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A lenticular version of a von Neumann inequality

By

Bernhard Beckermann and Michel Crouzeix

Abstract. We generalize to lens-shaped domains the classical von Neumann inequality for the
disk.

1. Introduction. We will say that L is a convex lens-shaped domain of the complex
plane, with vertices σ and σ ′, if

• either there exist two disks

D1 := {z ∈ C; |z−α1| < r1} and D2 := {z ∈ C; |z−α2| < r2}
such that L = D1 ∩ D2, σ �= σ ′ and {σ, σ ′} = ∂D1 ∩ ∂D2,

• or there exist a disk and a half-plane

D1 := {z ∈ C; |z−α1| < r1} and �2 := {z ∈ C; Re eiθ (z−σ) < 0}
such that L = D1 ∩ �2, σ �= σ ′ and {σ, σ ′} = ∂D1 ∩ ∂�2.

We will denote by 2α ∈ ]0, π ] the angle of the lens L at the vertices. We will consider also
as a lens the limit case where L = D1 = D2 is a disk. Then, any point of the boundary
may be considered as a vertex and α = π

2 .

Now let us consider a bounded linear operator A ∈ B(H) on a complex Hilbert space H .
We will say that the operator A is of the lenticular L-type if we have

• ‖A−α1I‖ � r1 and ‖A−α2I‖ � r2, if L = D1 ∩ D2,
• ‖A−α1I‖ � r1 and Re eiθ ((A−σ)v, v)� 0, ∀ v ∈ H , if L = D1 ∩ �2.
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In this paper, the norm used for a linear operator on a Hilbert space H (as well as for a
matrix) is always the operator norm induced by the hilbertian structure.

The aim of this paper is to prove the following result.

Theorem 1. Let L be a convex lens-shaped domain of the complex plane with angle 2α.
There exists a best constant C(α) ∈ R such that the inequality

‖p(A)‖ � C(α) sup
z∈L

|p(z)|,(1)

holds for all polynomials p : C → C, for all linear operators A ∈ B(H) of L-type and for
all Hilbert spaces H . Furthermore this constant, which is only depending on the angle α,
is a continuous decreasing function of α ∈ (0, π

2 ], and we have the estimate

π

2α
sin α � C(α) � min

(
2 + 2/

√
3,

π − α

α

)
.(2)

Note that for α = π
2 , which corresponds to the case where L is a disk, we have C(π

2 ) = 1,
and we recover a famous von Neumann inequality [4]. Except for this value π

2 , we do not
know the exact values of C(α). A small improvement

C(α) � π − α

π

(
2 − 2

π
log tan

(
α π

4(π−α)

))

of the upper bound in (2) can be deduced from Theorem 4.2 in [1].

Theorem 1 can be generalized in several directions. For instance, by Mergelyan’s
Theorem, the inequality (1) remains valid if instead of polynomials we take p holo-
morphic in L and continuous in L . The theorem is also valid in a completely bounded
form. More precisely, if we consider now polynomial functions P with matrix values:
C ∈ z 
→ P(z) = (pij (z)) ∈ C

n,n, then there exists a continuous decreasing function
Ccb(α) (which satisfies the bounds given for C(α)) such that the inequality

‖P(A)‖ � Ccb(α) sup
z∈L

‖P(z)‖

holds for all polynomials P with matrix values, for all linear operators A ∈ B(H) of type L

and for all Hilbert spaces H . The adverb completely points out the fact that the inequality
holds independently of the size n of the matrices. We do not know if C(α) = Ccb(α)

or not.

We should mention that a preliminary version of this theorem, in the particular case
where L has a straight face, has been implicitly used in [2] to study the convergence of the
GMRES method.

2. The proof. Our proof of Theorem 1 is heavily based on the result of the paper [3],
that we recall now. Let Sα be a convex sector of the complex plane with angle 2α. An



operator B ∈ B(H) is said Sα-accretive iff (Bv, v) ∈ Sα , for all v ∈ H satisfying ‖v‖ = 1.
The result proved in [3] is

there exists a best constant Cα ∈ R such that the inequality

‖r(B)‖ � Cα sup
z∈Sα

|r(z)|,(3)

holds for all rational functions bounded in Sα and for all Sα-accretive operators B.
Furthermore this constant Cα (which only depends of α) is a continuous and decreasing
function of α and it satisfies the estimates

π

2α
sin α � Cα � min

(
2 + 2/

√
3,

π − α

α

)
.

Therefore it is sufficient to prove that Cα = C(α) for getting the theorem.

We turn now to the proof of this equality. Without loss of generality, we can assume that
the vertices of L are σ = 0 and σ ′ = 1, and that Im α1 < 0. We introduce the rational
function g(z) := z

z−1 . It is easily seen that g is an involution and that g realizes a bijection
of the disk Dj := {z ∈ C; |z−αj | < |αj |} onto the half-plane Pj := {z ∈ C; Re ᾱj z < 0}.
In the case where the lens has a straight face L = D1 ∩�2 with �2 := {z ∈ C; Re iz < 0},
we remark also that g realizes a bijection of the half-plane �2 onto the half-plane P2 :=
{z ∈ C; Re iz > 0}. Therefore g is a bijection of the lens L onto the sector Sα = P1 ∩ P2.
Note that the sector and the lens have the same angle 2α and that 1 /∈ Sα .

Let us consider now a linear operator A such that 1 does not belong to its spectrum σ(A),
and we set B = g(A) = A(A−I )−1. It is easily seen that (B−I )(A−I ) = I , thus 1 /∈ σ(B),
and A = g(B).

Using that Re αj = 1
2 , we remark by setting v = (A−I )w that

|αj |2 ‖w‖2 − ‖(A−αj I)w‖2 � 0, ∀ w ∈ H,

⇐⇒ ‖Aw‖2 − 2 Re ᾱj (Aw, w)� 0, ∀ w ∈ H,

⇐⇒ 2 Re ᾱj (Aw, (A−I )w) � 0, ∀ w ∈ H,

⇐⇒ Re ᾱj (Bv, v)� 0, ∀ v ∈ H.

In the case where L has a straight face, we also remark that

Im(Aw, w)� 0, ∀ w ∈ H,

⇐⇒ Im(Aw, (A−I )w) � 0, ∀ w ∈ H,

⇐⇒ Im(Bv, v)� 0, ∀ v ∈ H.

Therefore if the linear operator A is of L-type, then the operator B is Sα-accretive.
Conversely if B is Sα-accretive then 1 /∈ σ(B) (since 1 /∈ Sα) and A = g(B) is of
L-type.



Let us consider now a polynomial p and set r(z) = p(g(z)), then we have p(A) = r(B)

and sup
z∈Sα

|r(z)| = sup
ζ∈L

|p(ζ )|. We deduce from (3) that

‖p(A)‖ � Cα sup
ζ∈L

|p(ζ )|.

Note that, if 1 ∈ σ(A), then for 0 < ε < 1, the operator Aε := (1−ε)A is of L-type and
1 /∈ σ(Aε), which shows that the previous inequality is still valid by using a limit argument.
Therefore we have C(α) � Cα .

Conversely if we consider a rational function r bounded in Sα , p(z) = r(g(z)) is a
rational function bounded in L. Note that p is then a uniform limit in L of a sequence of
polynomial functions, therefore the estimate (1) is still valid. We deduce that

‖r(B)‖ � C(α) sup
z∈Sα

|r(z)|,

which implies C(α) � Cα , and thus finally C(α) = Cα .

The proofs would be the same for the completely bounded form of our estimates.
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