP Cache. A part of the
sinogram , namely the cached zone, is copied in an
embedded memory. A tracking mechanism tries to
maintain the center of the cached zone in the mean
coordinate of the referenced data.

The 3D-AP Cache estimates dynamically which
data is likely to be requested in the future. This is
done by a statistical analysis on each axis of the pre-
vious references. Moreover, the 3D-AP cache masks
the data transfer between the external memory and
the internal cache memory. In the mean time, the
cache grabs new data from the external memory, the
data shared by the old and the new cached zone stay
available for the processing unit.

Cache center

Guard zone

Cache memory

Cached zone

1

2

3

4

u‖

ψ

v‖

Figure 5. 3A-AP Cache zones

The 3D-AP Cache parameters have to be set
beforehand by the user. In this study, we set for
each dimension the value of five parameters:

• cut-off and sampling frequencies: the mean co-
ordinate is computed by a first order low-pass
IIR filter configured by these two frequencies.

• cached zone size: this zone is notified to the
memory bridge to be available in cache. In this
study, this size is a static parameter.

��
��
��
��

��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���

���
���
���

B
us

16

16

16

16

S
ystem

64

Miss Arbiter
M

em
ory

C
ache

M
em

ory
M

em
ory

@

@

@

@

C
ache

M
em

ory
C

ache
C

ache

Control

3D−AP Cache
Cache

Memory

Bridge

(u + 1, psi, v + 1)

(u + 1, psi, v)

(u, psi, v + 1)

(u, psi, v)

(a) Customized concurrent 3D-AP Cache architecture

��
��
��
��

����
����
����
����

����
����
����
����
����

����
����
����
����
���� ��

��
��
��

����
����
����
����

����
����
����
����
����

����
����
����
����
����

��
��
��
��

����
����
����
����

����
����
����
����
����

����
����
����
����
������

��
��
��

����
����
����
����

����
����
����
����
����

����
����
����
����
����

������������
������������
������������

������������
������������
������������

������
������
������

������
������
������

������������
������������
������������

������������
������������
������������

������
������
������

������
������
������

����
����
����
����
����

����
����
����
����
����

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

����
����
����
����
����

����
����
����
����
����

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

����
����
����
����

�
�
�
�

�
�
�
�

psi

u‖

v‖

(b) Mapping of bins to memory buffers

Figure 6. Memory architecture for bilinear interpolation

• guard zone size when the mean coordinate is
out of this zone, the cache zone is updated.

• cache speed: it has to be set according to the
speed of the data accesses performed by the
application on each spatial dimension.

The cache is customized to allow four concurrent
accesses to the bins needed to perform a bilinear
interpolation. Figure 6 gives a simplified view of
the 3D-AP cache to illustrate the involved memory
architecture. The cache control unit grabs data from
the external memory and splits the incoming data
words to the different embedded memories. The
cache control unit also manages the cache misses
that could occur for some requested bins.

C. Parallelized Architecture
To increase the computing power, several

pipelines are parallelized. A hierarchical cache
reduces the memory bus occupation, when BP
units work in parallel. In this hierarchical design,

one leaf cache is associated to one 3D BP unit while
a root cache is feeding each of these leaf caches.

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������

Data accessed by 3D−BP units

3D−BP 3D−BP

Unit 3

3D−BP

Unit 4Unit 2

MEMORY BUS

ROOT CACHE

LEAF CACHES

3D−BP

Unit 1

Figure 7. Each leaf cache is feeding by the root cache.

The spatial locality of the references of the
pipelines is enabled by reconstructing a set of neigh-
bor blocs. A pipeline reconstructs one bloc of voxels
and all the pipeline share a loop over psi. Some of
the sinogram data are shared by the pipelines in the
same way they are shared to reconstruct one bloc
of data. The bins needed during the reconstruction
of a set of bloc draw a 3D sinusoid. The cache
concept presented previously with one unit, applies
here in the same manner. Each leaf cache stores a
3D sinusoid needed to reconstruct a bloc. A higher
level cache stores the union of these sinusoids as
presented in figure 7.

V. 3PA-PET Performances

A. Accuracy of reconstruction

The implemented VBI standard BP is a fixed
point version of the original algorithm. Moreover
the sinogram data is converted from float to short
int (16 bits). The accuracy of reconstruction of 3PA-
PET is measured between a reference reconstruction
software and a software bit true model of 3PA-PET.

The reference data-set used is a sinogram of a 3D
Shepp Logan volume of 128× 128× 63 voxels. This
phantom is a standard volume used in tomography
to measure the accuracy of reconstruction. The
sinogram is obtained from the STIR open source
tool kit [23]. The volumes reconstructed by STIR
and by 3PA-PET are shown on figures 8 and 9.

STIR 3PA-PET
Figure 8. A slice of the 3D Shepp Logan phantom recon-
structed by STIR and 3PA-PET BP.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 20 40 60 80 100 120 140

D
en

si
ty

 o
f

ra
d
io

tr
ac

er

x

Shepp Logan phantom
STIR

3PA-pet

Figure 9. Profile of the 3D Shepp Logan phantom slices
corresponding to the lines on figure 8

The accuracy of reconstruction of the 3PA-PET
BP is measured with two metrics: the Mean Abso-
lute Percentage Error (MAPE) and the Peak Signal-
to-Noise Ratio (PSNR). Both compare a volume
f1 with a volume of reference fref. The PSNR
corresponds to the ratio between the maximum of
fref (dynamic range) and the mean squared error
(MSE) of f1 compared to fref :

PSNR = 20 · log10
max(fref)√
MSE(fref, f1)

(7)

In table I, we compared the reference volume
and the volumes reconstructed with STIR, with
VBI floating-point arithmetic (VBI-flt) or with VBI
fixed-point arithmetic (VBI-fix). All of the recon-
struction methods have an intrinsic error around
3.9% with a PSNR of 10.5 dB when compared
with the original volume. The floating-point and the
fixed-point implementations have a MAPE of 0.13%
and a PSNR of 23 dB. With different data type
(short int versus float), the MAPE is about 1.1%
and the PSNR of 19 dB. Thus we can conclude that

compared volumes data MAPE PSNR

Accuracy of reconstruction
STIR / original float 3.89 % 10.5 dB

VBI-Flt / original float 3.88 % 10.5 dB
VBI-Fix / original float 3.88 % 10.5 dB
VBI-Flt / original int16 3.97 % 10.5 dB
VBI-Fix / original int16 3.97 % 10.5 dB

Compared reconstructions
STIR / VBI-Flt float 0.35 % 21.5 dB

VBI-Fix / VBI-Flt float 0.13 % 26.2 dB
VBI-Fix / VBI-Flt int16 0.13 % 23.0 dB
VBI-Fix / VBI-Flt int16/flt 1.1 % 19.0 dB

Table I
Accuracy of reconstruction and Compared

Reconstructions for the Shepp Logan phantom

the 3PA-PET implementation of the VBI BP is an
accurate reconstruction system.

B. 3PA-PET complexity
The hardware resources used by the 3PA-PET

architecture are presented on table II. The main BP
FSM and the root cache control are shared between
all of the units of the 3PA-PET architecture. There-
fore the cost of an additional pipeline is only 800
slices. The sizes of a leaf and the root caches are
respectively 2 KB and 18 KB. Hence, 9 BP units fit
in a Xilinx Virtex 2 Pro VP30 chip and 16 units in
a virtex 4 FX100.

1 unit 4 units 9 units
3D BP

CLB slices 573 1817 3924
(4.2%) (13.3%) (28.6%)

Multipliers 12 48 108
(9%) (35%) (79%)
3D-AP Cache

CLB slices 672 2830 4804
(4.9%) (20.6%) (35.1%)

RAMs 2 kB 24 kB 36 kB
(0.6%) (7.8%) (11.7%)

3D BP + 3D-AP Cache
CLB slices 1245 4637 8728

(9.1%) (32.9%) (63.7%)

Table II
Hardware resources used by the 3PA-PET on a Xilinx

Virtex 2 Pro VP30.

C. Efficiency of reconstruction
In order to assess the efficiency of the 3PA-PET

architecture, we have measured the BP time on
an Avnet development board connected to a PC

Switch

RS232

OPB PLB

6432

32

32

3D Back
Projection

Avnet evaluation Board

PPC

PC
Host

DOCMIOCM

BRAMSDRAM
Ctl

SRAM
Ctl

Interupt
Ctl

UART

PCI
Bridge

SDRAM
SRAM

Virtex II Pro

PCI

3D−AP
 Cache

Figure 10. Evaluation system

host through a PCI interface (figure 10). The board
contains an external SDRAM memory and a Xilinx
SoPC (System on Programmable Chip). In order to
investigate the 3PA-PET behavior with respect to
the memory features, we have plugged it with a fake
memory bus which could be set with different values
of memory latency (lmem) and memory bandwidth
(BWmem). The memory simulator estimates the
time to access Nline lines of Sline Bytes following
the relationship:

tmem = Nline · (lmem +
Sline − 1
BWmem

) (8)

The times of reconstruction presented in this
section are in clock cycles and scaled to one oper-
ation. An operation corresponds to one update of
a voxel. The number of voxel’s updates is equal to
the number of voxels multiplied by the number of
segments times the number of angles.

The results presented in figure 11 are achieved
with one BP unit for the segment +2 which repre-
sents the worse case because the memory accesses
draw the most incurvated 3D sinusoid. 3PA-PET
is robust to high latencies and low bandwidth: the
pipeline computes a voxel update in about 1 clock
cycle, even for a memory latency of 30 cycles. This
shows that the 3D-AP Cache succeeds to take ad-
vantage of the high spatial and temporal locality of
the BP algorithm presented in section 3. The 3D-AP
Cache follows the 3D memory path drawn during
the BP process rather well. The cache miss-rate
stays low (about 0.05% with lmem = 5 cycles and

BWmem = 8 Bytes/cycle) which means that the 3D-
AP Cache prediction is satisfactory and manages to
hide the external memory latency.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 0 5 10 15 20 25 30

C
o

m
p

u
ta

ti
o

n
al

 e
ff

ic
ie

n
cy

 (
cy

cl
es

/O
p

)

Memory latency (cycles)

BW = 8 Bytes/cycle
BW = 4 Bytes/cycle
BW = 2 Bytes/cycle
BW = 1 Byte/cycle

BW = 0.5 Byte/cycle
BW = 0.25 Byte/cycle

Optimal efficiency

Figure 11. Cycles per operation for one unit of BP with
respect to the latency and BandWidth (BW) of the external
memory.

As illustrated in figure 12, the parallel 3PA-PET
performances are not plenty satisfactory. Indeed,
the efficiency of parallelisation decreases with the
number of BP units. For instance, with a memory
latency of 5 and for a complete BP, 4 units allow
an acceleration of 3,2 (1.25 cycle/op per pipeline)
and 8 units an acceleration of 4,7 (1.7 cycle/op per
pipeline). Because the more units are working in
parallel, the more busy the memory bus is. However,
the hierarchical cache allows to make parallelisation
a little bit more efficient thanks to the exploitation
of the spatial and temporal locality existing between
the data retrieved by each BP unit. Moreover, the
measured MBRR for 8 units between the leaf loads
and the leaf requests stay close to the MBRR mea-
sured for a single unit. This MBRR is about 8 for
8 units and 9 for 1 unit.

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30

C
o
m

p
u
ta

ti
o
n
al

 e
ff

ic
ie

n
cy

 p
er

 P
ro

ce
ss

in
g
 E

le
m

en
t

(C
y
cl

es
/O

p
/P

E
)

Memory latency (cycles)

1 unit
4 units
8 units

Optimal efficiency

Figure 12. Cycles per operation per processing units for 1, 4
and 8 units of BP with respect to the latency and bandwidth
of the external memory.

VI. Comparison with general purpose and
graphics processors

In table III, the 3PA-PET execution times are
compared with STIR and the ones from software
VBI BP on a desktop PC, a workstation and a GPU.

A. CPU implementation

Different software versions of BP, non optimized
(v1) and optimized (v2 and v3) have been tested
and compared to the STIR one on a Pentium 4
and on a bi-Xeon dual core. Two techniques of
optimization have been applied with an extensive
use of the cache memory and a reduction of the
arithmetical operations.

First, an acceleration factor of 3 is obtained due
to the reconstruction through blocks of voxels. This
software loop reordering increases the use of the L1
cache (16 Ko). Indeed, the time of reconstruction
with and without introduction of data locality, is
respectively 54,7 s (v1) and 17,4 s (v2).

Secondly, the reduction of the arithmetic opera-
tions to compute the projection coordinates allows
an acceleration by a factor 7 (software v3/software

v2 on table III). Indeed, the time performance is
improved by a factor 2 due to an incremental com-
putation of the coordinates as done by Kachelriess
[4] et al. and again by a factor 3.5 when the inner
loop is over z. The optimized code (VBI-flt(v3)) is
presented on algorithm 2.

Algorithm 2 Reduction of operations to compute
u‖ (same techniques used for v‖)

for n = 0 to nmax do
for delta = 0 to deltamax do
for psi = 0 to psimax do
u‖ = xn0 · cosψ + yn0 · sinψ
for xn = xn0 to xnmax do
u‖ = u‖ + cosψ
for yn = yn0 to ynmax do
u‖ = u‖ + sinψ
for zn = zn0 to znmax do
f(xn, yn, zn)+ = bin(delta, psi, u‖, v‖)

Finally, this code has been parallelized using the
pthread C-library to use the four cores of a bi-Xeon
dual core workstation. One thread is associated to
the reconstruction of one block.

B. GPU implementation
Current GPUs are cost effective solutions for the

implementation of 3D tomography reconstruction
because of their high level of parallelism. More-
over, the Nvidia GPUs are efficiently and easily
programmed with the CUDA environment.

The Nvidia Geforce 8880 family has 2 to 16
vector processors (12 in our case), each one hav-
ing 8 stream processors. It is programmable using
standard C language with a few extensions without
any knowledge about graphics pipeline. A non-
incremental code is parallelized to run efficiently on
these 12×8 multi-threaded stream processors. One
thread is associated to one voxel reconstruction.
Threads are grouped in blocks (16×16 in our case)
which are scheduled at run-time one block per
vector processor. Each couple of vector processors
are associated with a 8 KB L1 2D texture read-
only cache memory with 1D and 2D hard-wired
interpolation. Moreover, the GPU offers a high
memory bandwidth (BWmem=64 GB/s) and uses
floating point computation. This makes it possible
to efficiently parallelize the BP loops, as blocks of
voxels correspond to 2D blocks of threads having

access to the read-only sinogram organized in 2D
arrays through the 2D cache memory. The voxels
are also organized in 2D arrays, each divided in 64
16×16 blocks associated to a grid of 64 16×16 blocks
of threads. Thus each thread is responsible of 63
voxels considering a 63×128×128 volume.

Two versions of thread code has been imple-
mented. In the VBI-flt(v4) thread code, the loop
over ψ is the inner loop, while in VBI-flt(v5) thread
code, the loop over z is the inner loop as it is
done for the VBI-flt(v3) CPU code. This allows a
reduction of the number of projection coordinate
computation. A speed-up factor of 2 is obtained
with this code optimization (table III).

C. Discussion

The reconstruction times and efficiencies, global
and per Processing Element (PE), are presented in
table III for CPU, GPU and our 3PA-PET. To fairly
compare our architecture with other technologies,
the time measured on a Virtex 2 Pro has been scaled
to a Virtex 4. Indeed, this technology is the same
generation as the CPU and GPU used in this study.
We have scaled the 35 MHz results to the GPU
frequency (1.2 GHz) as well. This higher frequency
could be reached through the design of a cus-
tomized integrated circuit like an ASIC. Moreover,
as Nvidia GTS 8800 GPU has five memory banks,
we also present a prospective ASIC architecture
which would have also five memory banks coupled
with 5 processing blocks of 8 BP units each.

For the 200 MHz and the 1.2 GHz 3PA-PET, a
memory latency (lmem) of 25 ns has been used for
the simulated memory bus. It corresponds respec-
tively to a latency of 5 and 30 clock cycles.

On one hand, the GPU is the fastest hardware
solution with a final reconstruction time of 50 ms.
The ratio of computation over memory access is
high enough for the GPU to allow the automatic
overlapping of memory accesses with computations
by the thread scheduling mechanism. Thus, due
to its greatest computational power (96 PEs and
hard-wired interpolation), Nvidia 8800GTS graphic
processor is 10 times faster than 3PA-PET mapped
on a Virtex 4, 10 times faster than a Xeon dual core
and 50 times faster than a Pentium 4.

On the other hand, 3PA-PET is the most effi-
cient architecture with a computational efficiency
per Processing Element (PE) of about 2 cycles per

3D-BP PE Time Cycles/Op
Algorithm (threads) /PE total

Desktop PC : Pentium 4
(core freq.=3.2 Ghz,BWmem=6.4 GB/s)

STIR1 1 11.13 s 70.4 70.4
VBI-flt(v1) 1 54,7 s 355 355
VBI-flt(v2) 1 17,4 s 113 113
VBI-flt(v3) 1 2,5 s 16 16

Workstation : bi-Xeon dual core
(core freq.=3 Ghz,BWmem=10.6 GB/s)

STIR1 1 (1) 5.74 s 34.5 34.5
VBI-flt(v3) 1 (1) 1.17 s 7,1 7,1
VBI-flt(v3) 2 (2) 583 ms 7,06 3,53
VBI-flt(v3) 4 (4) 294 ms 7,12 1,78

GPU : GTS8800
(shader freq.=1.2 Ghz,BWmem=64 GB/s)

VBI-flt(v4) 96 (192) 99 ms 25.9 0.27
VBI-flt(v5) 96 (192) 50 ms 13,0 0.14

FPGA2 : Virtex 4
(freq.=200 Mhz,BWmem=0.8 GB/s,lmem=25 ns)
VBI-fix 1 2,5 s 1 1
VBI-fix 4 774 ms 1,25 0,31
VBI-fix 8 526 ms 1,7 0,21

ASIC3 : one memory bank
(freq.=1,2 Ghz,BWmem=4,8 GB/s,lmem=25 ns)
VBI-fix 1 499 ms 1.21 1,21
VBI-fix 4 214 ms 2,07 0,517
VBI-fix 8 135 ms 2,62 0,328

ASIC3 : five memory banks
(freq.=1,2 Ghz,BWmem=24 GB/s,lmem=25 ns)
VBI-fix 40 27 ms 2.62 0,065

1 Time normalized to a 128 ∗ 128 ∗ 63 volume.
(STIR reconstructs 642π ∗ 63 cylindrical volumes)
2 35 Mhz results scaled to 200 Mhz (lmem=5 cycles)
3 35 Mhz results scaled to 1,2 Ghz (lmem=30 cycles)

Table III
Compared Time Performance for the 3D PET BP of a
128×128×63 volume from a Siemens HR+ sinogram (5

segments, span 9, 96 angles of projection).
Throughput of reconstruction (cycles per voxel

update) is presented for the global architecture and
per Processing Element (PE).

operation for a processing block made of 8 units cou-
pled with one memory bank. Because of the fewer
available computational and memory resources, the
FPGA technology doesn’t allow to have an efficient
3PA-PET system compared to GPU. Nevertheless,
considering that a market would exist to justify it,
an ASIC with five memory banks and five units of
3PA-PET (8 pipelines each) running at 1.2 Ghz,
would be twice faster than the Nvidia GPU, 20
times than a Xeon dual core and 100 times than
a Pentium 4. Furthermore, a better tuning of the
3D-AP Cache would allow to increase the available

parallelism and again increase the speed-up. Also,
an ASIC implementation would be likely to have a
lower consumption than a GPU (Nvidia 8800GTS
needs 130 Watts).

All the studied architectures succeed to benefit
from the spatial and temporal localities without any
developer effort to set a double buffering memory
strategy. This is only possible because of their own
memory cache (1D cache for CPU, 2D texture
cache for GPU and the semi-general purpose 3D-
AP Cache for 3PA-PET). Nevertheless, 3PA-PET is
the one that best exploits the memory throughput,
as illustrated in figure 13. In this figure, all the
3D BP implementations are placed according to
their computational efficiency (cycles/op) and to
their available memory throughput (GB/s). The
‘optimal architecture’ in this figure, corresponds to
a hardware architecture that would have an optimal
balance between its computational and memory
throughputs. Each PE of this optimal architecture
computes one operation per cycle and its prefetch-
ing memory strategy only loads the necessary data
in cache and delivers it in time to the processing
units. Of course, the more PEs it has, the greater the
memory throughput has to be. As one can observe,
3PA-PET is the architecture with a cache-based
memory strategy that is the closest to the optimal
one. This makes 3PA-PET the architecture with the
best potential of acceleration.

VII. Conclusion

This paper presents several ways to speed-up the
BP algorithm on different target architectures: gen-
eral purpose CPU, GPU and FPGA/ASIC. These
solutions exploit the temporal and 3D spatial local-
ity that can be found in the BP algorithm. A suit-
able loop reordering shows to be efficient despite the
high non-linearity of the algorithm. The 3PA-PET
(pre-fetched and parallelized Architecture for PET)
architecture is the one that makes the best use of
this locality and allows a high level of parallelization
with a high computational throughput.

Thanks to the 3D-AP Cache together with a
loop reordering, 3PA-PET architecture proves to be
an efficient parallel architecture that overcomes the
memory bottleneck. Indeed, as it has been measured
on a SoPC prototype, the pipelines are seldom
stalled and the high latency and low bandwidth
of memories can be overcome. Moreover, the com-

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90

R
ea

ch
ed

 c
o
m

p
u
ta

ti
o

n
al

 e
ff

ic
ie

n
cy

 (
cy

cl
es

/o
p
)

Available memory thoughput (GB/s)

 [2 PE opt.]

 [2 PE non opt.]

 [1 PE opt.]

 [1 PE non opt.]

 [1 PE]

 [4 PE]

 [8 PE]

 [48 PE]

 [1 PE]

 [4 PE]

 [8 PE]

 [48 PE]

 [96 PE]

 [96 PE opt.]

 [96 PE non opt.]

Pentium 4 (3.2 Ghz)
Xeon (3 Ghz)

GPU (1.2 Ghz)
3PA−PET (1.2 Ghz)

Optimal architecture (1.2 Ghz)

Figure 13. Memory throughput exploitation by CPU (opti-
mized and non optimized code), GPU (optimized and non op-
timized code) and 3PA-PET implementations. 3PA-PET and
optimal architecture results are obtained with lmem = 25ns.

parison between the 3PA-PET architecture with a
general purpose processor and a GPU highlights
3PA-PET efficiency. On one hand, the GPU has the
best reconstruction time on a wall clock (followed by
3PA-PET and the CPU), on the other hand 3PA-
PET makes the best use of the pipeline and clock
cycles. An ASIC implementation with the same
technological resources than of GPU would be of
lower power consumption and faster: it would be
twice faster than today’s GPUs and 20 times faster
than CPUs.

To conclude, the method of loop-reordering and
use of an appropriate cache could be extended to
other algorithms. The architecture principles pre-
sented in this article could be applied for the Cone
beam BP needed in CT reconstruction.

References

[1] Kinahan P. E., et al. Emission tomography : the fun-
damentals of PET and SPECT, chapter Analytic image
reconstruction methods. Elsevier Academic Press, 2004.

[2] Jones J. P., et al. Data processing methods for a high
throughput brain imaging pet research center. In Nucl.
Sci. Symp. 2006. IEEE, volume 4, pages 2224–2228.

[3] Mancini S. et al. An iir based 2d adaptive and predictive
cache for image processing. In Design of Circuits and
Integrated Systems, page 85, Bordeaux, France, 2004.

[4] Kachelriess M., et al. Hyperfast parallel-beam and
cone-beam backprojection using the cell general purpose
hardware. Medical Physics, 34(4):1474–1486, April 2007.

[5] Schellmann M., et al. Parallelization and runtime pre-
diction of the listmode osem algorithm for 3d pet recon-
struction. In Nucl. Sci. Symp., 2006. IEEE, volume 4,
pages 2190–2195.

[6] Shattuck D., et al. Internet2-based 3D PET image
reconstruction using a PC cluster. Phys. Med. Biol.,
47(15):2785–2795, August 2002.

[7] He T., et al. A heterogeneous windows cluster system
for medical image reconstruction. In IMSCCS ’06.,
volume 1, pages 410–415, 2006.

[8] Chidlow K. et al. Rapid emission tomography re-
construction. In Proc. Int. Work. Volume Graphics
(VG’03), Tokyo, Japan, July 2003.

[9] Pratx G., et al. Fully 3-d list-mode osem accelerated
by graphics processing units. In Nucl. Sci. Symposium,
2006. IEEE, volume 4, pages 2196–2202, Oct.

[10] Xu F. et al. Real-time 3d computed tomographic recon-
struction using commodity graphics hardware. Physics
in Medicine and Biology, 52(12):3405–3419, 2007.

[11] Scherl H., et al. Fast gpu-based ct reconstruction using
the common unified device architecture (cuda). In IEEE
Nucl. Sci. Symp., NSS ’07, volume 6, pages 4464–4466.

[12] Schiwietz T., et al. A fast and high-quality cone beam
reconstruction pipeline using the gpu. In Proc. SPIE
Vol. 6510, 2007.

[13] Yang H., et al. Accelerating backprojections via cuda
architecture. In Proc. of Fully 3D, pages 52–55, 2007.

[14] Riabkov D., et al. Accelerated cone-beam backprojec-
tion using gpu-cpu hardware. In Proc. of Fully 3D, pages
68–71, 2007.

[15] Scherl H., et al. On-the-fly-reconstruction in exact cone-
beam ct using the cell broadband engine architecture. In
Proc. of Fully 3D, pages 29–32, 2007.

[16] Leeser M., et al. Parallel-beam backprojection: an fpga
implementation optimized for medical imaging. J. VLSI
Signal Process. Syst., 39(3):295–311, 2005.

[17] Li X. P2P-enhanced distributed computing in EM
medical image reconstruction. In PDPTA’04, volume 2,
pages 822–828.

[18] Heigl B. et al. High-speed reconstruction for c-arm
computed tomography. In Proc. of Fully 3D, pages 25–
28, 2007.

[19] Goddard I. et al. High-speed cone-beam reconstruction :
An embedded systems approach. In Proc. SPIE Medical
Imaging Conf., pages 483–491, February 2002.

[20] Terarecon . http://www.terarecon.com/.
[21] Ni J., et al. Analysis of performance evaluation of paral-

lel katsevich algorithm for 3-d ct image reconstruction.
In IMSCCS ’06., volume 1, pages 258–265.

[22] Gac N., et al. Hardware/software 2d-3d backprojection
on a sopc platform. In Proc. of the 2006 ACM Sympo-
sium on Applied Computing (SAC), pages 222–228.

[23] Thielemans K., et al. Stir: Software for tomographic
image reconstruction release 2. In Nucl. Sci. Symp. 2006.
IEEE, volume 4, pages 2174–2176.

	Introduction
	3D BP in Tomography reconstruction
	BP algorithms
	3D parallel beam BP for PET
	Cone beam BP for CT
	Comparison of CT and PET

	Acceleration of reconstruction

	Overcoming the memory bottleneck
	Memory access strategy
	Improvement of spatial and temporal locality
	Mean Bin Reuse Rate (MBRR)

	A 3P Architecture for PET
	Pipelined Architecture
	Pre-fetch Architecture
	Parallelized Architecture

	3PA-PET Performances
	Accuracy of reconstruction
	3PA-PET complexity
	Efficiency of reconstruction

	Comparison with general purpose and graphics processors
	CPU implementation
	GPU implementation
	Discussion

	Conclusion
	References

